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Abstract—Phylogenetic inference is the process of recon-
structing the evolutionary history of species based on their
traits, nowadays mostly using molecular sequence data. Cur-
rent state-of-the-art inference methods, like Bayesian and
Maximum Likelihood (ML) inference, rely on the Phylogenetic
Likelihood Function (PLF) as their computational core. Due to
the large number of floating-point operations involved, the PLF
evaluation is the major bottleneck for large-scale phylogenetic
analyses comprising thousands of genes or even whole genomes.

Here, we describe an optimized implementation of the
PLF kernel for the novel Intel Many Integrated Core (MIC)
architecture. Using a MIC-based accelerator (Xeon Phi 5110P),
we were able to achieve speedups ranging from 1.9x to 2.8x
for different PLF kernels, compared to a highly optimized
AVX implementation running on dual-socket Xeon E5-2680
system. By integrating the optimized PLF into the phylogenetic
inference program RAxML-Light, we reduced the overall
execution times by up to factor of two. To assess the scalability
on multiple Xeon Phi cards, we also developed a hybrid MPI-
OpenMP version of the ExaML code. When ExaML is executed
on two coprocessors on the same node, we obtain speedups of
up to a factor of 3.7 (vs. a CPU baseline) and 1.8 (vs. a single
MIC). As expected, speedups increase with growing dataset
size and become stable for alignments that require processing
1-2 million sites per MIC card.

Keywords-bioinformatics; phylogenetics; maximum likeli-
hood; Intel MIC; parallel processing; MPI

I. INTRODUCTION

Computational phylogenetics deals with the problem of
reconstructing the evolutionary history of living species,
or taxa. For each of the n species, a set of m traits is
determined or obtained, that is used to assemble a n × m
input matrix. The goal of a tree reconstruction (or inference)
algorithm is to find a tree structure (phylogenetic tree), which
best fits the data of the input matrix, given some pre-defined
optimality criterion (model of evolution).

Nowadays, most phylogenetic analyses use molecular
traits, that is, DNA, RNA, or protein sequences. In this case,
the trait matrix is a multiple sequence alignment (MSA),
where characters in the same column (also site, base pair
or bp) share the same evolutionary history. The number of

columns m in a MSA is often called alignment width and
is one of the dimensions of the tree inference problem. The
second dimension is the number of taxa n. The character-
based phylogenetic inference methods on which we focus
here, typically require O(nm) operations to calculate the
optimality score of a single, given tree.

Modern phylogenetic inference methods use probabilistic
evolutionary models and rely on the Phylogenetic Likelihood
Function (PLF, [1]) to score and chose among alternative
tree topologies. In other words, they calculate the likelihood
that the molecular data in the MSA were generated by
the evolutionary process as described by a specific tree.
Depending on the tree search or sampling strategy used, tree
inference programs are classified into Maximum Likelihood
(e.g., GARLI [2], PhyML [3], RAxML [4]) and Bayesian
(e.g., MrBayes [5], PhyloBayes [6]) methods.

Due to frequent PLF calculations, such probabilistic
tree inference methods require significant computational
resources in terms of CPU time and memory. These com-
putations become a limiting factor as datasets grow larger
in terms of both, the number of taxa and alignment width.
The former is driven by the ultimate goal to reconstruct a
comprehensive Tree Of Life [7]. The latter is driven by ad-
vances in sequencing technologies, since substantially more
molecular data can be obtained at a lower cost. In the past, it
was a common practice to use short sequences comprising
only several thousands of characters (e.g., the 16S rRNA
gene, ∼1200 bp). Now, we are facing alignments with 1 up
to 50 millions of sites, for instance in the 1KITE (1K Insect
Transcriptome Evolution) project1in which we are directly
involved. Inferring phylogenies on such datasets requires a
tremendous amount of computational resources. Therefore,
computer clusters or even supercomputers are required to
accomplish this task. Yet, even with the most powerful
hardware available to date, such analyses still require days or
weeks. Thus, further algorithmic and hardware optimizations

