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Abstract—HMMERsearch used for protein Motif finding
which is a probabilistic method based on profile hidden Markov
models, is one of popular tools for protein homology sequence
search. The current version of HMMER (version 3.0) is highly
optimized for performance on multi-core and SSE-supported
systems while maintaining accuracy.
The computational workhorse of the HMMER 3.0 task-

pipeline, the MSV and P7Viterbi stages together consume about
95% of the execution time. These two stages can prove to be
a significant bottleneck for the current implementation, and
can be accelerated via architecture-aware reformulation of the
algorithm, along with hybrid task and data level parallelism. In
this work we target the core-segments of HMMER3 hmmsearch
tool viz. the MSV and the P7Viterbi and present a fine
grained parallelization scheme designed and implemented on
Graphics Processing Units (GPUs). This three-tiered approach,
parallelizes scoring of a sequence across each warp, multiple
sequences within each block and multiple blocks within the
device. At the fine-grained level, this technique naturally takes
advantage of the concurrency of threads within a warp, and
completely eliminates the overhead of synchronization.
The HMM used for the MSV and P7Viterbi segments

share several core features, with few differences. Hence the
techniques developed for acceleration of the MSV segment can
also be readily applied to the P7Viterbi segment. However,
the presence of additional D-D transitions in the HMM for
P7Viterbi induces sequential dependencies. This is handled by
implementing the Lazy-F procedure as in HMMER 3.0 but for
SIMT architectures in a warp-synchronous fashion.
Finally, we also study scalability across multiple devices

of early Fermi Architecture. Compared to the core-segments,
MSV and P7Viterbi of the optimized HMMER3 task pipeline,
our implementation achieves up to 5.4-fold speedup for MSV,
2.9-fold speedup for P7viterbi and 3.8-fold speedup for com-
bined pipeline of them on a single Kepler GPU while preserving
the sensitivity and accuracy of HMMER 3.0. Multi-GPU im-
plementation on Fermi architecture yields up to 7.8x speedup.
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I. INTRODUCTION

Protein motif detection is key to identifying conserved

protein domains within family of proteins as well as de-

ducing its structure and function within the genome. The

HMMER [1], [2] suite of programs is widely used for

protein motif finding, building profile HMMs, scanning an

entire database of HMMs for all motifs etc. The current

version, HMMER, ver 3.0, is a significant improvement

over its predecessor, ver 2.0 due to the scoring system used

to compute the statistical significance of alignment scores.

Among the suite of tools in HMMER, HMMersearch is
used to detect a query motif among a target database of

sequences. The wide applicability of motif finding, the rapid

growth of the set of protein families as well as the set of

known sequences has made it target of many acceleration

attempts. Although the list of acceleration attempts for

HMMER 2.0 [3] is not exhaustive, some representative

contributions include [4], [5], [6], [7], [8], [9], [10], [11].

While HMMER 2.0 used Viterbi algorithm (for optimal

alignment) to compute the scores, HMMER 3.0 follows a

scoring system that computes the total log-likelihood ratios

summed over all possible alignments, via the Forward-

Backward algorithm [2]. Optimal alignment scores are use-

ful in studying similarity between individual sequences (as in

BLAST or Smith-Waterman algorithms for local alignment),

the Forward scores are more meaningful in alignment of

target protein sequences against a probabilistic model such

as the HMM. Although, computing the Forward scores

requires higher computational throughput (FLOPS) than

Viterbi, it is amenable to parallelization. Viterbi algorithm on

the other hand, imposes sequential dependencies within the

dynamic programming matrix that is harder to parallelize.

It is shown that [3] distribution of high-scores of optimal

alignment (via Viterbi algorithm) is Gumbel distributed with

parameter λ = log 2 and that of Forward scores (total log-
likelihood ratio sums) is exponentially distributed with the

same λ = log 2. Hence, it is expected that the high-scoring
tails of Viterbi and Forward scores to agree with each other.

