

High-Performance Direct Pairwise Comparison of Large Genomic Sequences

Christopher Mueller, Mehmet Dalkilic, and Andrew Lumsdaine
Open Systems Lab/Computer Science Department, Indiana University

Bloomington, IN 47405
{chemuell, dalkilic, lums}@indiana.edu

Abstract

Many applications in Comparative Genomics lend
themselves to implementations that take advantage of
common high-performance features in modern microproc-
essors. However, the common suggestion that a data-
parallel, multithreaded, or high-throughput implementa-
tion is possible often ignores the complexity of actually
creating such software. In this paper, we present a data-
parallel algorithm for a classic comparative genomics
algorithm, the dot plot, along with a multiprocessor exten-
sion. For large genomic comparisons, these new algo-
rithms achieve speedups of up to 14.4x over the sequential
version. This speedup introduces the opportunity of per-
forming full pairwise comparisons on entire genomes on a
much larger scale than previously possible. We also pre-
sent the experimental, model-driven approach used to de-
velop the algorithm that allowed us to carefully study and
evaluate implementation options and fully understand the
parameters effecting its performance.

KEYWORDS dot plot, data-parallel, pairwise comparison, se-
quence alignment, vector processor, Altivec, high-performance
computing, comparative genomics

1. Introduction
The dot plot algorithm [9] is one of the oldest

computational tools for comparative genomics. It creates a
pairwise comparison between two sequences and renders
the results as a dot-matrix (Figure 1). A dot-matrix for two
sequences Q and S is simply a grid with the presence of a
point at position p = (i, j) if the k-tuple beginning at ith po-
sition of S and the jth position of S coincide.

For years, the quadratic running time dot plot was
acceptable as most available sequences were short. Over
the last decade, however, sequence-alignment tools such as
BLAST [1] and FASTA [12] have gained favor for their
fast and accurate results for finding “best” alignments be-
tween a short query sequence and larger sequence data-
base.

This approach is effective for studying individual
genomic components, but fails to capture the complete
relationship between larger sequences. Recently, with the
sequencing of more full genomes, the need for tools to

study this relationship has become an active area of re-
search, with a focus on providing whole-genome align-
ments [5,6]. However, due to the intractable nature of find-
ing a best alignment between large sequences, these algo-
rithms must rely on filtering techniques and can fail to
capture the complete relationship between large sequences.
The dot plot algorithm is still the only algorithm for com-
puting a full direct pairwise comparison between two se-
quences.

Along with the increase in the size and availabil-
ity of genomic data, commodity microprocessors have also
expanded to include high-performance feature sets. For
example, all common desktop processors include a vector
processing unit that allows single-instruction multiple-data
(SIMD) level parallelism. These vector processors are
commonly used in media applications where large amounts
of streaming data must be processed quickly. In addition
to different processing units within a single processor,
many desktop computers also include multiple processors
and all major operating systems provide support for thread-
based shared-memory parallel applications.

In this paper, we demonstrate how to apply these
process features to the dot plot algorithm to compare large
sequences.

Figure 1 A Dot Plot. Common regions between sequences as ap-
pear long diagonals. Short, repeated sequences appear as horizontal
features. For small window values, inverted sequences appear as
reverse diagonals.

2. Related Work
Data-parallel versions of some common bioin-

formatics algorithms exist. Apple/Genentech BLAST,
AGBLAST[2], uses Apple’s Velocity Engine to enhance
BLASTN alignments. For large nucleotide word sizes,
AGBLAST attains a 5x speedup over the standard imple-
mentation. However, the results are highly dependent on
the word size and the improvement for more sensitive
searches is not as dramatic.

[13] presented a data-parallel version of the
Smith-Waterman [14] dynamic programming algorithm for
finding optimal local alignments. The core of Smith-
Waterman is similar to the dot plot algorithm, but narrows
the comparison space by only following paths that will
lead to good local alignments. Using the MMX vector unit
in Intel processors [10], a 6x speedup was achieved.

Erik Lindahl at Stanford has reportedly [7] im-
plemented an Altivec enhanced version of HMMER that is
30% faster than the standard version.

