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Abstract—Seed-based heuristics have proved to be efficient
for studying similarity between genetic databases with billions
of base pairs. This paper focuses on algorithms and data
structures for the filtering phase in seed-based heuristics, with
an emphasis on efficient parallel GPU/manycores implementa-
tion. We propose a 2-stage index structure which is based on
neighborhood indexing and perfect hashing techniques. This
structure performs a filtering phase over the neighborhood
regions around the seeds in constant time and avoid as much
as possible random memory accesses and branch divergences.
Moreover, it fits particularly well on parallel SIMD processors,
because it requires intensive but homogeneous computational
operations. Using this data structure, we developed a fast and
sensitive OpenCL prototype read mapper.

Keywords-seed-based heuristics; perfect hash function; par-
allelism; GPU; OpenCL; read mapper

I. INTRODUCTION

Finding similarities between sequences is a way to pro-

vide insight in biological functions and to understand the

evolution [1], [2]. Similarity studies are also used for re-

sequencing [3], [4] or metagenomics [5] where the short

genetics fraction collected from the new breeds or from the

environment are mapped to the known genomes to evaluate

their relations or interactions.

Formally, the edit distance between two sequences is the

minimal number of edit operations to tranform one sequence

into the other. The common edit operations are the change

of a character (subtitution), the addition of a character

(insertion) or the removal of a character (deletion). An edit

distance is the Hamming distance if only substitutions are

allowed, and the Levenshtein distance if substitutions, inser-

tions and deletions are allowed. More elaborated alignment
distances are defined by assigning different scores for each

type of point mutation.

From a computational point of view, computation of the

similarity can be done with alignment algorithms. Given two

genetic sequences and a score system, those algorithms find

the most optimal global or local alignment (a description of

the similarity) together with a score (an evalutation of the

similarity).

The usual dynamic programming algorithms –

Needleman-Wunsch [6] (global alignment) and Smith-

Waterman [7] (local alignment) – are not suitable for

long sequences due to their quadratic time complexity of

O(mn) with two sequences of length m and n. Current

bioinformatics projects need to compute alignments between

sequences of hundred millions to billions of base pairs. For

example, the re-sequencing process usually maps tens to

hundreds millions short reads (sequences of tens to hundreds

base pairs) to a complete genome (the human genome

contains 25 chromosomes with a total of 2.7 billions base

pairs) or even to databanks of all known sequences. To

cope with these data, large computing facilities involving

parallelism can be used, but also improved algorithms.

Seed-based heuristics: The seed-based heuristics algo-

rithms, such as FASTA [8] and BLAST [9], were proposed in

the late 1980s. Seed-based heuristics rely on the assumption

that two similar sequences share some identical parts. They

consider short words (4 to 20 characters) named seeds to

“anchor” the alignments. Once a common seed has been

identified in both sequences, further extension is realized to

get the full local alignments. We call the pair of common

seed occurrences in two sequences a candidate (Figure 1). In

<- extension --- seed --- extension --->
AACTagg-ccgatggaga...
|||| || | |||| |||
AACTcggacagatg-aga...

<- extension --- seed --- extension --->

Figure 1. Seed-based heuristics. The common 4-character seed AACT
anchors the alignment between the two sequences.

this context, a good candidate means a candidate that leads

to the local alignment with a score greater than or equal to

a choosen threshold that may reflect an e-value [10].

The seed-based heuristics approaches significally reduce

the search space of the dynamic programming. With full dy-

namic programming, two sequences of length m and n need

O(mn) time to be compared. After a seed-based heuristics,

this complexity becomes O(r ·m′n′), where r is the number

of candidates, and m′ and n′ the extension lengths, that can

be much less than m and n. The candidates contain both

true positive (correctly extending into an alignment, i.e. final

score greater than the threshold) and false positive that will
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be further discarded. The shorter the seed, the more false

postive but also the more sensitivity. To improve selectivity

a filtering phase is added to the whole seed-based heuristics

aligment process. The filtering phase is usually applied to

the flanking regions around the seeds: the neighborhoods.

This phase is called: neighborhood filtering (Figure 2). The

assumption is that sequences in the vicinity of the seeds in

the two sequences compared should be very closed.