This enables designing an efficient task pipeline that can

pre-filter out sequences based on Viterbi scores that are not

expected to score high via the Forward algorithm. Although,

this pipeline removes the load off the Forward score comput-

ing stage, the Viterbi based pre-filtering is still as expensive

as the scoring system employed in HMMER 2.0. In order

to mitigate the computational workload on the Viterbi stage

a heuristic Multiple-Segment-Viterbi (MSV) is introduced
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that is analogous to word hit and ungapped extension stages

implemented in BLAST [12]. The MSV stage employs

a much simpler Hidden Markov Model for scoring that

eliminates sequential dependencies between the dynamic

programming cells. Hence, the MSV score calculation can

be “Vectorized” on a parallel machine while preserving the

statistical distribution of significant alignments with high

fidelity. Through choice of sensitivity parameters of MSV

scores in HMMER 3.0, an 8-bit saturating scoring system

was used whose computation can be easily vectorized by

16, 8-bit SIMD registers thus achieving 16-fold speedup on

a commodity processor.

A. Previous Work

Due to extensive computational and scoring optimization

procedures implemented in HMMER 3.0 [2], it is extreme-

ly unlikely to improve the performance further either on

CPU or GPU based platforms with generic optimization

techniques alone. The previous version, HMMER 2.0, is

based on Viterbi algorithm which imposes sequential de-

pendencies and proves to be the computational bottleneck.

Several strategies were proposed to accelerate the underlying

Viterbi score calculation, resolve dependencies and extract

parallelism. HMMERsearch was initially parallelized for

clusters via MPI in [4]. The state loop was also vectorized to

process 24 HMM states in SIMD fashion or 8 state triplets

at once. Implementations of HMMERsearch for graphics

processing units (GPUs) were carried out in Claw-HMMER

[5], GPU-HMMER [6]. Optimizations included the use of

GPU texture and shared memory to efficiently store and

retrieve the calculated partial score values. Partial prefix

sums were used [7] to break the chain of dependencies in

computation of Viterbi scores. This helped extract a hybrid

task and data-level parallelism in order to solve the load

imbalance problem that arises due to variations in sequence

lengths. In addition to multiprocessor systems, a number

of attempts to accelerate implementation of the HMMER

recurrence have been carried out for FPGAs [8], [9], [10].

An extensive review of various acceleration attempts was

compiled in [11].

However, unlike previous version of HMMER 2.0 which

has been target of numerous acceleration attempts, there

exist only a handful of acceleration attempts aimed to

improve the performance of key segments of HMMER 3.0

pipeline. The main reason is that HMMER 3.0 is already

about 100- to 1000- fold faster than HMMER 2.0 [1],

implemented on the same commodity processor with SSE

support. Hence alternative architectures such as FPGA [13]

have been explored as an accelerator hardware for MSV and

P7Viterbi segments. The Viterbi algorithm was rewritten for

parallelization via prefix sums approach on the FPGA and

is able to achieve comparable performance for P7Viterbi

implemented on dual-core processors. However the hardware

limitations on the FPGA makes this implementation suitable

for smaller models (upto 512) and tiling larger models into

several dataflow partitions.

GPU based works have also been reported to partially

accelerate HMMER 3.0. [14] implemented a speculative

method to reduce times of accessing global memory which

results in speedup. This approach aims to reduce the execu-

tion time of original reduction loop empirically. In addition,

the sequences were processed by one thread at a time within

the MSV filter. Partial optimization was proposed in [15],

which parallelizes the P7Viterbi part without considering the

D-D path dependency. Although this approach claims that

14x speedup than original functions, it sacrifices probabilis-

tic inference and sensitivity.

This rest of the paper is organized as follows. Section II

provides the overview of HMMERs probabilistic inference

method with heuristic algorithms in HMMER 3.0. Sec-

tion III presents the GPU architecture-aware optimizations

designed to accelerate the MSV and P7Viterbi segments

respectively. Section IV analyzes the results, performance

and scalability across varying model sizes, sequence databas-

es and the number of GPUs. Section V and VI present

discussion and conclusion followed by current and future

works.

II. HMMER 3.0 PROTEIN MOTIF FINDING

HMMER 3.0 task pipeline is optimized for computa-

tional efficiency that employs heuristics to eliminate vast

majority of low scoring sequences as well as parallelization

techniques to accelerate Viterbi score computation. For a

sample model size of 400 positions and the ‘Envnr’ sequence

database consisting of 6.5 million sequences, 2.2% of the

sequences cross the MSV threshold to be passed on to

the P7Viterbi stage. Only 0.1% of all the sequences are

passed on to the Forward-scoring stage. The corresponding

execution time is close to 80% for MSV, and 15% for

P7Viterbi and 4.9% for Forward-Backward stage.