3. The Dot Plot Algorithm
The basic dot plot algorithm compares every

character in one sequence against every character in an-
other sequence, placing a dot in the resulting grid where
the characters match. When visualized, the matrix exposes
areas of similarity between the sequences as continuous
diagonal lines (Figure 1). More complicated patterns in-
form biologists of other similarities between the sequences,
such as inversions, repeated sequences, and areas of low
complexity.

The basic algorithm is adequate for comparing
short DNA and medium sized protein sequences. How-
ever, due to the small size of the DNA alphabet, the matri-
ces often become noisy and features are lost. The solution
is to compare the sequences using a sliding window that
compares w consecutive characters in each sequence. If
the number of matches is greater than a stringency thresh-
old strig, a dot is added at the beginning of this window.
This filters out areas of insignificant matches and high-
lights longer ones. The DOTTER program [15] takes this
approach one step further by storing the number of
matches in each window and rendering them as grayscale
values, showing more detail than the basic windowing al-
gorithm. Window and stringency values are set based on
the types of sequences (DNA/protein) and the amount of
detail required. High values will show only significant
long matches. Additionally, inversions only appear when
then window size is 1. A common method for showing
inversions using windows is to reverse one sequence and
perform the comparison a second time. Window sizes of
15-30 are common for DNA with the stringency usually
set at about 60% of that.

Given two sequences, q and s, a window size w
and stringency value strig, the naïve implementation of the

algorithm has a running time of O(|q||s|w). The w term is
important. For large sequences, the quadratic time compu-
tation is feasible if w is very small (1 or 2). However, a
realistic window size makes the computation impractical.
For instance, given two medium size bacterial genomes
with 3 Mbp and a computer capable of comparing 100
Mpbs per second, the naïve algorithm with w=1 could
compare the sequences in 25 hours. Each incremental ad-
dition to the window sizes will increase the computation
by about a day.

An improved version [11] of the dot plot algo-
rithm removes the runtime dependency on w. The new
algorithm first computes a score vector for each letter in
the alphabet against the horizontal sequence q. For a se-
quence with an alphabet ∑, this generates |∑| score vectors,
each of length |q|. Then, starting with a running score
vector r of length |q| initialized to 0, for each character c in
the vertical sequence s, it adds the entire score for c to r. r
is shifted to the right by 1 for each iteration so that the
scores accumulate along the diagonals. To handle the
window size, at each step the score vector for the character
in s from w iterations back is subtracted from r. Thus, r
only contains the current scores in row i of the matrix.
After each step, r is scanned and any positions such that
r[j] > strig and 0<=j<=|q| are recorded in the resulting dot
plot.

This version has a running time of O(|q||s|), but
increases the space requirements to |∑ ||q|. However, this
is manageable for all genomic comparisons, where |∑DNA |
= 4. Although the largest genomes contain more than 3
billion base pairs, they can be easily broken into manage-
able chunks.

4. Two Parallel Dot Plot Algorithms
To take advantage of vector processors and multi-

ple processors in commodity systems, we now present two
extensions to the dot plot algorithm. Because of the com-
plexity of comparing protein sequences with their larger
alphabet sizes, we focus on large DNA comparisons.

Data-parallel processors allow the same operation
to be applied in parallel to all the values stored in a vector
register. Vector registers can be segmented to contain
most common data types: chars, shorts, ints, and floats.
The size of the register and the size of the data type deter-
mine how many elements are operated on at once. For in-
stance, a 128-bit register can hold 16 8-bit chars, 8 16-bit
shorts, or 4 32-bit ints. Common operations available in
vector processors include addition (vec_add), comparison
(vec_ge, vec_any_lt), and permutation for rearranging
elements in vectors (vec_perm).