1http://1kite.org/
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are necessary to keep pace with the data deluge.
In the last years, using hybrid and heterogeneous archi-

tectures has become standard practice in high-performance
computing (HPC), and has been largely dominated by
NVIDIA GPUs. More recently, Intel introduced the Xeon
Phi accelerator series that are based on the novel Many
Integrated Core (MIC) architecture. As of November 2013,
two out of the ten most powerful supercomputers in the
world2already have Intel Xeon Phi coprocessors: Tianhe-
2 (#1, National Super Computer Center in Guangzhou,
China) and Stampede (#7, TACC/Univ. of Texas, USA).
Also, plans have been announced, to extend the SuperMUC
(#10, Leibniz Rechenzentrum, Germany) we are typically
using for large-scale analyses, by a MIC island. Therefore,
it is important to adapt scientific codes to the MIC such that
they run efficiently on this emerging accelerator.

The remainder of this paper is organized as follows:
First, we survey related work on accelerating the PLF on
different hardware/accelerator platforms in Section II. Then,
we give an overview of the Intel Xeon Phi architecture
and compare it to GPGPUs in Section III. In Section IV
we identify the most compute-intensive routines involved
in PLF computations, and provide details on their adaption
and optimization for the MIC in Section V. Thereafter,
we evaluate the performance of the kernels we developed
and assess their impact on the overall runtime of ML tree
inferences in Section VI. Finally, we conclude and discuss
directions of future work in Section VII.

II. RELATED WORK

Substantial efforts have already been undertaken to port
the PLF to various hardware accelerators.

Several approaches for implementing PLF kernels on
reconfigurable logic (FPGAs) have been proposed by our
lab [8], [9] and by others [10], [11]. The reported speedups
vary substantially, ranging between 4x and 65x compared
to the respective single-thread CPU versions. Unfortunately,
these results are difficult to compare to each other due
to different hardware and software that was used as a
reference. Furthermore, all speedups were measured using
kernel execution time only. Hence, additional overheads
caused by PLF invocation latency and data transfer were
not considered. Thus, the impact on overall runtime in real
applications remains unclear.

Recently, a proof-of-concept GPU implementation of the
PLF as implemented in our phylogenetic likelihood library
(see http://www.libpll.org/) was presented [12].

An alternative PLF library is offered by the BEAGLE [13]
framework. BEAGLE can be executed on multi-core systems
using SSE3 vector intrinsics and OpenMP/OpenCL as well
as on GPUs. Extensions of BEAGLE to support AVX

2http://www.top500.org/lists/2013/11/

intrinsics and the Intel Xeon Phi are planned (D. Ayres,
pers. comm. December 2013).

We are not aware of any previously published implemen-
tations and adaptations of the PLF to the MIC, which is
perhaps not surprising, given the novelty of the platform.
Nevertheless, some promising results have been reported for
other scientific applications. In particular, for fluid dynam-
ics [14], N-body simulations ( [15], and numerical weather
prediction [16] speedups between 1.8x and 2.5x over a dual-
slot (2S) Intel Xeon E5-2680 system have been obtained.

In Bioinformatics, the Xeon Phi has been successfully
used to accelerate molecular dynamic simulations [17] and
sequence motif extraction [18].

III. INTEL MIC ARCHITECTURE

A. Overview

The first coprocessors based on the Intel Many Integrated
Core (MIC) architecture became commercially available in
late 2012 under the brand name Xeon Phi. Depending on
the model, they include 57 to 61 physical cores running
at ∼1GHz, which deliver a total of about 1 TFLOPS peak
double-precision performance. Each core has a dedicated
512KB L2 cache, and can access the caches of all other
cores via the ring interconnect. Additionally, each card is
equipped with 6 to 16GB of GDDR5 memory that is shared
among all cores. The instruction set was inherited from
the x86 architecture and extended by 512-bit wide vector
operations (AVX-512). This allows to process 8 DP (double
precision) or 16 SP (single precision) floating point values
simultaneously, that is, twice as much as with AVX/AVX2
on Sandy/Ivy Bridge CPUs.