Read mappers: Read mapping consists in aligning a large

number of reads produced by high-throughput sequencing

technologies (relatively short sequences of length ranging

from tens to hundreds base pairs) against a long reference

sequence (often a genome). Many tools have been proposed

since the last few years (e.g. BWA [11], Bowtie [12], the

CUSHAW suite [13]–[15]). Although they implement differ-

ent strategies, they have in common the use of indexation in

order to speed up the search. Surveys and evaluations such

as [16]–[19] use the type of indexing algorithm to classify

read mappers. Following [16], one can distinguish hashing-
based and Burrow-Wheeler Transform read mappers. Both

strategies achieve good results.
Among the hashing-based read-mappers, some of them

use full seed-based heuristics as presented in Section II-B,

with an extension of the neighborhood regions to select the

good candidate before doing the full extension. This type of

read-mapper is also called “seed-and-extend” or “BLAST-

like”.

Our work: Seed-based heuristics alignment process is

thus based on three phases: 1) seed indexing, 2) neigh-

borhood filtering and 3) full extension. In this article, we

focus on the second phase, using a redundant neighborhood
indexing tailored to parallel computing. Given a candidate,

that is a pair of seeds between the two sequences, the

neighbors around the seeds are compared allowing errors.

Those that do not meet a given criterion are rejected. For

those that have been accepted, the full extension phase is

realized. This means that neighborhood filtering is just a

filter to select locations of interest. Full extension is made

from both ends of the seeds. The length of the neighbors is

a parameter of the method as the seed length was.

seed
AACTaggcc
|||| || |
AACTcggac
seed

neighb.

Figure 2. Neighborhood filtering leading to the alignement of Figure 1.
Firstly, after identifying a candidate with a seed of length 4, the neighbor-
hoods of length 5 are compared. Here we use the Hamming distance with
athreshold of 50%. Secondly, if the neighborhoods are sufficiently similar,
the extension is done from the candidate (see Figure 1).

We combine here neighborhood indexing approaches [20]

and perfect hashing [21]. The key idea of our parallelization

is to use wisely these techniques to avoid as much as

possible random accesses to the global memory and branch

divergences, making the data structure particularly suited

for SIMD parallelism such as GPUs. These ideas efficiently

accelerate the neighborhood filtering phase, allowing time

gains using a GPU, both on raw performance and potentially

on applications such as read mapping.

The article is organized as follows. Section II presents

some background on GPU parallel programming and on

seed-based heuristics. Section III presents perfect hashing

and Section IV shows how to efficiently parallelize perfect

hashing on GPUs. Finally, Section V evaluates the perfor-

mance of these methods. The neighborhood filtering is up

to 10× faster when using perfect hashing functions. It can

also be used in a application such as a read mapper, as

demonstrated by our prototype read mapper MAROSE.

II. BACKGROUND

A. GPU processors

Since the early 2000s, integrating multiple cores within

a single chip is the main trend to maintain the continuous

improvement of computing power of the processors [22],

[23]. Graphical Processing Units (GPUs) with hundreds to

thousands cores are currently main representatives of many-

core processors. Thanks to the popularity and the massively

computing power of the GPUs, they have been used for

many tasks other than graphics processing. The so-called

General Purpose Computation on GPU (GPGPU) takes

benefits from the improvements in both GPU architecture

and the GPU programming languages such as Brook, C

for CUDA, OpenCL, HMPP, OpenACC, etc. With the rapid

development of GPGPU, numerous applications in all field

of bioinformatics have been mapped onto GPU [24], [25].

Ideally, the most intensive computing tasks of an appli-

cation should be mapped into a kernel. The same kernel is

then executed many times by different work-items, working

on different data sets. The host program calls the kernel and

ensures that data is transferred to and back from the GPU.

To achieve good performance on the GPU, algorithms

designers have to be aware of specific features of these

platforms. Several problems could lead to a significant re-

duction in performance, including random memory accesses

and branch divergence.

Memory accesses. GPUs have a large off-chip memory, on

which the global memory is located, with high bandwidth

but relatively high latency. This type of memory is ad-

vantageous when accessing large and contiguous regions.

As long as the memory access pattern is optimized, it

can effectively handle hundreds or thousands simultaneous

data read or write transactions [26]. On the other hand,

frequent lightweight memory accesses to random regions of

the global memory lead to bottlenecks in data transfer due
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to the high latency, resulting in a serious decrease of the

performance of the parallelized application.

SIMD execution and branch divergence. On GPUs, an in-

struction is dispatched to run on a group of computational

elements called lane. At a point of time, one lane execute

only one instruction. The computational elements in a lane

are thus handled in a SIMD (Single Instruction Multiple

Data) way. In some cases, conditional branches are sequen-

tially executed, causing a stall in parallel work-items and

thus a waste of computational resources [24].

Depending on the application and the size of the data,

it is not always possible to have a good parallelization of

any algorithm. We will explain in Section IV how our data

structure with perfect hashing successfully adresses these

challenges, reducing as much as possible random global

memory accesses and branch divergence.