To support data-parallelism, we exploit the fact
that windows for comparing DNA sequences are usually
small (<30) and rarely ever larger than 100. Assuming
every character in the window matches and each match is

DPDOTPLOT(qScores, s, win, strig):
 # Parameters:
 # qScores: the precomputed score vectors for
 # [A,C,G,T] against the entire sequence q
 # s: the vertical sequence
 # win: the comparison window
 # strig: the stringency

 # Process each diagonal in the matrix, using
 # 16-element vectors along q.
 for each vector diagonal D:
 # Zero the running score vector
 runningScore = vector(0)

 # For lower triangle vector diagonals,
 # accumulate the score for the start of
 # the vector using the standard processor
 runningScore = ProcessDiagonalHead(D)

 # Accumulate the score for the diagonal
 for each char c in s:
 # Load the score vector for character c
 # from q's precomputed score vectors and
 # add the score to the running score
 score = VecLoad(qScores[c])
 runningScore = VecAdd(score, r_score)

 # Subtract the values outside the
 # window from the running score.
 if index(c) > win:
 delChar = s[index(c) - win]
 delscore = VecLoad(qScores[delChar])
 runningScore = VecSub(score, delscore)

 # Compare the running score against the
 # stringency
 if VecAnyElementGte(runningScore, strig):
 # Unpack and save the results
 scores = VectorUnpack(runningScore)
 for each score in scores > strig:
 Output(row(c), col(score), score)
 end for each score
 end for VecGte()
 end for each c

 # For upper triangle vector diagonals,
 # accumulate the score for the end of
 # the vector using the standard processor
 runningScore = ProcessDiagonalTail(D)
 end for each D

end DPDOTPLOT

 Listing 1 The data-parallel dot plot algorithm

scored as 1 and each mismatch as 0, the maximum value
the score vector holds for each position is w, the size of the
window. Thus, the size needed to store a single score is sn
= log2 w. Because score addition will not overflow a
storage element and subtraction will not cause underflow,
arbitrarily sized score elements can be used, leading to a
maximum increase in the number of comparisons made per

operation to be ncmp = sreg / sn. For w = 30 and sn = 5,
a 128-bit register could hold 25 score values,
providing a theoretical 25x increase in performance.
In general, however, it is more practical to work in
increments already supported by the processor.

Rather than accumulating the running score
over the complete length of q at each iteration, our
algorithm operates on a score vector of length ncmp
and computes an entire ncmp wide vector diagonal
band of the dot plot. For instance, using vectors that
hold 16 chars, ncmp would be 16 and we would
compute a 16 character wide vector diagonal in one
pass. This approach has two practical advantages.
First, the score vector can be held in a register for the
entire duration of the computation and does not need
to be stored in memory, as would be the case if the
entire score vector were accumulated. Second, the
resulting matrix is serialized along each diagonal,
simplifying post processing and rendering.

The vector algorithm is shown in Listing 1
and illustrated in Figure 2. For each 16-element
vector diagonal in the matrix, it computes the running
score for the diagonal from q’s score vectors. At each
step, it performs a vector comparison against the
stringency value and if any elements are greater than
or equal to it, their location and value are saved. The
beginning (lower triangle) and end (upper diagonal)
of the vector diagonals that are less than the width of
the vectors are processed using the standard proces-
sor.

To extend the algorithm to support multiple
processors, we block the resulting matrix by dividing
q into equally sized column blocks for each processor.

The right hand side block must overlap the left hand block
by w characters to allow the window score to accumulate
(Figure 2).

The final important feature of both parallel algo-
rithms is the data structure used to store the resulting ma-
trix. Even for small bacterial genomes on the order of 3

Figure 2 The Data-parallel and Multiprocessor Dot Plot Algo-
rithms. The data-parallel algorithm (left) processes each 16-
element wide diagonal in the matrix, starting with the upper trian-
gular portion first. The multiprocessor algorithm (right) breaks the
matrix into two column blocks. The right block overlaps the left
block to accumulate the window score before it begins processing.

Data-parallel Processing
Order

Multiprocessor Blocking

Mbp, the complete comparison matrix would contain 9
quadrillion entries, which is too large to store on most sys-
tems. Instead, the Output() operation saves the result to
a sparse matrix data structure. We discuss the sparse ma-
trix data structure in more detail in the implementation
section.