MSV P7Viterbi Forward-
BackwardSeq DB

100% 2.2% of seqs 0.1% of seqs

80.6% of execution 
time

14.5% of execution 
time

4.9% of execution 
time

Figure 1. HMMER3 Task Pipeline

The Multiple Segment Viterbi (MSV) stage detects con-

tiguous match alignment that is analogous to the un-

gapped high scoring pairs implemented in BLAST. Although

BLAST uses a two-stage filter to detect and extend the

ungapped alignments, the uniform entry/exit probability in

the MSV model allows for partial matches upto the size

of the query motif. The MSV heuristic HMM is shown in

Figure 2. The full Plan 7 Viterbi is shown in Figure 3.
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III. GPU ACCELERATION

M M M MS E TBN C

J

Figure 2. MSV Profile HMM

Since the majority of the execution time is spent in the

MSV filtering stage, it is a prime candidate for acceleration.

As vast majority of input sequences are also eliminated in

this stage, any improvement in the performance will greatly

impact the efficiency of the pipeline. The MSV stage exhibits

regular and well-behaved dependencies that can be easily

parallelized. However, in order to exceed the performance

of the highly optimized MSV filter for the CPU platform

in HMMER 3.0, it is imperative to go beyond generic

parallelization techniques and exploit architecture-specific

features.
The model simplifications in the MSV as shown in Figure

2 compared to the full core model used in P7Viterbi stage

(Figure 3) eliminates the “Delete” states (D) that induce
sequential dependencies between the cells of the dynamic

programming (DP) matrix within each row. The “Insert”
states (I) that induce dependencies to the previous rows
are also eliminated, leaving only the “Match” states (M )

that induce a diagonal dependency to cells in the previous

row. Although, this simplified model is a great fit for paral-

lelization, it contains a time consuming step that is ignored

by previous acceleration attempts, viz. the synchronization

overhead. The data dependency between current row and

previous row of the dynamic programming matrix is shown

in Figure 4. Therefore, an in-place updating of the DP row

stored in the shared memory via multiple threads requires

2 synchronization calls in order to avoid potential racing

hazards. The first synchronization is issued once the threads

read their dependencies from shared memory. The second

one is issued after the threads finish writing the new values

back to the shared memory. In addition to updating cells

in each row, computation of XE which entails determining

maximum of all elements in row (via parallel reduction

[16]) will incur further synchronization calls. Secondly, the

P7Viterbi stage incurs additional sychronization overhead

due to the profile-HMM complexity. These synchronization

calls impose significant overhead and degrade the perfor-

mance of the entire thread-block on any parallel architecture.

In the CUDA programming model, the warp schedulers

select warps for execution at random within the thread block,

which forces active threads to enter the idle state waiting for

other threads to complete. This results in longer execution

time and consumption of on-chip resources per thread within

each thread-block(a single DP row). The problem is further

amplified by the fact that the total number of rows is equal

to the total number of collective residues contained within

all sequences in the database (typically billions of residues),

which can severely limit the performance.

M1 M2 M3 M4S E TBN C

J

I1 I2 I3

D1 D2 D3

Figure 3. P7Viterbi Profile HMM

In the CPU implementation of HMMER 3.0, the cells

within the row are updated in parallel via 16, 8-bit SIMD

registers without any synchronizations. Hence in order to

match or achieve better performance any acceleration at-

tempt must avoid unnecessary synchronization or totally

eliminate them if possible.

0 31
Warp #0

Shared Memory 
MMX[M+1]

32 63 64 95
Warp #1 Warp #2

Multiple warps parallel alignment with synchronization

Pre_score

Cur_score

1 2

Get cur_scores
Update shared memory

1
2

Move forward

Figure 4. Multiple thread-warps with synchronization. Each thread-warp is
executed synchronously by the hardware. In the absence of synchronization
calls before read and write to shared memory, the cells in yellow at each
warp boundary is subject to racing hazards (i.e., warp #0 and warp #1 are
not selected in the same instruction issue time by SIMT unit).

A. MSV Acceleration

•Warp-Synchronous Execution:We exploit the fact that
every 32 threads within a thread-warp are always executed

synchronously by the current CUDA programming model.