B. Offset and Neighborhood Indexing

Seed-based heuristics builds an index for a reference

sequence (or a database) that is then queried with sequences

of interest. All seeds s of a query are used to anchor an align-

ment with the reference sequence and database (Figure 3, a).

We now present the usual scheme for indexing, the offset
indexing, where the index stores the offset of the reference

sequences, and the redundant neighborhood indexing, where

the index also stores a copy of the neighborhood of the

reference sequence (Figure 3, b).

In both cases, given a seed s of length �s, the process

ends with an extension phase on the neighborhoods of s
(Figure 3, c) and possibly further extensions. We call �n the

length of the neighborhood used in the first extension phase.

1) Offset indexing: In the common implementation of

seed-based heuristics, the index stores, for a given seed s,

all the positions of the reference sequence where s occurs.

The index contains thus the positions of all possible seeds.

This way of indexing is called offset indexing by [20]. From

a query sequence and a seed it contains, it remains to query

the index to retrieve all the positions where the seed occurs

in the reference sequence. This provides a list of candidates.

This is the seed matching phase (see Figure 3, a). With such

an index, to go further in the neighborhood filtering phase,

each candidate returned needs several memory accesses to

the reference sequence to gather the neighborhoods of the

seeds between the reference and the query (see Figure3, b,

left). To minimize these access times, software like PLAST

build once this list of neighborhood, at runtime [27]. These

memory accesses are unfortunately random, unpredictable

and non contiguous. By the way, they are not efficiently

cached and require high latencies, for both CPUs and GPUs.

2) Neighborhood indexing: The neighborhood indexing
consists in directly storing the neighborhoods (of length �n)

of the seed in the reference sequence in the index [20].

a) Seed matching phase

query reference
agacgaTACGattcggatg

aaaTACGattaggacga -> 7
seed aggTACGggatgacgagag
s neighb. 24

b attagaTACGgagatt
364

b) Neighborhood filtering phase

With offset indexing – With neighborhood indexing

index | index (l_n=6)
|

TACG : [7,24,364] | TACG : [7:attcgg,
| 24:ggatga,

+ memory access | 364:gagatt]

c) Extension phase

query aaaTACGattaggacga
<||||::: ::>>>>

reference ...aTACGattcggatga...

Figure 3. Seed-based heuristics with offset indexing or neighborhood
indexing. a) From a seed taken from the query, one obtains b) the
positions in the reference (offset indexing), possibly with the neighborhoods
(neighborhood indexing). c) For neighborhoods that meets a criterion, the
extension phase is done. Here, neighborhood indexing is done only on the
right side of the seed. The left side can be handled in a similar way.

The neighborhood filtering phase remains the same pro-

cess with the advantage to access the neighborhoods more

efficiently, from a single contiguous memory region. This

approach can thus avoid some random memory accesses

in the process of gathering the neighborhoods of each

seed. Obviously, implementing such an index leads to a

memory overhead compared to the offset indexing approach.

Nevertheless, this overhead is not so large: For 32-bit offsets

and neighborhood lengths �n = 4, 8, 16, the total size of a

complete neighborhood index is about 1.25×, 1.5× or 2×
larger than the offset index, respectively.

Storage of the neighborhoods. Given a seed s, the neighbor-

hood indexing thus requires to store the list of all positions

and neighborhoods of the seed s. We call nb block(s) this

list, and N the number of its elements. The most simple

solution is to store nb block(s) as a plain list:

• the list nb block(s) can be sorted according to the
positions [27], [28]. Querying the data structure with

a pattern b is then done by an iteration in O(N )
steps. A simple exact pattern matching can be used,

or an approximate pattern matching algorithm, com-

puting Hamming, Levenshtein, or any more elaborated

distance.

• the list nb block(s) can be sorted according to the
neighborhoods, enabling fast access for exact matching

with binary search in O(log(N )) time. In this case,
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approximate matching can also by done by iterating

exact matching over a set of degenerated patterns Π(b)
(that is a set of patterns built from the orginal one by

introducing some erros). The advantage is that each de-

generated pattern can be processed independently from

the others, leading to parallel processing. However,

implementing binary search requires a lot of possible

conditional branches, decreasing the parallel efficiency

on SIMD architectures such as GPUs.

III. PERFECT HASHING, WITHOUT COLLISIONS

To improve the neighborhood indexing, there is the need

for a data structure able to query neighborhoods in parallel,

in constant time (i.e. independently from the size of the

nb block), and in which all patterns queries uses the same

instructions, without branch divergence. We now discuss

various hashing techniques and present the perfect hashing
functions [29], [30].