5. Achieving High-Performance
In the next few sections we present a simple

analysis of the expected performance of the algorithm and
introduce our model-driven protocol for implementing the
algorithm. We also provide the specifications for the sys-
tem used for the implementation.

5.1 Asymptotic Analysis
Asymptotic analysis is a useful technique for un-

derstanding how much of the theoretical peak performance
an implementation can achieve. It is based on the assump-
tion that memory reads and writes are where all perform-
ance is lost. By understanding the relationship between the
number of reads and writes the algorithm requires, the
general performance relative to the peak can be gauged. If
the ratio of reads to writes is low or close to zero, once the
processor has loaded the data, it then can process it without
writing back to memory and thereby maintain a high rate
of computation.

The dot plot algorithm requires |∑DNA|n + m reads
for 3mn operations. (The 3 is for the dot's (x, y, value)
triple.) The number of writes is αmn, where α <= 1.0 is the
number of dots generated relative to the size of the full dot
plot.

The general formula describing read-
write/operations for the algorithm is:

!

"
DNA

n + m + #nm

3nm
, # <1

|∑DNA | is very small - for DNA it is 4 - and this
asymptotically goes to α / 3, suggesting that we should be
able to achieve near peak performance for large m and n
and small α. The rate at which we approach this for any
specific comparison will depend on α.

5.2 Modeling and Measuring Performance
To measure the target system's performance and

set our expectations, we developed a set of models that
contained the core operations of the algorithm. These were
used initially to help understand the implementation pa-
rameters that impact design and also used during develop-
ment to test implementation options. Due to the complex-
ity of working with vector instructions, these simpler ver-
sions allowed us to experiment with different approaches

and understand the impacts certain changes would have on
the actual implementation.

The common inputs for all models are one or two
data streams, represented by arrays of unsigned chars
(uchar) and a uchar* result. The data streams simulate
the sequences and the result pointer provides a storage
location external to the model. Each model simulates one
pass through the inner loop. Within each model, the num-
ber and types of instructions are varied according to the
parameter we are testing.

All models were executed and timed together.
Running all models this way helped ensure that the results
were internally consistent and related to the same general
system state. It also provided a feedback point for validat-
ing new models: if the values for known models were sig-
nificantly different, the results may not be correct and the
models were re-executed.

In addition to the performance models, we also
maintained a stripped-down implementation of the DOT-
TER program that provided the same output as our pro-
gram to use as the base performance measurement for the
actual algorithm.

Each algorithm implementation had two versions
that were used to gauge performance relative to the mod-
els. The standard version is the entire algorithm, as it
would be used by an end-user. The ideal version contains
the core of the algorithm but does not save the results. The
ideal version provides an upper limit on the performance
of the standard algorithm and is closer to the models.

5.3 Details
For development, testing, and benchmarking we

used the complete genomes from the mitochondrial ge-
nome database, the chromosomes for yeast, and bacterial
genomes from E. Coli and Listeria. All genomes were ac-
quired from the NCBI Genbank database [4]. The collec-
tion of mitochondrial genomes provides small sequences
[10-50kbp] with high levels of conservation between ge-
nomes. The high conservation rates tend to generate a high
number of positive pairwise matches. The genome size
and high number of positive matches enabled us to stress
the algorithm on both the input and output streams. The
yeast and bacterial genomes provided medium (230 –
1,100 kbp) and large (3-6 Mbp) length sequences, respec-
tively, and were used to gauge the actual performance of
the implementation.

The platform used to implement and test the algo-
rithm was an Apple Dual 2 GHz PowerPC G5 with 3.5 GB
DDR SDRAM running OS X 10.3.5 (Darwin Kernel Ver-
sion 7.5.0). All code was compiled with g++ 3.3 (build
1620) from Xcode 1.5, with the -O3 –fast –altivec flags
set. The VelocityEngine [3] using the Altivec instruction
set was used for all vector operations. Version 1.31 of the
Boost library [8] provided the thread and bind abstractions.

