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Background / Motivation

• RNA-RNA Interaction (RRI) plays an important role in biological processes

– Gene expression

• Certain classes of RRI are well studied

– Shown to play roles in various diseases

– Other classes are not as well studied

• Biological function can be interpreted from interaction structure

• Problem: Current tools to predict structure are slow

– O(N^4) space and O(N^6) time complexity

• Goal: Utilize massive parallelism of GPUs for acceleration while managing memory constraints
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Algorithms

• Base pair maximization and free energy minimization
• O(N)^6 time and O(N)^4 space
• piRNA, BPPart, BPMax
• Much work on single strand folding, little on RRI



Algorithm
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Algorithm

• BPMax
– Maximizes the score of weighted interactions
– Restricts certain structures

• Fills up 4D dynamic programming table

– Trapezoidal grid of trapezoids

• Full recurrence equation is complex

– One O(N^6) term

– Several O(N^5) terms and constant lookups

• Double max reduction (boxed in red) is the most dominant O(N^6) term

– Most important optimization for performance
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Algorithm

• Skip bottom half of each matrix
– Subsequence [i,j] is the same as subsequence [j,i]

• Top right corner also can be skipped
– Controlled by window size
– Limits range of intra-RNA interaction

Window size

Memory space Set of points evaluated



Parallelization

• Imbalanced workload

• Naive parallelization: all points along a diagonal can be computed in parallel

– Poor locality

– No optimizations such as vectorization

• Key insight: The double max reduction can be cast as specialized 

matrix-matrix multiplication

– Rearrange order of evaluation

– Apply memory transformations to the dynamic programming table
Depiction of naive parallelization: all terms 
for the red cells are evaluated in parallel



Double max reduction
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Double max reduction
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• Evaluation of blue cell is the maximum of the pairwise addition of the row and 
column of red cells

• Interchanging j and k loops exploits vectorization on CPUs

– Basically doing tropical matrix multiplication

• Can be applied to all points in one matrix in parallel

– And all matrices along a diagonal to exploit coarse grain parallelism



Double max reduction

CA
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C A B

Requires two max-plus operations

Requires one max-plus operations

• Imbalanced workload



Double max reduction

= *

C A B

• Pad each matrix with an extra row and column

– Shift cells in each matrix one row to the right

• Initialize white cells to max-plus semiring additive identity

• Avoids thread divergence MAX( C[0,3] , -∞ + B[0,3]) = C[0,3]  



Thread divergence

• One program counter (PC) per thread warp

• PC loads instruction and all threads execute it

• Divergence introduces overhead

– Threads must be masked (basically turned on/off)

Thread 1 in thread block 0: 2 iterations

Thread 3 in thread block 0: 1 iteration

Image from NVIDIA Volta architecture whitepaper



Matrix Multiplication

• Visualizing iteration space
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Triangular or Trapezoidal Matrix Multiplication

• Goal: Get as close to the iteration space on the left 
without introducing thread divergence

• Thread divergence happens at the warp level in CUDA

– Diverging threads in a warp execute different 
instructions

• Skip computations at the thread-block level

• No standard library performs triangular-triangular matrix 
multiplication

– Triangular-square
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Algorithm
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• Skip computations at thread block level



Modifications

• Two memory transformations
• N2*M2 → N*M*W2

• 102 GB → 10.5 GB for N = M = 400 and W = 128
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Final algorithm

The sub patch of C the thread block will 
compute

Blue and red cells are loaded from global to 
shared memory during each step

* * *
The computation performed in shared memory 
during each step

Step 1 Step 2 Step 3

=



GPU Library

• Library call multiplies a column of matrices by another column of matrices in the max-plus semiring

= *

One call to the GPU library The full double reduction for blue/green matrices requires two library calls



Max plus theoretical peak

• Can’t utilize FMA or tensor cores

Architecture Memory Cores Clock speed Calculated peak

GTX 980 Maxwell 4 GB 2048 1216 MHz 2490

GTX 1060 Pascal 6 GB 1280 1708 MHz 2184

Titan V Volta 12 GB 5120 1455 MHz 7450



Library performance

• We developed a square matrix multiplication library which attains close to 
machine peak

– Performs many unnecessary computations

• A trapezoidal matrix multiplication library which does less operations 

– but introduces some irregularities affecting performance

• Graphs showing performance of a single library call on a column of 50 
matrices

Square matrix multiplication library

Trapezoidal matrix multiplication library



Library performance

• Graph is showing effective operations per second: counting only the 
operations on cells that matter divided by runtime

• Previous graph was showing performance considering all operations

– This graph is more specific to BPMax

• When computing operations per second and ignoring useless computations 
(effective ops/second) the trapezoidal library performance is higher

– Because it is doing less operations

= *



Full BPMax performance

• At the time of paper submission we completed the full implementation of 
BPMax on a GPU

• CPU experiments ran with the original BPMax implementation
– Naive CPU implementation / parallelization
– We plan to implement an optimized CPU version for a more fair 

comparison

• Intel(R) Xeon(R) E-2278G CPU
– 5 GHz max clock speed
– 16 cores

• GPU results include data transfer time from CPU to GPU and back

• BPMax attains ~.5 Giga ops /second currently



Current / future work

• Current library call attains ~10-11% of theoretical peak of GPU across 3 architectures

– Room for 10x improvement

• Bottleneck: Memory mappings we implemented introduce thread divergence with memory loads
– We are exploring alternate strategies that reduce memory requirements without introducing irregularities

• Optimized CPU implementation of BPMax that exploits vectorization / multithreading



Current work - eliminating thread divergence with memory loads

• Problem: current memory map introduces thread divergence with memory loads
– But not on the computation level

1 2 3

When loading values into shared memory, threads that load values 
that were shifted out from memory transformations have thread 
divergence

if (value in physical memory)
load into shared memory

else
pad with additive identity



Current work - possible solution 1

• Pad each matrix out to the next multiple of the thread block dimensions
– In this example the memory allocation is worse simply because the problem size is so small
– For larger RNA / window sizes it will save memory and eliminate divergence

12x1512x812x12

1 2 3

Pad with additive identity



Current work - possible solution 2
• Allocate memory based on the dimensions of the thread blocks

• This is the minimum memory we can allocate while avoiding thread divergence

– Since it is based off the thread block dimensions  

Matrix dimensions based on 
RNA size

Logical thread block mappings, size is 
configurable (each color is a thread block) Physical memory allocation

4x4 thread block dimensions

2x2 thread block dimensions