A. Hashing and parallel hashing
Hash functions maps a key (a neighborhood in our case)

to an address. Several hash table designs allow queries in

almost constant time. In our case, the goal is to represent

nb block(s) as a hash table, and to be able, in O(1) time,

to access the list of positions of a given neighborhood.

To achieve such a complexity, the hash function has to

be designed to ensure that the addresses of the keys are

uniformaly distributed among the set of possible addresses.

Parallel hashing. The parallelization of the hashing tech-

nique is usually based on the fact that the indices of

the keys can be calculated independently. The study [31]

proposes GPU parallelizations of several hashing algorithms,

such as “Open adressing”, “Chaining” or “Cuckoo hashing”.

However, these works mainly focus on the speed of the hash

table building phase and on subsequent dynamic updates.
In our neighborhood filtering approach, the index is built

only once without requiring dynamic updates: We focus

here on the key retrieval phase, which should be efficiently

parallelized. Moreover, the existing parallel hashing meth-

ods share a common problem: Although the queries can

be executed in parallel, there is always the possibility of

nondeterministic accesses to the hash table, which lead to

both random memory accesses and branch divergences.

Collisions. A disadvantage of usual hash functions is the

eventuality of collisions when multiple neighborhoods b are

hashed to the same address. Usually, libraries using hashing

techniques explicitely handle collisions. But the problem is

that the access time to the value does not remain constant,

and can be different between elements.
On parallel implementations, the need for collision handle

in the key retrieval phase still remains. On SIMD architec-

ture, such as GPUs, this non-determinism can lead to branch

divergence and a decrease in performance.

We used another technique, the perfect hashing functions
that have no collision at all. In this case, the test of an exact

match of a neighborhood in nb block(s) can be done exactly

in constant O(1) time, with a fixed number of memory

accesses. Moreover, it fits particularly well on parallel SIMD

processors, because it requires intensive but homogeneous
computational operations.

B. Graph-based perfect hash functions

Perfect hash functions, without collisions, can be imple-

mented using the BDZ algorithm [29], which is largely based

on [30]. The idea is to use in a graph G = (V, E), where

• The set of vertices V are the choosen interval of

addresses.

• The set of edges E are randomly built from the set of

keys (the neighborhoods).

Finding a perfect hash function exactly means finding an

injective function mapping an edge e = (v0, v1) to a vertex

phf (e). A practical way to build such a function that is to

make an assignment. That is selecting for each edge e, a

value phf (e) = vj with either j = 0 or j = 1.

2

4

GCA

3

5
ATC

CTA

ATA ATT

10

Figure 5. Perfect hashing with graph assignment. On each edge (corre-
sponding to one key, here one neighborhood), the arrow shows the injective
assignment to a vertex: each vertex is assigned to at most one edge.

If the graph is acyclic, this is fairly simple to find such

assignment. One picks an edge e with a vertex v of degree

1 and assigns phf (e) = v, then one removes the edge e, and

one iterates (Figure 5).

As soon as |V| > 2 × |E|, a random graph is acyclic

with a probability of almost 1 [30]. To build a perfect hash

function, it is thus sufficient to randomly draw a graph with

|V| > 2× |E| and check its acyclicity. One would like also

to remember the phf assignment, without actualling storing

anything related to the edges, as there are 4�n possible values

for the edges. A solution is to store one bit of information

g[vi] per vertex, and aggregate the values of the vertices of

the same edge to compute phf (e) (Figure 4, top).

A further improvement consists in using hypergraphs
(generalization of graphs in higher dimensions): As soon as

|V| > 1.23 × |E|, a random 3-hypergraph has an “acyclic”

property with a probability of almost 1 [30], [32]. In practice,

assignment and computation of phf on 3-hypergraphs are
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b e(b) = {v0, v1}
ATA {0, 1}
ATT {1, 2}
GCA {2, 3}
ATC {2, 4}
CTA {4, 5}

g−Assigning−−−−−−−−→

g
0 0
1 0
2 0
3 0
4 1
5 0

Computation of phf−−−−−−−−−−−−−→

b g[v0] g[v1] j phf (e(b))
ATA 0 0 0 0
ATT 0 0 0 1
GCA 0 0 0 2
ATC 0 1 1 4
CTA 1 0 1 5

b e(b) = {v0, v1, v2}
AAT {2, 4, 7}
ATG {0, 3, 6}
CTG {2, 5, 7}
GAA {0, 4, 8}
GTA {1, 5, 7}
TAC {1, 4, 6}

g−Assigning−−−−−−−−→

g
0 2
1 0
2 0
3 1
4 1
5 0
6 1
7 0
8 0

Computation of phf−−−−−−−−−−−−−→

b g[v0] g[v1] g[v2] j phf (e(b))
AAT 0 1 0 1 4
ATG 2 1 1 1 0
CTG 0 0 0 0 2
GAA 2 1 0 0 0
GTA 0 0 0 0 1
TAC 0 1 1 2 6