Hence by having a single warp update all the cells within

each row, the need for synchronizations can be eliminated. In

order to avoid data dependency between warps, each thread-

warp processes a different sequence. The thread-warp loops

over the size of the model to cover a single row of the

DP matrix moving on to the successive row of the same
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sequence (next residue) until the entire sequence is scored.

Optimal performance of shared memory for frequent reading

and writing can be obtained by successive addressing of DP

cells within the row. However, care must be exercised so

as to avoid overwriting cells (yellow-marked) at the warp

boundary due to the diagonal dependence as shown in Figure

5.

0 31
A warp of threads

Registers
mmx

Shared Memory 
MMX[M+1]

Warp-based parallel alignment without synchronization and bank conflict

Next Loop

Move forward

Pre_score

Cur_score

1

2

3 4

Get cur_scores
Cache pre_scores
Update shared memory
Get cur_scores (next 32 positions)

1
2
3
4

Figure 5. Single thread-warp without synchronization. Each thread-warp
processes a single row by iterating till the length of the row (size of the
model). Step 1© to 4© is the logical sequence of instructions execution.

In order to eliminate overwriting problem with our warp-

synchronous execution, double-buffering of on-chip memory

is adopted. Prior to writing the values of cells back to the

shared memory, the 32 dependence values corresponding to

the next iteration are read into local registers. Step 1© to 4©
shown in Figure 5 illustrate the sequence of double-buffering

in our case. Taking advantage of dual instruction dispatch

units per warp scheduler of Kepler architecture, the first two

independent instructions, step 1© and 2©, are also able to be
executed concurrently, which further hides the latency of

sequential execution. This method ensures that values at the

warp boundary are not overwritten while updating each row

in-place. It is repeated for every iteration using the same

registers until the entire row is covered, before moving on

to the next row for the same sequence.

In the event that a single warp finished the processing

of a sequence, it automatically continues working on the

next available sequence in the database asynchronously,

independent of other warps within the block. This again

eliminates need for any block-level coordination or stalling

due to synchronization, and helps keep active threads al-

ways busy. This achieves true independence between warps

and eliminates the need for synchronization throughout the

course of entire execution. Other optimizations that enable

achieving maximum performance include:

• Intrinsic Conflict-Free Access: The on-chip shared
memory is fully utilized for buffering temporary values of

each DP row. Due to the byte scoring system of HMMER

3.0 used in MSV, each cell of the DP matrix is represented

by a single byte. As the cells are stored consecutively, every

group of four threads can access a single word (4 Bytes)

from a single bank of the shared memory without any bank

conflicts, where each thread accesses a sub-word (8 bits).

The next group of four sub-words can be similarly accessed

from the successive bank, which ensures no two words fall

in the same bank accessed by threads of the same warp.

This naturally avoids any contention for the shared memory

banks, thus achieving conflict-free access and ensuring max-

imum bandwidth. This optimization is achieved even when

model parameters such as the transition probabilities and

emission probabilities are stored and accessed within the

shared memory.

• Warp-Shuffled Reduction: The computation of XE ,

the maximum score of “Match” to “End” states, requires
max-reduction operations over private data buffered in regis-

ters. Traditionally, this requires load and store operations via

shared memory for successive binary reductions by halving

the size of the array at the end of each iteration marked

by a synchronization call [16]. The procedure is repeated

until the final value is obtained after log(N) iterations. The
use of shared memory, regular synchronization calls, as well

as uneven workload on threads makes this implementation

time-consuming and precious on-chip resources.

The NVIDIA Kepler series GPUs with compute capacity

3.x supports warp-shuffle instructions that enable direct

exchange of private data between threads within the same

warp [17]. Original separate load and store operations are

merged into a single step. By using warp-shuffle instructions,

like Butterfly Exchange (XOR) [18], the reduction operation

can be performed with (a) even workload on all threads,

(b) synchronize-free exchange of register values between

threads without any shared memory, (c) and automatic

broadcast of maximum value over all threads of a warp [18]

which is a necessary step for next residue alignment.