Figure 1: Architecture of the Intel Xeon Phi (codename: Knights
Corner)3

B. Comparison with GPUs

Ths Xeon Phi is intended as direct competitor to GPUs.
In fact, both accelerator families exhibit similar peak per-
formance and power consumption (s. Table I), but differ
significantly in their programming model.

3Image source: http://semiaccurate.com/2012/08/28/
intel-details-knights-corner-architecture-at-long-last/intel xeon phi core/
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First, the Xeon Phi has an order of magnitude less logical
cores/threads (240 vs. >2000). However, this is compensated
by the 512 bit wide vector unit, such that the overall degree
of parallelism required to fully exploit hardware capabilities
is roughly the same for both platforms.

Second, unlike NVIDIA GPUs, the Intel MIC does not
offer direct control over the memory hierarchy. Instead, the
programmer is expected to write cache-efficient code (e.g.,
preserve access locality) and rely on the hardware and/or
compiler to decide, how to cache data. The only mechanism
for influencing this process is to place explicit prefetch hints
in the code.

Third, the Xeon Phi can be programmed using a stan-
dard x86 development toolchain (icc, pthreads, OpenMP),
whereas NVIDIA relies on dedicated frameworks like
CUDA or OpenCL.

Finally, the MIC offers two different program execution
modes. The offload mode resembles the classical GPGPU
approach: the main program runs on the host and ’offloads’
compute-intensive code blocks (kernels) to the coprocessor.
In contrast to this, in native mode, the entire program
is executed exclusively on the coprocessor, without any
host involvement. This is possible, because each MIC card
executes a Linux-based micro-OS, thus, turning it into a
self-contained ’host’ system. Furthermore, the coprocessors
obtain IP addresses and can communicate through the simu-
lated network interface, allowing to use MPI for MIC-MIC
and MIC-Host communication. Thereby, existing HPC codes
can be easily ported to MIC-only or heterogeneous MIC-
CPU clusters. We outline our initial experiences with this
approach in Section V-D.

IV. CALCULATING AND OPTIMIZING THE LIKELIHOOD
OF A TREE

In RAxML [4] and derived programs, there are two main
functions that are involved in likelihood calculations:

• newview() calculates a conditional probability array
(CLA) vp for a parent node in the tree, given the
CLAs v1 and v2 for the two child nodes, and the
corresponding transition probability matrices P1 and
P2, which incorporate the branch lengths leading to
these child nodes.

• evaluate() computes the overall log likelihood of
the tree, given the CLAs of the two adjacent nodes
and the branch length connecting them. We say that,
we place a virtual root into this branch. The branch
can be chosen arbitrarily, since under the general time-
reversible model of substitution, which is used by most
likelihood-based codes, the resulting likelihood is the
same for all possible virtual root placements.

Additionally, in the Maximum Likelihood (ML) frame-
work, explicit branch length optimization (with respect to
the likelihood) is performed. Typically, a Newton-Raphson
optimization method is used for this purpose. The most

compute-intensive part, the calculation of PLF derivatives,
is implemented in two RAxML routines:

• derivativeSum() performs a pre-computation of
the element-wise product of CLAs of the two nodes ad-
jacent to the branch under optimization. Since this part
of the derivative calculation remains constant across all
Newton-Raphson iterations, computations can be saved
by storing and re-using these values.

• derivativeCore() computes the first and second
derivative of the PLF with respect to the branch length
being optimized.

In ML tree inference, these four functions (henceforth
called kernels) account for more than 85% of overall ex-
ecution time [19], and thus usually constitute the primary
target for optimization.