Figure 4. Perfect hash functions with graph assignment. Top: Assignment of the acyclic graph of Figure 5. Each edge e = (v0, v1) is assigned to one of
its 2 supporting vertices: phf (e) = vj , where j = (g[v0] + g[v1]) mod 2. Bottom: An “acyclic” 3-hypergraph with 9 vertices and 6 edges. Each edge
e = (v0, v1, v2) connects 3 vertices and is assigned to one of this 3 vertices : phf (e) = vj , where j = (g[v0] + g[v1] + g[v2]) mod 3.

very similar to the ones on regular graphs (Figure 4, bottom),

requiring to store two bits of information g[vi] per vertex1.

IV. PARALLELIZING PERFECT HASH FUNCTIONS ON GPU

Perfect hashing enables to retrieve, in constant time,

the address associated to a given neighborhood, enabling

further extension phases. We now describe how to build the

data structure nb block for indexing neighborhoods b with

perfect hash functions, allowing to minimize branch diver-

gences and random memory accesses. Our implementation

needs only 3 random memory accesses per neighborhood

and the program behaves deterministically, without branch

divergence (except when there is a candidate).

A. Indexation with 3-hypergraphs generation

For each seed s, we want to represent nb block(s) as

a perfect hash function, that is generating (and storing) an

acyclic 3-hypergraph.

• Generating random 3-hypergraphs can be done with a

hashing with 3 different hash functions. Each neighbor-

hood b will yield an edge e(b) = (hx(b), hy(b), hz(b)).
If the hash functions are universal [33], the graph will

be random. Storing the graph is thus equivalent to be

able to compute the hash functions hx, hy and hz .

• Checking the acyclicity can be done with the algorithm

of [32]. In the unlikely cases where the graph is not

acyclic, another random graph can be generated by

choosing three other hash functions.

As there are 4�s different seeds, there are also 4�s different

acyclic graphs to generate and remember. The easiest way

to do this is to use a family of hash functions, indexed by

some integer. The BDZ algorithm proposes to use the hash

functions family developed by B. Jenkins [34]. Although

1Note that the actual BDZ algorithm has a further optimization to obtain
a minimal perfect hashing function, but that was not useful here.

mix(x,y,z)
x -= y; x -= z; x ˆ= (z >> 13);
y -= z; y -= x; y ˆ= (x << 8);
z -= x; z -= y; z ˆ= (y >> 13);
x -= y; x -= z; x ˆ= (z >> 12);
y -= z; y -= x; y ˆ= (x << 16);
z -= x; z -= y; z ˆ= (y >> 5);
x -= y; x -= z; x ˆ= (z >> 3);
y -= z; y -= x; y ˆ= (x << 10);
z -= x; z -= y; z ˆ= (y >> 15);

Figure 6. The mix procedure of the Jenkins hash functions mixes bits
from three integers x, y and z.

these hash functions have not been proved theoretically to

be universal, they perform well in practice [21].

The Jenkins functions uses a mixing procedure (Figure 6)

that shuffles bits of three integers. After some initialization

involving an integer J , the mix is done on successive 8-bit

chunks of the neighborhood b. The mix function does not

depend on J . For our parallelization, using the Jenkins hash

functions has several advantages:

• The three integers x, y, z can be used as the result of

three hash functions hx(b), hy(b), hz(b);
• These functions are represented only by the integer J ,

requiring no global memory access;

• These functions requires some arithmetic computations

(54 unsigned int operations in our implementa-

tion), but these operations do not depend on J and

have always the same number of instructions, with no

branches, and are thus efficiently parallelized.

B. GPU parallelization

In our parallelization, each work-group finds all occur-

rences of a pattern sb, that is a combination of a seed

s and a right neighbor b. In the work-group, each work-

item computes the occurrence positions for a degenerated

neighborhood that is computed by adding up to 2 mismatch

errors to the initial neighborhood by Algorithm 1.
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Algorithm 1 Seed and Filter (Kernel)

let sibi be the pattern corresponding to the current work-

item number

let L be an empty list

computes Π(bi) the list of degenerated neighborhoods of

bi
for each neighborhood bki ∈ Π(bi) do

add to L the occurrence position of sib
k
i computed by

querying the index nb block(si)
end for
from L computes a list of unique sorted occurrence

positions LCPos using parallel radix-sort

As the length of the neighborhood is fixed, the number of

degenerated neighborhoods is always the same and all the

work-items compute synchronously. Accesses to the global

memory are limited to one query to the index. The only

branch divergence occurs when a candidate is returned,

triggering an evaluation of this candidate.

