A Tropical Semiring Multiple Matrix-Product Library on GPUs: (not just) a step towards RNA-RNA Interaction Computations

HiCOMB 2020 19th IEEE International Workshop on High Performance Computational Biology

Brandon Gildemaster brandon.gildemaster@colostate.edu

Prerana Ghalsasi prerana.ghalsasi@colostate.edu

Sanjay Rajopadhye sanjay.rajopadhye@colostate.edu

Overview

- Background / motivation
- Algorithm
- Parallelization
- Memory optimizations
- GPU matrix-matrix multiplication library
- Modified matrix-matrix multiplication library
- Performance results
- Next steps

Background / Motivation

- RNA-RNA Interaction (RRI) plays an important role in biological processes
 - Gene expression
- Certain classes of RRI are well studied
 - Shown to play roles in various diseases
 - Other classes are not as well studied
- Biological function can be interpreted from interaction structure
- Problem: Current tools to predict structure are slow
 - O(N^4) space and O(N^6) time complexity
- Goal: Utilize massive parallelism of GPUs for acceleration while managing memory constraints

- Base pair maximization and free energy minimization
- O(N)⁶ time and O(N)⁴ space
- piRNA, BPPart, BPMax
- Much work on single strand folding, little on RRI

$$H_{i_{1},j_{1},i_{2},j_{2}}^{(1)} = \max \begin{pmatrix} S_{i_{2},j_{2}}^{(2)} & j_{1} < i_{1} \\ S_{i_{1},j_{1}}^{(1)} & j_{2} < i_{2} \\ \text{iscore}(i_{1},i_{2}) & i_{1} = j_{1} \text{ and } i_{2} = j_{2} \\ \max(F_{i+1,j-1,i_{2},j_{2}} + score(i_{1},j_{1}), \\ F_{i_{1},j_{1},i_{2}+1,j_{2}-1} + score(i_{2},j_{2}), \\ H_{i_{1},j_{1},i_{2},j_{2}}^{(1)} & \text{otherwise} \\ \end{pmatrix}$$

- BPMax
 - Maximizes the score of weighted interactions
 - Restricts certain structures
- Fills up 4D dynamic programming table
 - Trapezoidal grid of trapezoids
- Full recurrence equation is complex
 - One O(N^6) term
 - Several O(N^5) terms and constant lookups
- Double max reduction (boxed in red) is the most dominant O(N^6) term
 - Most important optimization for performance

$\begin{bmatrix} s\\s \end{bmatrix}$	(2) i_2, j_2 (1) i_1, j_1	$j_1 < i_1$ $j_2 < i_2$
$F_{i_1,j_1,i_2,j_2} = \begin{cases} \text{is} \\ n \end{cases}$	$\begin{aligned} & \operatorname{core}(i_1, i_2) \\ & \max(F_{i+1, j-1, i_2, j_2} + score(i_1, j_1), \\ & F_{i_1, j_1, i_2+1, j_2-1} + score(i_2, j_2), \\ & H^{(1)} & = i \end{aligned}$	$i_1 = j_1 and i_2 = j_1$ otherwise
$H_{i_1,j_1,i_2,j_2}^{(1)} = \mathbf{m} \mathbf{a}$	$ \begin{array}{c} (j_{1,j_{1},j_{2},j_{2}}) \\ (j_{1} = 1, j_{2} \\ (j_{1} = 1, j_{2} \\ j_{1} = 1, k_{2} = i_{2} \\ j_{2} = 1, k_{2} = i_{2} \\ (j_{1} = 1, k_{2} = i_{2} \\ (j_{1} = 1, k_{2} = i_{2} \\ j_{2} = i_{2} \\ (j_{2} = k_{2} \\ k_{2} = i_{2} \\ (j_{2} = k_{2} \\ k_{2} = i_{2} \\ (j_{1} = k_{2} \\ k_{2} = i_{2} \\ (j_{1} \\ k_{1} = i_{1} \\ k_{1} = i_{1} \\ (j_{1} \\ k_{1} = i_{1} \\ (j_{1} \\ k_{1} = i_{1} \\ k_{1} \\ k_{1} = i_{1} \\ (j_{1} \\ k_{1} = i_{1} \\ k_{1} \\ k_{1$	$+1, j_1, k_2 + 1, j_2$)

🞲 Colorado State University

- Skip bottom half of each matrix
 - Subsequence [i,j] is the same as subsequence [j,i]
- Top right corner also can be skipped
 - Controlled by window size
 - Limits range of intra-RNA interaction

Memory space

Set of points evaluated

Parallelization

 Imbalance 	ed workload
-------------------------------	-------------

- Naive parallelization: all points along a diagonal can be computed in parallel
 - Poor locality
 - No optimizations such as vectorization
- Key insight: The double max reduction can be cast as specialized

matrix-matrix multiplication

- Rearrange order of evaluation
- Apply memory transformations to the dynamic programming table