• Residue Packing: Since the design is aimed at process-
ing large sequence databases, it is necessary to optimize and

reduce bandwidth to global memory. Each sequence residue

could belong to one of 20 standard amino acids, 6 degenerate

symbols and 3 gap types, as shown in Figure 6, requiring

5-bits to encode each residue with digitized values between

0 and 28. Hence, 6 consecutive residues could be packed

into a single 32-bit word (int cell) that is intrinsic data type
supported by CUDA. As for redundant cells (marked by red

color in Figure 6 appended at the end, they are all assigned

to 31 as a flag of loop termination.

The pseudo-code for synchronize-free parallel MSV align-

ment is shown in Algorithm 1. Lines 1-5 set up the sequence

id corresponding to unique threadIdx.y. The while
loop in Line 6 is executed across all warps, such that each

warp receives a unique sequence id. The while loop in

Line 10, is over each row of the DP matrix corresponding

to each residue within a single sequence. Line 13, loads

the row values to the register in sets of 32, corresponding

to each warp. The For loop in Line 14, covers the entire
row. Line 17 describes read-before-write in order to avoid

racing hazards followed by writing the cell values to shared
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Digitize

Each int Type cell 
contains 6 digitized 

residues

0,1,2...27,28
5-Bits Space 

covers 1 residue
(0 ~ 31)

A C D E F G H I K L M N P Q R S T V W Y
B J Z O U X
- * ~

20 standard amino
6 degenerates

3 gaps

045910141519202425293031

045910141519202425293031Last compressed cell 
contains wasteful 

residues  

Figure 6. Compression of residues. 6 consecutive sequence residues are
packed into a single 32-bit word.

memory in Line 18. Line 20 shows the warp shuffle to

compute max for each row, and the final scores are written

back to the shared memory in Line 23.

Algorithm 1 Parallel MSV Alignment: In current execution
configuration each thread-warp is indexed by a unique

threadIdx.y. Threads with different threadIdx.y
fall in different warps with blockDim.x=32.
Require: Sequences from database
Ensure: MSV score for each sequence (in nats)
1: row ← blockIdx.y ∗ blockDim.y + threadIdx.y
2: (Idx, Idy) ← (threadIdx.x, threadIdx.y)
3: duty span ← rows in block ∗ gridDim.y
4: count ← 0
5: while row + duty span ∗ count < total seq do
6: seqid ← row + duty span ∗ count
7: i ← 0
8: len ← length[seqid]
9: mmx, share mem ← 0
10: while i < len do
11: res ← decode seq[seqid][i]
12: xE ← 0
13: Load(mmx) � Load first 32 values of previous row

from Shared Memory
14: for p ← Idx; p < hmm size; p+ = 32 do
15: temp ← max(mmx, xB) + bias− em(res, p)
16: xE ← max(xE, temp)
17: Load(mmx) � Load next 32 values
18: share mem[Idy][p+ 1] ← temp
19: end for
20: xE ← warp shuffle max(xE) Update xE, xJ, xB
21: i+ = 1
22: end while
23: Final score[seqid] ← score(xJ) � Save Final Score
24: count+ = 1
25: end while

B. P7Viterbi Acceleration

The next highest execution time in the pipeline is occupied

by the P7Viterbi stage, whose acceleration will only have

a modest impact on the pipeline efficiency. The P7Viterbi

profile HMM as shown in Figure 3 consists of the core

model states along with “Insert” and “Delete” states. The
presence of the “Delete” imposes sequential dependence

between cells within the same row of the dynamic matrix.

Fortunately, since the D-D path is only rarely taken, Lazy-

F evaluation as described in [19], implemented in HMMER

3.0, can be used to evaluate the dependent cells. All the

architecture-aware optimization techniques implemented for

the MSV stage can also be applied to the P7Viterbi as the

data dependency pattern for the “Match” states is identical
to the MSV filter.

The pseudo-code for P7Viterbi stage is shown in Algo-

rithm 2. The inner For loop in Line 14 mainly calculates
current values of M , I and D states. However, unlike M
and I , the D score (temp d) is a partial value that is only
contributed byM -D transition path. As for the D-D path, a

delayed checking of any dependencies that can improve this

D score is set to detect whether D-D update is necessary.

Any D scores with such necessity have to be updated by

Lazy-F step in Line 25.