V. IMPLEMENTATION

A. Scope

Here, we focus on the efficient adaptation of the four
computational kernels outlined in the preceding Section
to the MIC. To evaluate MIC performance for the PLF
under realistic conditions, we integrated the kernels with
two state-of-the-art tree inference programs developed in our
lab: RAxML-Light [20] and ExaML (Exascale Maximum
Likelihood [21]). Since this is exploratory work, our MIC-
based version only supports a subset of their features at
present:

• Only DNA data (4 states).
• Only one model of rate heterogeneity, the Γ model with

four discrete rates [22].
• Although multiple data partitions are supported, we

neither optimized nor evaluated tree inference on par-
titioned, multi-gene datasets. However, for a large
number of partitions, performance will degrade due
to decreasing parallel block size (less alignment sites
evolving under the same statistical model of evolution)
and growing communication overhead.

• Advanced memory saving techniques, which rely
on CLA recomputations [23] and ignoring missing
data [24], are not supported yet.

We plan to address these limitations in the future. Our
focus here is to assess if the MIC is suited for accelerating
PLF calculations, and how optimal performance can be
achieved.

B. Porting and optimizing the kernels

In theory, getting an existing C code to run on the
Intel MIC might be as simple as recompiling it with the
-mmic compiler option. In practice, however, a program
’ported’ in this way, will most probably exhibit insufficient
performance. In fact, in some cases it might even execute
slower than the original CPU version (see e.g., [14]). Hence,
to fully exploit the hardware capabilities, one still needs to
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invest a significant effort to optimize, adapt, and tune the
code. In the following, we will describe several optimization
techniques, and how we deployed them to improve PLF
kernel efficiency on the Xeon Phi.

1) Vectorization: To attain optimal performance on the
Phi, the code must be vectorized; there are several ways to
achieve this. Compiler intrinsics are pseudo-functions which
are usually mapped directly to the corresponding processor
instructions, thus offering the highest degree of control. On
the other hand, the Intel compiler offers automatic loop
vectorization. Multiple loop iterations or arithmetic opera-
tions can be combined and replaced by a single vectorized
instruction. For automatic vectorization to be successful,
several conditions must hold, most importantly: the loop in
question must be the innermost loop, all vectors must be
properly aligned (see below), and there should be no data
dependencies between input and output vectors. In difficult
cases, the programmer can provide hints to the compiler us-
ing ivdep (no data dependency) and vector aligned
pragmas. Compared to intrinsics, this approach produces
more readable and less error-prone code (see Figure 2).
With respect to the PLF, the compiler did not experience
problems in vectorizing ’simple’ loops (aligned vectors,
uniform access pattern), hence we resorted to intrinsics in
non-trivial cases only.

2) Memory alignment: Vectorized instructions can only
operate on memory addresses which are aligned to 64-byte
boundaries. This restriction has several implications. First,
all arrays must start at addresses which are a multiple of
64. This can be achieved by using appropriate memory allo-
cation functions (__mm_malloc or memalign). Second,
one has to ensure that all accesses to the array elements
are also aligned, that is, all offset accesses are aligned as
well. In our case, this condition always holds. For DNA data
evolving under the Γ model of rate heterogeneity the offset is
16 DP numbers or 128 bytes (4 states∗4 Γ rates∗8 bytes).
However, under the CAT model of rate heterogeneity [25]
which only has one rate per site, special care must be taken
to keep accesses aligned.