The time function used was gettimeofday()
from sys/time.h. The resolution of gettimeofday()
is 1 microsecond and has a calling time overhead of 70
nanoseconds and cost of about 78 flops. These values
were determined experimentally on the target system.

Throughout this paper the term op refers to one
base pair comparison. All performance measurements are
in terms of this metric. Thus, 500 Mops is 500 million
base pair comparisons per second.

6. Model-driven Implementation
The next few sections provide details of the mod-

els used to drive the development. The Altivec function
calls are simply wrappers around assembly calls and the
programmer handles all data loads manually. Because of
this, the -altivec compiler flag turns off optimizations for
vector code. This prevents the compiler from accidentally
optimizing away an important instruction, but also places
the burden of micro-optimization back on the developer.
The model-driven approach to development helped us
evaluate design decisions and understand the effects of
different optimizations.

6.1 DOTTER Base
The DOTTER base model was created directly

from the DOTTER source code. We removed all but the
main dot plot loop for DNA/DNA comparisons to keep the
comparison as fair as possible. We also used the same
output data structures used in the vector implementation.
The base implementation consistently yielded results of
130 Mops.

6.2 Data Stream Models
We developed a model to determine how to best

access the data streams. The two approaches studied were
incrementing all stream pointers and accessing the streams
via indices. Because the core algorithm contains so few
operations, the extra cost of either approach would have
negative impacts on performance.

Three models were used to understand the effects
of this decision. All models operated on one data stream to
minimize the measurement effects from the additional
stream operations. The first model, VecAdd, sums the
values in the stream, indexing the array directly. Ve-
cAddPointer performs the same operation, but incre-
ments a pointer and dereferences it as needed to access the
value. The final model, VecAddEightPointer, maintains
eight pointers to the data stream that model the four win-
dow add and window subtract score vectors for each letter
in ∑DNA.

The results are listed in Table 1. Overall, Ve-
cAddPointer fared slightly better than VecAdd, suggest-
ing that managing a pointer was more efficient for one data

stream. However, as the number of pointers that were
maintained increased, the performance decreased. The
eight-pointer model was two-thirds the performance of the
indexed version. Based on these results, an indexed array
was used to access the score vectors and, because only one
pointer is needed, an incrementing pointer was used for the
lookup sequence.

6.3 Vector Performance Models
The base vector performance of the system was

measured using the VecAdd* models, which read from two
data streams, subtracting the current vector in the first
string from the second and maintaining a running sum of
the result. Three variations saved the results at different
frequencies in order to model α. VecAddTwo provided the
base implementation and stored no results. Ve-

cAddTwoStoreAll stored every result and Ve-

cAddTwoStore stored the result based on the current con-
tents of the newsum vector and the frequency α. These
models mimic the general structure of the vector dot plot
algorithm and provide a rough upper limit on performance.

The results of the models are in (Figure 3). One
measurement challenge evident in the results is that the
attempt to model the frequency of stores introduced a de-
pendency on the main processor for the mod operation. All
values of α gave the exact same results. The branch stall
caused by the mod operation prevented the frequency
value from having an effect and instead simply provided a
lower bound on performance. Of note is that the perform-
ance for storing all the results was significantly better
when the dependency on branch from the main processor
is removed. However, because of the potential for tera-

Figure 3 Vector Data Stream Performance. VecAdd shows
rates for reading from two streams with one add and one sub-
tract on the data. StoreAll is performs the same operations and
also writes the results back to main memory. StoreFreq at-
tempts to write the result back with a certain frequency deter-
mined by an integer mod operation.

and peta-byte sized results for full genome comparisons,
this is not yet feasible.

The results of the vector performance model pro-
vided an upper limit on performance of just over 2500
Mops and a lower limit of around 630 Mops for single
CPU operation.

6.4 Sparse Matrix Format
Two different sparse matrix formats were used to

store the results. The first attempt was based on the STL
std::vector and consisted of a vector of vectors, the
outer one representing the rows in the sparse matrix and
the inner one containing a pair (col, score) for the column
and score at that (row, col) position. The entire structure
was kept in memory and serialized at the end of the run.