$H_{i_1,j_1,i_2,j_2}^{(1)} = \max$	$\max_{k_1=i_1}^{j_1-1} \max_{k_2=i_2}^{j_2} (\mathbf{F}_{i_1,k_1,i_2,k_2} + \mathbf{F}_{k_1+1,j_1,k_2+1,j_2}),$
	$\max_{k_2=i_2}^{j_2-1} (\mathbf{F}_{i_1,j_1,i_2,k_2} + \mathbf{S}_{k_2+1,j_2}^{(2)}),$
	$\max_{k_2=i_2}^{j_2} (\mathbf{S}_{i_2,k_2}^{(2)} + \mathbf{F}_{i_1,j_1,k_2+1,j_2}),$
	$\max_{k_1=i_1}^{j_1} (\mathbf{S}_{i_1,k_1}^{(1)} + \mathbf{F}_{k_1+1,j_1,i_2,j_2})$

Depiction of naive parallelization: all terms for the red cells are evaluated in parallel

$H_{i_1,j_1,i_2,j_2}^{(1)} = \max$	$\max_{k_1=i_1}^{j_1-1} \max_{k_2=i_2}^{j_2} (\mathbf{F}_{i_1,k_1,i_2,k_2} + \mathbf{F}_{k_1+1,j_1,k_2+1,j_2}),$
	$\max_{k_2=i_2}^{j_2-1} (\mathbf{F}_{i_1,j_1,i_2,k_2} + \mathbf{S}_{k_2+1,j_2}^{(2)}),$
	$\max_{k_2=i_2}^{j_2} (\mathbf{S}_{i_2,k_2}^{(2)} + \mathbf{F}_{i_1,j_1,k_2+1,j_2}),$
	$\max_{k_1=i_1}^{j_1} (\mathbf{S}_{i_1,k_1}^{(1)} + \mathbf{F}_{k_1+1,j_1,i_2,j_2})$

$H_{i_1,j_1,i_2,j_2}^{(1)} = \max$	$\max_{k_1=i_1}^{j_1-1} \max_{k_2=i_2}^{j_2} (\mathbf{F}_{i_1,k_1,i_2,k_2} + \mathbf{F}_{k_1+1,j_1,k_2+1,j_2}),$
	$\max_{k_2=i_2}^{j_2-1} (\mathbf{F}_{i_1,j_1,i_2,k_2} + \mathbf{S}_{k_2+1,j_2}^{(2)}),$
	$\max_{k_2=i_2}^{j_2} (\mathbf{S}_{i_2,k_2}^{(2)} + \mathbf{F}_{i_1,j_1,k_2+1,j_2}),$
	$\max_{k_1=i_1}^{j_1} (\mathbf{S}_{i_1,k_1}^{(1)} + \mathbf{F}_{k_1+1,j_1,i_2,j_2})$

$H_{i_1,j_1,i_2,j_2}^{(1)} = \max$	$\max_{k_1=i_1}^{j_1-1} \max_{k_2=i_2}^{j_2} (\mathbf{F}_{i_1,k_1,i_2,k_2} + \mathbf{F}_{k_1+1,j_1,k_2+1,j_2}),$
	$\max_{k_2=i_2}^{j_2-1} (\mathbf{F}_{i_1,j_1,i_2,k_2} + \mathbf{S}_{k_2+1,j_2}^{(2)}),$
	$\max_{k_2=i_2}^{j_2} (\mathbf{S}_{i_2,k_2}^{(2)} + \mathbf{F}_{i_1,j_1,k_2+1,j_2}),$
	$\max_{k_1=i_1}^{j_1} (\mathbf{S}_{i_1,k_1}^{(1)} + \mathbf{F}_{k_1+1,j_1,i_2,j_2})$

$H_{i_1,j_1,i_2,j_2}^{(1)} = \max$	$ \begin{pmatrix} j_1 - 1 & j_2 \\ \max_{k_1 = i_1} & \max_{k_2 = i_2} (\mathbf{F}_{i_1, k_1, i_2, k_2} + \mathbf{F}_{k_1 + 1, j_1, k_2 + 1, j_2}), \\ \end{pmatrix} $
	$\max_{k_2=i_2}^{j_2-1} (\mathbf{F}_{i_1,j_1,i_2,k_2} + \mathbf{S}_{k_2+1,j_2}^{(2)}),$
	$\max_{k_2=i_2}^{j_2} (\mathbf{S}_{i_2,k_2}^{(2)} + \mathbf{F}_{i_1,j_1,k_2+1,j_2}),$
	$ \max_{k_1=i_1}^{j_1} (\mathbf{S}_{i_1,k_1}^{(1)} + \mathbf{F}_{k_1+1,j_1,i_2,j_2}) $