3) Re-organizing loops: As part of conditional likelihood
computations in newview(), the CLA vector of a child
node has to be multiplied with the transition matrix P . The
dimension of this matrix is equal to the number of states
(DNA characters in our case). For DNA data we therefore
multiply a 1 × 4 vector with a 4 × 4 matrix. For this
operation, the innermost loop executes 4 iterations, which is
smaller than the vector unit width on the MIC (8 doubles).
Therefore, the loop can not be vectorized efficiently without
changes. Note that, under the Γ model with 4 discrete
rates, we actually need to perform 4 such vector-matrix
multiplications for each alignment site. If we execute these
multiplications simultaneously, we obtain 16 iterations in the
innermost loop, which is sufficient for vectorization. Since
all iterations must access contiguous memory locations, we

need to re-arrange the input arrays accordingly. Then, the
inner loop can be calculated by two fused-multiply-add
(FMA) vector operations.

4) Site blocking: Computing derivatives in
derivativeCore() can be divided into two phases:
for each alignment site, 16 elements of a vector are
preprocessed, then several scalar operations are applied to
obtain the final result. Obviously, the first phase can be
easily vectorized, but the scalar operations pose a problem.
To this end, we re-organized the main loop that iterates
over single alignment sites to process alignment sites in
groups of 8. This allows for executing one single vector
operation that replaces the 8 problematic scalar operations.

5) Streaming stores: When writing into a memory cell,
the old contents of the corresponding cache line have to be
loaded first. If our intention, however, is to overwrite the en-
tire cache line (64B), this reading operation is not required.
The MIC introduces a special streaming store instruction,
which allows to avoid this unnecessary read and associ-
ated time penalty. Even though the compiler implements
some heuristics to automatically generate streaming store
instructions, the programmer can enforce these by placing
the #pragma vector nontemporal directive in front
of the loop. We make use of this feature in newview()
and derivativeSum() when writing results to the parent
CLA and the summation buffer, respectively.

6) Manual prefetching: Prefetching allows for hiding
memory access latency by predicting which data will be read
in the future and preloading it into the cache beforehand.
Thereby, the actual data access occurs directly from the
low-latency cache without further delays. The MIC provides
both, hardware and software prefetching mechanisms. The
latter can be compiler-generated or inserted manually by the
programmer (#pragma prefetch or _mm_prefetch).
The programmer can fine-tune this, by determining the best
prefetch distance, that is, for how many loop iterations ahead
in the future, the prefetch instruction shall be issued. While
the optimal value is mainly influenced by memory latency
and the amount of computations per iteration, a direct
estimation is complicated by other factors (e.g., number of
threads per core). Thus, in practice one has to resort to an
empirical tuning approach.

In a study led by Intel, different prefetching modes
(HW vs. SW auto vs. SW manual) have been compared
for a variety of applications. It concluded that automatic
prefetching is nearly optimal for all but one application [26].
Nevertheless, we observed notable speedups by manually
inserting prefetching instructions in our code. This can be
explained by the streaming access patterns of our kernels.
They linearly read input vectors from memory (summing
buffers in derivativeCore and CLAs in other func-
tions), perform relatively few computations, and then write
results to the output vectors. In this setting, memory ac-
cess latencies dominate runtimes and therefore an optimal
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#pragma ivdep
#pragma vector aligned
for (int l = 0; l < 16; l++)
{
sum[l] = left[l] * right[l];
}

(a)

__m512d l1 =
_mm512_load_pd(&left[0]);

__m512d l2 =
_mm512_load_pd(&left[8]);

__m512d r1 =
_mm512_load_pd(&right[0]);

__m512d s1 =
_mm512_mul_pd(l1, r1);

__m512d r2 =
_mm512_load_pd(&right[8]);

__m512d s2 =
_mm512_mul_pd(l2, r2);

_mm512_store_pd(&sum[0], s1);
_mm512_store_pd(&sum[8], s2);

(b)

vmovapd (%rsp,%r10,1), %k0, %zmm0

vmovapd 0x40(%rsp,%r10,1), %k0, %zmm1

vmulpd (%rcx,%rdi,8), %zmm0, %k0, %zmm2

vmulpd 0x40(%rcx,%rdi,8), %zmm1, %k0, %zmm3

vmovapd %zmm2, %k0, (%rsi,%rdi,8)
vmovapd %zmm3, %k0, 0x40(%rsi,%rdi,8)

(c)

Figure 2: Loop vectorized using pragmas (a) and compiler intrinsics (b). In both cases, the generated assembly code is the same (c).

prefetching strategy is of crucial importance.