Initial comparisons between the ideal data-parallel
implementation, the base version and the std::vector
sparse matrix version were disappointing (Table 2). The
potentially large speedup was almost entirely used up by
the cost of maintaining the sparse matrix. Because the
std::vector guarantees an optimal implementation for
random data access, it would not be possible to further
improve performance using it. Instead, we opted for a
more direct representation and stored the triple (row, col,
score) directly into a large integer array. To avoid poten-
tially filling up main memory with results, they are written
to a memory-mapped file via an accessesor function that
managed the integer array memory and refreshed the
mapped memory space as necessary. Using large mapped
regions of 100 MB offset the extra cost of mapping mem-
ory.

6.5 Data Location
The location of the data plays an important role in

the performance of the implementation. It is common
practice to store large data sets in a shared location and
also mount user directories from network drives, both for
workstation use and in cluster environments. Because of
this, program file I/O often requires network communica-
tion. We repeated the experiments used to select the
sparse matrix format, but varied the location of the source
and output files. The results are in Table 3.

Table 3 Effect of data location on performance

Matrix NFS Local Local Speedup
std::vector 370 500 1.35x
mmap’d file 446 881 1.98x

Using the memory-mapped file, the speedup

achieved by storing the sequences on results locally was
almost 2x. The std::vector version also showed im-
proved performance, but not as drastic as the memory-
mapped version. Based on this result, all performance
numbers were generated using local sequences and local
result files.

6.5.1 Blocking and Prefetch
It is also worth noting that, other than the initial

increase, the rates in Figure 3 do not improve as the data
size grows. We ran this experiment with streams up to 500
MB and the same rate was maintained. Apple’s high-
performance development guide [3] suggests that the pre-
fetch hardware in the G5 processor generally performs
better than hand coded prefetch instructions. To verify
this, we experimented with different prefetch strategies
recommended for the G4 processor as well as various
stream blocking algorithms. Every attempt to outperform
the simple implementation failed to increase performance
and in most cases caused a noticeable decrease.

6.6 Multi-processor Support
The embarrassingly parallel multi-processor im-

plementation used the Boost.thread library [8] to distribute
the q sequence across two processors. This roughly gener-
ated the expected 2x speedup.

6.7 Visualization
The dot plot technique of sequence comparison is

inherently a visualization technique. However, generating
images of large sequences presented a unique challenge. A
typical display can directly show only about 1200 elements
in each sequence, using one pixel for each dot. The pixel
averaging techniques used by the DOTTER program sup-
port larger sequences with the main features of the matrix
remaining visible, but some fine detail is lost. For se-
quences beyond 50 Kbp, there is no easy way to render the
matrix without losing detail.

Our solution to this is simple and practical.
Rather than rendering the matrices directly to the screen,
we developed a tool that rendered the dots and diagonals to
a PDF file. Dots were used for small comparisons and the
diagonal lines were extracted and rendered for larger se-
quences to help manage the size of the PDF files. This
allowed us to target output devices with various resolu-
tions, including high-resolution displays and printers.

Table 2 Performance for different sparse matrix implementations

Matrix Mops Speedup
DOTTER base 130 N/A
std::vector 500 3.85
mmap 881 6.78

Table 4 Final Results

Implementation CPUs Mops Speedup
2 data stream model 1 2643 (20.3x)
Data-parallel, ideal 2 4207 (32.3x)
Data-parallel, ideal 1 2489 (19.1x)
Data-parallel, α=.04% 1 910 7.0x

Data-parallel α=.04% 2 1686 13.0x
Data parallel, large data 2 1868 14.4x

We rendered the images to 8.5x11 in or 120x120
in PDF files using a line size of 600 dpi. The larger size is
the maximum size image we could print on a large format
printer. For quick analysis, Adobe Acrobat provided the
best rendering. Both Xpdf and Preview on OS X failed to
render the 600 dpi lines when the whole image was dis-
played, leaving a blank screen. Acrobat rendered all the
lines, regardless of the zoom level, and its antialiasing led
to usable images, even at standard screen resolutions. In
addition to rendering on traditional displays and paper, we
also used Acrobat on a the IBM T221 3840x2400 pixel,
204 dpi display and a custom 2x4, 6400x2400 pixel tiled
display wall. As the resolution and size increased, the
amount of detail visible in the plots changed.