Algorithm 2 Parallel P7Viterbi Alignment: In current execu-
tion configuration each thread-warp is indexed by a unique

threadIdx.y. Threads with different threadIdx.y
fall in different warps with blockDim.x=32.
Require: Sequences from database
Ensure: Viterbi score for each sequence (in nats)
1: row ← blockIdx.y ∗ blockDim.y + threadIdx.y
2: (Idx, Idy) ← (threadIdx.x, threadIdx.y)
3: duty span ← rows in block ∗ gridDim.y
4: count ← 0
5: while row + duty span ∗ count < total seq do
6: seqid ← row + duty span ∗ count
7: i ← 0
8: len ← length[seqid]
9: mmx, imx, dmx, share mem ← −32768
10: while i < len do
11: res ← decode seq[seqid][i]
12: xE ← −32768
13: Load(mmx, imx, dmx) � Load first 32 values
14: for p ← Idx; p < hmm size; p+ = 32 do
15: temp i ← max(V ii, V mi)
16: temp m ← max(V bm, V mm,V im, V dm)
17: temp d ← temp m+ Tmd

18: xE ← max(xE, temp m)
19: Load(mmx, imx, dmx) � Load next 32 values
20: shared mem[Idy][p+ 1] ← (temp m/i/d)
21: end for
22: xE ← warp shuffle max(xE)
23: Dmax ← warp shuffle max(Dmax)
24: Update xC, xJ, xB
25: Update Delete state by Lazy F
26: i+ = 1
27: end while
28: Final score[seqid] ← score(xC) � Save Final Score
29: count+ = 1
30: end while

• Parallel Lazy-F: Considering the significance of on-
chip memory resources to our strategy, we implement par-

allel Lazy-F for SIMT processors as shown in Figure 7,

in order to handle sequential dependencies caused by D-
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D transitions. Within each warp, the threads concurrently

calculate the D-D transition scores and checks the needs

of updating their local D scores. If none of the D scores

within the current warp need updating, then the D scores are

final. This procedure is also warp-based with no demand of

synchronization.

Within parallel inner loop, a warp-vote instruction

__all(MD_score > DD_score) is used as a condi-

tional statement to ensure that all current 32 positions of

shared memory store highest D scores. Otherwise, the inner

loop is repeated until this statement is true. In the event

that scores of specific positions are influenced by the D-D
transition, only those affected positions need to be updated

in parallel instead of examining and updating every position

in sequence. Since a large number of positions do not require

the D-D transition, this update can be ignored which greatly

reduces the time to evaluate the “Delete” score, which is
one of the primary bottleneck in other acceleration attempts

for HMMER 3.0. Compared to traditional method of pre-

fix sums [13], the Lazy-F strategy requires fewer on-chip

memory resources and instructions, which is beneficial to

warp-based algorithms that largely consume shared memory

and registers.

C. Three-Tiered Parallelization

Both MSV and P7Viterbi algorithm are built under the

framework of three-tiered parallelization. This is a fine-

grained strategy that (a) parallelly scores each sequence via

a single warp, (b) concurrently processes multiple protein

sequences in the same thread-block and (c) resides multiple

blocks on a single streaming multiprocessor (SM on Fermi /

SMX on Kepler) within entire thread-grid as shown in Figure

8. This framework is an architecture-aware optimization that

fully takes advantage of available hardware resources and

intrinsic features of CUDA programming model, which can

be easily applied to other data-independent, large-scaled and

intensively computational problems.

IV. RESULTS

The GPU accelerated MSV and Viterbi tasks in the

pipeline were tested against various HMMs of sizes 48,

100, 200, 400, 800, 1002, 1528, 2405 representative of

motifs of different protein families from small to large in

the Pfam HMM database [20]. The Pfam database (pfamA

and pfamB) consists of a total of 34,831 protein families

with 84.5% of models of size 400 or lesser, 14.4% of

the models with size between 400 and 1000, and 1.1%

of modes of size 1000 or greater. NVIDIA-Kepler series

Tesla K40 was used for the single GPU implementation

and HMMER 3.0 utilizing multi-core and SSE capabilities

on Intel Core i5 quad core CPU running 64-bit Ubuntu at

3.4GHz was used for baseline speedup calculations. This

benchmark environment is similar to [21] which proposed a

fine-grained optimization of BLAST on GPU.