$$H_{i_{1},j_{1},i_{2},j_{2}}^{(1)} = \max \begin{pmatrix} \int_{k_{1}=i_{1}}^{j_{1}-1} \prod_{k_{2}=i_{2}}^{j_{2}} (F_{i_{1},k_{1},i_{2},k_{2}} + F_{k_{1}+1,j_{1},k_{2}+1,j_{2}}), \\ \int_{k_{1}=i_{1}}^{j_{2}-1} (F_{i_{1},j_{1},i_{2},k_{2}} + S_{k_{2}+1,j_{2}}^{(2)}), \\ \int_{k_{2}=i_{2}}^{j_{2}} (S_{i_{2},k_{2}}^{(2)} + F_{i_{1},j_{1},k_{2}+1,j_{2}}), \\ \int_{k_{2}=i_{2}}^{j_{1}} (S_{i_{2},k_{2}}^{(1)} + F_{k_{1}+1,j_{1},i_{2},j_{2}}) \end{pmatrix}$$

- Evaluation of blue cell is the maximum of the pairwise addition of the row and column of red cells
- Interchanging j and k loops exploits vectorization on CPUs
 - Basically doing tropical matrix multiplication
- Can be applied to all points in one matrix in parallel
 - And all matrices along a diagonal to exploit coarse grain parallelism

Imbalanced workload

- Pad each matrix with an extra row and column
 - Shift cells in each matrix one row to the right
- Initialize white cells to max-plus semiring additive identity
- Avoids thread divergence

MAX(C[0,3], $-\infty + B[0,3]) = C[0,3]$

Thread divergence

Image from NVIDIA Volta architecture whitepaper

Matrix Multiplication

Visualizing iteration space

Triangular or Trapezoidal Matrix Multiplication

- **Goal:** Get as close to the iteration space on the left without introducing thread divergence
- Thread divergence happens at the warp level in CUDA
 - Diverging threads in a warp execute different instructions
- Skip computations at the thread-block level
- No standard library performs triangular-triangular matrix multiplication
 - Triangular-square

6x the amount of work!

• Skip computations at thread block level

Modifications

- Two memory transformations
- $N^{2*}M^2 \rightarrow N^*M^*W^2$
- * 102 GB \rightarrow 10.5 GB for N = M = 400 and W = 128

 $i_1, j_1 \rightarrow i_1 + N - j_1, j_1$

Final algorithm

🞲 Colorado State University

GPU Library

• Library call multiplies a column of matrices by another column of matrices in the max-plus semiring

One call to the GPU library

The full double reduction for blue/green matrices requires two library calls

Max plus theoretical peak

Can't utilize FMA or tensor cores

	Architecture	Memory	Cores	Clock speed	Calculated peak
GTX 980	Maxwell	4 GB	2048	1216 MHz	2490
GTX 1060	Pascal	6 GB	1280	1708 MHz	2184
Titan V	Volta	12 GB	5120	1455 MHz	7450

Library performance

- We developed a square matrix multiplication library which attains close to machine peak
 - Performs many unnecessary computations
- A trapezoidal matrix multiplication library which does less operations
 - but introduces some irregularities affecting performance
- Graphs showing performance of a single library call on a column of 50 matrices

Square matrix multiplication library

100x100 150x150 200x200 250x250 300x300 350x350 400x400

Matrix size

1000

0 50x50

Library performance

- Graph is showing effective operations per second: counting only the operations on cells that matter divided by runtime
- Previous graph was showing performance considering all operations
 - This graph is more specific to BPMax
- When computing operations per second and ignoring useless computations (effective ops/second) the trapezoidal library performance is higher
 - Because it is doing less operations

Square vs. Triangular Matrix Multiplication Performance Columns of 50 Matrices

Full BPMax performance

- At the time of paper submission we completed the full implementation of BPMax on a GPU
- CPU experiments ran with the original BPMax implementation
 - Naive CPU implementation / parallelization
 - We plan to implement an optimized CPU version for a more fair comparison
- Intel(R) Xeon(R) E-2278G CPU
 - 5 GHz max clock speed
 - 16 cores
- GPU results include data transfer time from CPU to GPU and back
- BPMax attains ~.5 Giga ops /second currently

Input RNA Size vs. Runtime

Size of RNA1 & RNA2 (# nucleotides)

Current / future work

- Current library call attains ~10-11% of theoretical peak of GPU across 3 architectures
 - Room for 10x improvement
- Bottleneck: Memory mappings we implemented introduce thread divergence with memory loads
 - We are exploring alternate strategies that reduce memory requirements without introducing irregularities
- Optimized CPU implementation of BPMax that exploits vectorization / multithreading

Current work - eliminating thread divergence with memory loads

Current work - possible solution 1

- Pad each matrix out to the next multiple of the thread block dimensions
 - In this example the memory allocation is worse simply because the problem size is so small
 - For larger RNA / window sizes it will save memory and eliminate divergence

Current work - possible solution 2

- Allocate memory based on the dimensions of the thread blocks
- This is the minimum memory we can allocate while avoiding thread divergence
 - Since it is based off the thread block dimensions