Paper printouts provided the most complete view
of the comparisons, but for large comparisons, even the
resolution of paper was too low to show all points. The
high-resolution and large-format displays improved on the
normal displays by showing finer details when the whole
image was displayed. This made it easier to identify inter-
esting areas to zoom-in on for further analysis.

7. Results and Discussion
The final results are listed in Table 4. The maxi-

mum performance for 2 CPUs peaked at about 1870 Mops
and the single CPU performance reached 910 Mops, repre-
senting 7x and 14x speedups, respectively. The fastest
ideal rates achieved were 4207 Mops on two CPUs and
2489 Mops on a single CPU, for speedups of 20.3x and
32.3, respectively. The single CPU ideal performance is
about 6% less than that of the model. If this relation holds
for the case were all results are stored to memory (model =
1890 Mops), a single CPU speed of 1777 Mops may be
possible.

7.1 Target System Effects
While implementing serial versions of algorithms

is a straightforward task, the implementation of the data-
parallel dot plot shows that creating parallel versions of
algorithms requires careful attention to the details of the
implementation and the target system. As the results of

the sparse matrix and NFS tests show, slight changes in the
implementation and location of the data can have profound
effects on the performance. Additionally, changes to the
system environment can affect the performance.

Our initial development was performed using g++
(build 1614) from Xcode 1.1. During the project, we up-
graded to Xcode 1.5, which included “improvements for
speed and –fast robustness” [3]. As expected, the vector
code numbers remained the same. However, DOTTER’s
base performance improved significantly. Under the first
compiler, it achieved a maximum rate of 90 Mops, 30%
less than the rate from the new compiler. Using this rate,
our peak speedup for one processor would be 10.1x, in-
stead of 7.0x.

These results demonstrate an important point. To
achieve maximum performance, the entire environment of
the target system must be taken into account. Setting ex-
pectations up front with the models helped put our num-
bers in perspective and allowed us to understand the ef-
fects of the system. When actual numbers differed greatly
from expectations, the models helped us probe the system
for possible explanations. This helped us target areas out-
side of the core algorithm for optimization.

7.2 Problem Size
Table 5 lists the times to compare sequences of

different lengths at the dual processor rate using commod-
ity hardware. Assuming a linear speedup is achievable on
a cluster of such machines, we also show extrapolated re-
sults for large sequences. Because of the lack of dependen-

Table 5 Actual and projected times needed to compare large sequences on commodity hardware. Single processor times are on actual
values, cluster times are based on an ideal linear speedup for distributing the sequence across the cluster.

Sequence Size (m, n) Time to compare at 1850 Mops
50,000 (Mitochondrial) 1 second
500,000 (Yeast Chromosomes) 2.2 minutes
5,000,000 (Bacteria) 3.8 hours
50,000,000 (Small human chromosomes) 15.6 days (2.5 hours on 1500 nodes)
500,000,000 (large human chromosomes) 1564 days (~1 day on 1500 nodes)
5,000,000,000 (full mammalian genomes) 104 days on 1500 nodes

cies between portions of the matrix, linear speedup is a
reasonable assumption (although there may be the usual
implementation challenges at larger scales). These num-
bers demonstrate that complete pairwise comparisons of
large sequences are not only possible, but also practical for
medium sized genomes. The difference in running times at
the DOTTER base rate and the dual processor rate qualita-
tively changes the types of sequences that can be compared
directly.

Currently, few techniques beyond visualizations
exist for examining the complete pairwise comparison ma-
trix. And techniques that use portions of the full matrix to
help guide their execution, such as FASTA and LAGAN
[5], are focused solely on producing linear alignments of
sequences. Because of the challenges of visualizing large
pairwise comparisons, the ability to produce the complete
matrix for full genomes provides a new source of unfil-
tered data for developing comparative genomics tools.