The index itself, which contains the neighborhoods and

their positions, is made of the assigning table g and a two-

level position table (see Figure 7). The assigning table is

used to compute phf (e), and this value is the offset in

the first level of the position table. The second level of

the position table then gives the list of positions for each

neighborhood.

ATCC ATTCGGCC

nb block(ATCC)

b

g

20

01

02

13

14

05

16

07

08

phf (b)

1st level

ATCGGATG 00

ATTTTTTT 11

ATTCGGCC 22

AATGGGAA 53

AATCGCTG 84

aatcgctg 145

TTAAGGCC 146

aatcgctg 217

aatcgctg 218

2nd level

816

0

995

1

40

2

372

3

. . . 59

8

336

9

. . . 175

14

7381

15

. . .

LCPos = 40, 372, . . .

Figure 7. The neighborhood index structure for the seed ATCC. A
neighborhood can be retrived in constant time thanks to the table g. From
a neighbour b one computes phf (b) with table g. As several positions can
share the same neighborhood, a two-level table is then used. One accesses
to the range of positions of b through the first level between values stored in
phf (b) and phf (b)+1 (2 and 5). Finally one obtains the list of positions of
b stored in the second level. The list of candidates is sorted with a parallel
radix sort algorithm before being returned. The implementation is detailed
in [25].

V. PERFORMANCE EVALUATION

This section evaluates the performance of perfect hashing

in the filtering phase in seed-based heuristics. both for the re-

trieval and approximate comparisons of the neighborhoods,

and for a prototype read mapper application.

Two platforms were used for the tests. The first one

consists of an NVIDIA GTX 480 (30× 16 cores, 1.4 GHz)

and an Intel Xeon E5520 (8 cores, 2.27 GHz). The memory

size of the GPU and of the host are 1.5 GB and 8 GB,

respectively. The OpenCL library is provided in the NVIDIA

GPU Computing SDK 1.1 beta.

The second platform comprises an NVIDIA GeForce

Titan GPU (192× 14 CUDA cores, 837 MHz) and an Intel

Core i7-2700K (8 cores, 3.5 GHz). The memory size of

the GPU and of the host are 6 GB memory and 16 GB,

respectively. The OpenCL library is provided in the NVIDIA

CUDA Toolkit 6.5.

A. Comparing neighborhood matching techniques on GPU

Several techniques for neighborhood indexing were tested

on the GTX 480 platform. Figure 8 illustrates the perfor-

mance of perfect hashing (PH) and binary search (BS),

compared to a simple list traversal (L). Seed length �s was

set to 4 and the neighborhood length �n ranges from 4 to

16. The perfect hashing solution process the nb blocks up

to 10× faster than the binary search. The length of the seed

does not have any influence on the time complexity of any

of these methods.

• Exact matching. As neighborhoods are internally stored

as 32-bits integer, the performance of exact neighbor-

hood matching is the same for all three neighborhood

lengths. There are no significant differences between

PH and BS solutions, both of them begin faster than

plain lists.

• Approximate pattern matching. For the binary search

and the perfect hashing methods, the length of neigh-

borhood affects the performance, the number of degen-

erated patterns |Πe(b)| = O(�en) growing with �n.

The perfect hashing solution is thus adapted for SIMD

architectures, and it is relatively simple to implement.

B. MAROSE, a prototype OpenCL read mapper using neigh-
borhood indexing

MAROSE is a prototype OpenCL read-mapper which

implements the filtering phase by using the neighborhood in-

dexing approach. It ts designed to process a large number of

reads and huge reference sequences. It takes as input a set of

reads R = {r1, ..., rn}, a set of sequences T = {t1, ..., tm}
which will be indexed in an index I , and the number of

errors authorized in the full alignment extension ae.

MAROSE uses the seed-based technique, with (right)

neighborhood indexing, presented in Section II-B2. The

extension phase is done with a full semi-global alignment
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Figure 8. Performance of the binary search (BS) and the perfect hashing (PH) solutions, compared to a simple list traversal (L) for seed length �s = 4
and neighborhood length �n = 4, 8 and 16 (from left to right). Performance is measured in billions of neighborhoods per seconds, that is the total number
of neighbors processed in the nb block per second. The task here is to check whether the neighborhood is in the index, and does not include the actual
retrieval and sorting of the position list. The algorithms are tested on an exact neighborhood match, as well as on an approximate match with 1 or 2
substitution errors.

to check the Levenshtein distance with at most ae errors.