Residue i is obligated to be 
checked by parallel Lazy-F

Warp-based outer loop:
(1) Threads within the same warp access (updates) positions 
according to their unique ID, threadIdx.x
(2) Iteration step is 32, the size of warp

Parallel inner loop:
(1) 32 threads simultaneously calculate different D-
D scores, and cache in registers
(2) Read corresponding positions of shared memory 
to compare D-D with pre-computed M-D scores
(3) Update current 32 positions by D-D scores

Is __all(MD_score > 
DD_score) ?

Stay in the same 
32 positions

Move to the next 
32 positions

Updated all 
positions?

Finish parallel Lazy-F 
for this residue i

Yes

Yes

No

No

Figure 7. The Implementation of Parallel Lazy-F. Selected residues need
pass through this checking procedure to update D state scores.

Figure 9 shows stage-wise speedup obtained for MSV

and Viterbi stages for two different sequence databases,

Swissprot database consisting of 459,565 sequences with a

total of 171,731,281 residues and Envnr database consist-

ing of 6,549,721 sequences with a total of 1,290,247,663

residues. Two different configurations: 1) storing the entire

model parameters (transition, emission probabilities) in the

shared memory and 2) storing the model parameters in the

SMX 1
SMX 0

Block 0
Warp0

Block n

Warp1

Warp32

Warp0
Warp1

Warp32

Sequence Database
Warp-based Parallel Alignment

32 threads 

SMX N

Parallel Blocks 
within Grid

Parallel Rows 
within Block

Parallel Threads 
within Rows

i-th Row Size = Size of HMM

Seq 0
Seq 1

Seq k
For Each residue 

within the Sequence

Seq N

Figure 8. Three-Tiered Parallelization. This framework consists of three
levels: (a) multiple blocks resident on a single SMX; (b) multiple sequences
(row) processed within a single block; (c) each residue alignment processed
by a warp of 32 threads. The red-colored parts represent wasteful residues.
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Figure 9. Speedup for Individual Stages of HMMsearch, for Swissprot and Envnr databases. The red and blue bars show the speedup obtained via shared
memory and global memory configurations. The red curve shows the device occupancy for the shared memory configuration and the blue curve for global
memory configuration. The black curve shows the optimal speedup strategy by switching between shared memory configuration for smaller models to
global memory configuration for larger models. Occupancy refers to the ratio of the total number of resident threads (warps) and the maximum theoretical
number of threads per multiprocessor.

global memory were implemented according to consumption

of on-chip memory resources which is directly influenced

by size of models. For MSV models that simplify the

core HMM models of size 1528 could be accommodated

within the shared memory. The device occupancy is 100%

for models of size less than 400 and achieves a peak

speedup of 5.0x for model size 800. However, due to

increased shared memory usage for larger models, the device

occupancy drastically decreases. The device occupancy can

however be increased for large models by storing the model

parameters in the global memory. For models of size less

than about 1002, the shared memory configuration gives

better performance for both Swissprot and Envnr databases.

As for models of size larger than 1002 approximately, only

few threads can be resided on multiprocessors with shared

memory configuration, and the global memory configuration

gives better performance due to increased device occupancy

though accessing to global memory leads higher latency. The

optimal speedup strategy would switch between shared and

global memory configurations based on a threshold of size

1002 for MSV stage.

The speedup obtained bears a strong correlation to the

occupancy hence as a thumb-rule increasing the device

occupancy increases the performance for both MSV as well

as P7Viterbi stages. As the majority of use-case models,

about 98.9% of Pfam database, have size less than 1002,

the presented technique will offer greater benefits to vast

majority of common use cases.

Secondly, due to increased register and shared memory

usage for computing Viterbi scores and buffering the core

model of P7Viterbi stage, the device peak occupancy is

limited to 50% with the speedup up to 2.9x and decreases

rapidly for models of size greater than 200. The amount

of available registers per SM/SMX becomes main limiting

factor of occupancy in this case. The red curve shows the

device occupancy for the shared memory configuration and

the blue curve for global memory configuration.

Figure 10 shows the overall speedup obtained for the

combined MSV, P7Viterbi stages implemented on the GPU.

The maximum speedups reach to 3.0-fold and 3.8-fold for

Swissprot and Envnr databases respectively.