8. Conclusion
We have presented a data-parallel and multiproc-

essor implementation of the dot plot algorithm and demon-
strated some of the challenges in developing high-
performance software to handle very large data sets. Our
model-driven development style allowed us to take a rig-
orous approach to implementation and thoroughly explore
the system parameters that affected it. We also demon-
strated the feasibility of directly comparing large genomic
sequences. The speedups attained by the data-parallel dot
plot algorithm fundamentally change the nature of the
questions that can be asked of genomes.

9. Acknowledgements
Jeremiah Willcock, from the Open Systems Lab

at Indiana University, helped prototype an early version of
the algorithm and provided feedback during the develop-
ment process. Eric Wernert and Craig Jacobs from the
Advanced Visualization Lab (AVL) at Indiana University
provided visualization support for the IBM T221 display
and the tiled display wall. This work was supported by a
grant from the Lilly Endowment.

10. References
[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J.
Lipman, Basic local alignment search tool, J Mol Biol, 215
(1990), pp. 403-10.

[2] (ACG) Apple Advanced Computation Group, Ap-
ple/Genentech BLAST, Apple, Cupertino, CA, 2002,
http://www.apple.com/acg

[3] (ADC) Apple Developer’s Connection, Velocity Engine and
Xcode, from, Apple Developer Connection, Cupertino, CA, 2004.
http://developer.apple.com/hardware/ve
http://developer.apple.com/tools/xcode/

[4] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B.
A. Rapp and D. L. Wheeler, GenBank, Nucleic Acids Res, 28
(2000), pp. 15-8.

[5] M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov,
E. D. Green, A. Sidow and S. Batzoglou, LAGAN and Multi-
LAGAN: efficient tools for large-scale multiple alignment of ge-
nomic DNA, Genome Res, 13 (2003), pp. 721-31.

[6] O. Couronne, A. Poliakov, N. Bray, T. Ishkhanov, D. Ryaboy,
E. Rubin, L. Pachter and I. Dubchak, Strategies and tools for
whole-genome alignments, Genome Res, 13 (2003), pp. 73-80.

[7] C. Daggigian, altivec-HMMER bechmark [sic] results from
Erik Lindahl - 6x faster than dual Athlon, in bioinformatics.org,
ed., Biodevelopers mailing list, 2002.
http://bioinformatics.org/pipermail/biodevelopers/2002-
December/000111.html

[8] B. Dawes and D. Abrahams, Boost, www.boost.org, 2004.

[9] A. J. Gibbs and G. A. McIntyre, The diagram, a method for
comparing sequences. Its use with amino acid and nucleotide
sequences, Eur J Biochem, 16 (1970), pp. 1-11.

[10] Intel, A-32 Intel® Architecture Software Developer's Man-
ual, Volume 1: Basic Architecture, IA-32 Intel Architecture Soft-
ware Developer's Manuals, Intel, 2004.
http://developer.intel.com/design/pentium4/
manuals/index_new.htm

[11] J. V. Maizel, Jr. and R. P. Lenk, Enhanced graphic matrix
analysis of nucleic acid and protein sequences, Proc Natl Acad
Sci U S A, 78 (1981), pp. 7665-9.

[12] W. R. Pearson and D. J. Lipman, Improved tools for biologi-
cal sequence comparison, Proc Natl Acad Sci U S A, 85 (1988),
pp. 2444-8.

[13] T. Rognes and E. Seeberg, Six-fold speed-up of Smith-
Waterman sequence database searches using parallel processing
on common microprocessors, Bioinformatics, 16 (2000), pp. 699-
706.

[14] T. F. Smith and M. S. Waterman, Identification of common
molecular subsequences, J Mol Biol, 147 (1981), pp. 195-7.

[15] E. L. L. Sonnhammer and R. Durbin, A Dot-Matrix Program
with Dynamic Threshold Control Suited for Genomic DNA and
Protein-Sequence Analysis, Gene-Combis, 167 (1995), pp. 1-10.