The main program iterates over the genomes tj (and their

respective indexes), and launches two OpenCL kernels, de-

tailed below. MAROSE outputs the list of matching positions

for each read.

Algorithm 2 MAROSE

Input: a set of reads R = {r1, ..., rn}, a set of genomes

T = {t1, ..., tm} and their index I(�s, �n, e), a number of

errors ae
Output: for each read, matching positions in the genomes

for each tj do
launch kernel “Seed and filter” on all reads

launch kernel “Extend” on all candidates

end for

If the sequences tj are large, they are further divided into

smaller subsequences in order that the corresponding indexes

(with the subsequences) fit into the GPU global memory.

The matching is then serialized with indexes and sequences

loaded in turns, from the hard disk to the main memory of

the host and then to the global memory of the GPU.

1) The “seed and filter” kernel: The sequence t is

indexed with the seed length �s and the neighborhood

length �n. The resulting index, containing all nb block(s),
is created once and stored on the hard disk.

Each input read is divided into a set of consecutive

patterns {sibi}, si being the seed part, of length �s and bi
being the (right) neighborhood part of length �n. For a read

of length �r, there are thus �r − �s − �n + 1 such patterns.

For each pattern sibi, bi is matched with at most e
errors with the corresponding list of neighborhoods in

nb block(si). We build the set of degenerated patterns

Π(bi) = {bki ∈ Σ�n , dHamming(bi, b
k
i ) ≤ e} and then we

match exactly each bki against nb block(si). Here, one could

use either indexing using binary search or perfect hasing.
Each pattern sib

k
i can thus be matched exactly against

nb block(s) in parallel. Each pattern sibi is processed by

one work-item independently and the whole set of patterns

for one read is processed by one work-group (Figure 9).
Each matching of bki leads to one putative alignment posi-

tion on the genome, called the absolute candidate position.

As the patterns overlap along the read, one position can be

dectected multiple times, leading to duplicates. As in [35],

we filter out these duplicates by sorting these positions. We

used a parallel version of a radix sort in order to accelerate

this process. The result of this ”Seed and Filter” kernel is a

list of unique positions.

2) The “extend” kernel: The ”extend” kernel takes as

input a read of length �r and a candidate at position p in the

genome and do the full extention. This phase is implemented

with a banded semi-global alignment algorithm between the

read and the genome segment ranging from p − ae to p +
�r + ae [36]. This allows us to find the best alignment with

a Levenshtein distance at most ae.
The list of candidate positions from all reads returned

by the work-groups are gathered to create the alignment

candidate list. In this list, each element corresponds to

an alignment between a read r and a subsequence of the

genome. This phase is also parallelized as each alignment

candidate can obviously be processed independently.
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Figure 9. Parallel implementation used in MAROSE. Each read is processed in a work-group. Each work-group computes in parallel the matching over all
possible patterns (�r − (�s + �n)) in its work-items. Each work-item computes the matching for all possible degenerated neighborhoods. The pseudocode
of the kernel is given Section V-B3.

3) Further optimizations: The design of MAROSE al-

lowed to implement two other features to have a better

control on sensitivity and specificity:

• Non-consecutive patterns. The successive patterns cre-

ated from the input read do not need to be consecutive

(that is at positions p, p+1,etc. They can be taken with

a shift of δ positions to the right: For a seed of length

�s and a neighborhood of length �n, the read r of length

�r is processed into a set of [(�r − �s − �n)/δ] + 1
patterns. The matching phase can thus be faster, but

with a trade-off in sensitivity. Moreover, using this

feature, one can tune the number of created patterns

to fit with the hardware capability of the device. On

our platform, we processed reads of larger lengths, up

to 400 bp without a dramatic decrease in sensibility.

• Spaced seeds. “Spaced seeds” improve the sensitivity of

seed-based heuristics [37]–[39]: They allow to account

for errors in seeds. A spaced seed is represented by

a sequence of #’s and -’s, where the #’s indicate

positions of exact matching. For example, the spaced

seed ######-## authorizes one mismatch at position

7. Indexing spaced seeds takes the same memory as the

regular (contiguous) seeds, as long as the number of #’s

is the same. Sensitivity can be improved with almost

the same speed than regular indexes, using exactly the

same OpenCL kernel code.

C. Performance evaluation of MAROSE

Sensitivity: We used the benchmark proposed in [16] to

evaluate MAROSE. The reference genome is the human

genome of length 2.7Gbp, denoted Href . The set of reads,

denoted H3, is made of 10 millions reads of length 40, each

read contains exactly three random substitutions.