A. Multi-GPU systems

Finally, the above acceleration strategies were implement-

ed on multi-GPU platforms in order to study the scalability

of the application. Since the processing of the sequence

database can be easily parallelized across multiple devices

without any dependencies, the expected speedup gained via

multi-GPU implementation is almost linear. Using the same

databases, Figure 11 shows the overall speedups of up to

5.6x and 7.8x obtained for the combined MSV, P7Viterbi

stage implemented on four GTX 580s based on NVIDIA-

Fermi architecture.

The multi-GPU implementation was also demonstrates the
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portability of the application to earlier NVIDIA-Fermi based

architectures that are still widely being used, however, with

some key performance differences. First, the Fermi GPU

architecture is not equipped with inter-thread exchange and

broadcast of private thread data, hence some of the warp

shuffle reduction operations are carried out with the help of

shared memory. This increases shared memory usage and

decreases device occupancy. Second, Fermi architecture is

equipped with 32KB of registers per SM as opposed to

64KB of registers on the Kepler, which further decreases

its occupancy. Neverthless, the acceleration strategies are

robust enough to perform on par with highly-optimized

implementation of HMMER 3.0 on quad-core Intel i5 CPUs
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Figure 10. Overall speedup for Swissprot and Envnr databases on a single
NVIDIA Tesla K40.
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Figure 11. Overall speedup for Swissprot and Envnr databases on 4 GTX
580 GPUs based on NVIDIA-Fermi Architecture.

and demonstrate linear speedup with number of GPUs.

V. DISCUSSION

It is observed that the Envnr database yields better

speedup compared to the Swissprot database. This is due

to the fact the MSV stage yields higher speedup compared

to Viterbi stage. A greater execution time ratio of MSV

to P7Viterbi would yield a higher overall speedup. The

execution time ratio is directly dependent on the percentage

of sequences that pass each successive stage. Hence protein

sequences that have a higher degree of homology to query

model will have lower MSV to P7Viterbi execution ratio

than protein sequences that have a lower degree of homolo-

gy. Hence the overall speedup obtained is not only dependent

on the acceleration methodologies but also on the similarity

between the target database and query model.

These two core algorithms within HMMERSearch appli-
cation are memory-bandwidth bound, as the innermost loop

in both the MSV as well as P7Viterbi have low arithmetic

intensity due to the amount of data read and the number

of arithmetic instructions performed. Hence any further

improvements on the performance of the application would

directly depend on the performance of shared memory and

global memory like available size, bandwidth, access speed,

etc.

VI. CONCLUSION AND FUTURE WORK

In this work, we demonstrate the payoffs of architecture-

aware optimizations implemented on the GPUs for the

HMMERsearch application. The three-tiered parallelization

scheme designed and implemented on Graphics Processing

Units(GPUs) included optimizations at the warp-level and

synchronize-free processing of target sequences. Additional

improvements such as warp shuffle reduction, conflict-free

shared memory access etc, improved the performance com-

pared to generic parallelization techniques. Furthermore, the

entire sequence database was parallelized across multiple

warps, blocks and devices. This fine-grained strategy is fit

for optimizing other analogous applications. We also propose

a parallel Lazy-F implemention for resolving strong D-D
dependency with less time consumption.

Our method takes advantage of the hardware cache config-

uration of the GPU architecture. We explore different cache

configurations for strong scalability analysis. This cache-

aware method switches between the (write-enabled) shared

memory for smaller HMM sizes and global memory for

larger HMMs in order to increase occupancy and maintain

strong scalability despite device limitations. Finally, we

also study scalability across multiple devices in order to

enhance the applicability of the proposed technique to earlier

architectures.

One of the bottlenecks of the Viterbi algorithm is the

Lazy-F evaluation which iteratively recalculates the delete

states if the D-D path is found to be taken by the optimal
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alignment. While the number of D-D transitions is very

low for smaller models, it can prove to be expensive for

larger models with as much as 80% of D-D transition-

s being taken. Hence, in order to accelerate evaluation

of sequential dependencies, parallel prefix sums can be

employed to establish a upper bound in the number of

iterations. Our previous work demonstrated the applicability

of this technique and is currently being investigated for the

present application. Heterogeneous computing platform such

as FPGA and GPUs are also currently being explored to

accelerate the application.
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