For this dataset, the best sensitivity (with acceptable

runtime) was achieved with the following parameters: seed

length �s = 8, neighbor length �n = 7, consecutive

patterns (δ = 1), space seed ######-##. The runtime

of the experiment of mapping H3 against Href is 2h 41m.

The sensitivity of MAROSE against other read-mappers is

presented on Table I.

Multiple hits
Software Non-map. Mapped Uniquely Number Mean

reads reads hit

Novoalign [40] 47 9999953 8699117 1300836 15.12
Bowtie [12] 49 9999951 8496649 1503302 1161.98
BWA [11] 49 9999951 8496649 1503302 1161.98
SSAHA2 [41] 213 9999787 8286416 1713371 6.81
MAROSE 5715 9994285 8427129 1567156 517.927
PerM [42] 186752 9813248 8496655 1316593 147.25
BFAST [43] 199451 9800549 8476476 1324073 6.17
GASSST [35] 326598 9673402 8193650 1479752 1139.25

Table I
SENSITIVITY COMPARISION BETWEEN MAROSE AND OTHER READ

MAPPERS ON READS OF SIZE 40. FOR THE OTHER READ MAPPERS, THE

NUMBERS ARE TAKEN FROM [16]. THE MEAN NUMBER OF MULTIPLE

HITS IS REPORTED TO EVALUATE THE CAPACITY TO FIND ALL THE

OCCURRENCES OF EACH READ IN THE TARGET SEQUENCES. NOTE THAT

MAROSE HAS EXACTLY THE SAME SENSITIVITY WHEN USED WITH

BINARY SEARCH OR PERFECT HASHING.

While MAROSE is not as sensitive as some read mappers

which do not make use of seed-based heuristics, it is more

sensitive than other seed-based heuristics read mappers.

Runtime: According to [16], BWA is one of the most

sensitive and fast short read mappers. We compared the

speed of MAROSE and BWA (version 0.7.12). BWA ran

with 8 threads. We performed approximate mapping with 3

substitutions of 460,544 reads of size 40 onto the human

chromosome 10. To be indexed, the chromosome 10 is

divided into 3 segments of size 50MB. Results are reported

in Table II for the Titan platform. For both read mappers,

the time for indexing is not included. Since MAROSE

does not output the SAM format, we only compared the

runtime of MAROSE with the coordinate calculating phase

of BWA (the time for the SAM creating phase of BWA is

not included).

For BWA, the runtime is significantly different between

ungapped alignment and gapped alignment. The number of

allowed gaps (among the number of errors) is configured

by using the -o parameter. When the gap is not allowed

(-o 0), the runtime of MAROSE is nearly equivalent to
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BWA
MAROSE -o 0 -o 1 -o 2

Runtime (s) 21.313 24.682 74.288 97.210

Table II
RUNTIME OF MAROSE AND BWA ON THE TITAN PLATFORM.

that of BWA. When the gaps are allowed, the runtime of

BWA increases substantially while for MAROSE it does

not change thanks to the full extend phase. Further research

should be conducted to explore the trade-off between speed

and sensibility.

VI. CONCLUSION

Neighborhood indexing is a seed-based heuristic tech-

niques where one stores, for each seed, a list of the asso-

ciated neighborhoods. With a little memory overhead, this

technique is very efficient because it allows to minimize the

number of random memory accesses.

We presented a perfect hashing solution to the neighbor-

hood indexing, allowing to further reduce random memory

accesses as well as branch divergence, making this technique

fully adapted to massively parallel processors such as GPUs.

This technique brings a up to 10× improvement compared

to standard neighborhood indexing. We also implemented

a prototype readmapper with seed-based heuristics using

perfect hashing.

The parallel perfect hasing fits particularly well on parallel

SIMD processors, because it requires intensive but homoge-

neous computational operations. It could be also suitable

for any high performance computing architectures which

support vector processing, such as recent multi-core CPUs

and Intel’s Xeon Phi coprocessors [44] which includes 512-

bit wide SIMD instrinsic functions. We thus believe that

parallel perfect hashing is an efficient solution to store a
list of genomic sequences, and could be used as well in

other applications.
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S. Liuni, M. Sammeth, E. Picardi, and G. Pesole, “Bioinfor-
matics approaches for genomics and post genomics applica-
tions of next-generation sequencing,” Briefings in Bioinfor-
matics, vol. 11, no. 2, pp. 181–197, 2010.

[19] S. Bao, R. Jiang, W. Kwan, B. Wang, X. Ma, and Y.-Q.
Song, “Evaluation of next-generation sequencing software in
mapping and assembly,” Journal of Human Genetics, vol. 56,
pp. 406–414, 6 2011.
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