C. RAxML-Light integration

RAxML-Light [20] already implements several PLF ker-
nel variants (SSE3, AVX, different memory saving options)
and provides a clear separation between the PLF routines and
the rest of the code (tree search algorithm, file parsing, etc.).
For this reason, it was relatively straightforward to integrate
the MIC kernels into the program. However, selecting the
appropriate MIC usage mode was more complicated.

Initially, we opted for the offloading approach: given a
few, well-defined compute-intensive kernels, it seems natural
to offload them to the Xeon Phi, and let the main tree search
algorithm run on the host processor, invoking the kernels
as needed. Costly host↔MIC data transfers can easily be
avoided by allocating CLAs in coprocessor memory and
only sending the node indices – a solution, which was used
in our earlier GPU implementation [12]. Nevertheless, initial
experiments with this offloading-based version showed that,
even if no substantial data transfer is involved, the overhead
of calling the offloaded kernel is still too high. In fact, it is
comparable to and partially exceeds the time required for the
actual computation. This seems to be an inherent limitation
of the offloading approach: both hardware (initiating the data
transfer over PCIe) and software (calling the offload runtime)
components induce a certain latency [27], which can not
easily be alleviated. Since ML inference algorithm perform
thousands of kernel invocations per second, even for small
trees, the offload latency becomes the major bottleneck.

For this reason, we then assessed the native execution
model. After minor modifications, we were able to compile
the entire RAxML-Light program on the MIC platform and
execute it on the coprocessor without any host involvement.
In this native version, the kernel invocations are simple
function calls with negligible latency. Thus, we observed
a speedup exceeding a factor of two compared to the

initial offloading-based version. Moreover, the code became
significantly simpler, because allocating and orchestrating
separate CLAs on the coprocessor is not required any more.
In fact, the only major differences between the CPU and the
native MIC implementations are in the kernel codes.

Yet another benefit of this approach is the ability to re-use
the existing PThreads-based parallelization of RAxML-Light
[28]. The alignment sites are distributed evenly among the
worker threads, each thread computes the likelihood for its
own portion of the data, and finally a reduction is performed
to obtain the overall likelihood score. Since the kernels are
invoked by each worker, there is no need to introduce a
thread-level parallelization in the kernel code.

D. ExaML integration

In the classical fork-join parallelization approach used
in RAxML-Light, master and worker processes have to
communicate at least twice per parallel region/kernel. If
executed on multiple nodes, this communication occurs
over the network, resulting in high latencies and perfor-
mance loss. To alleviate this problem, a novel parallelization
scheme was developed and implemented in our ExaML
code: each process runs its own consistent (with all other
processes) copy of the tree search algorithm, and they only
communicate if information needs to be exchanged (e.g., to
compute the overall likelihood after a call to evaluate()).
This allows for avoiding redundant synchronization/commu-
nication between independent steps, for instance, between
two subsequent calls to newview(). We have shown that,
ExaML can be up to 3 times faster than RAxML-Light on a
cluster systems [21]. Therefore, we decided to use ExaML
to test the efficiency of parallel PLF calculations on multiple
MIC cards.

Unlike RAxML-Light, ExaML has no multi-threading
capabilities. Instead, MPI processes are used to exploit
both intra- and inter-node parallelism, such that one MPI
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process per core has to be started. On a typical multi-core
system, this approach induces no significant performance
penalty. In fact, our tests on a 16-core Xeon E5-2680 system
showed, that the MPI-based ExaML code is even faster than
PThreads-based RAxML-Light code on large datasets.

Unfortunately, the situation is different on the MIC. To
fully utilize all 60 cores, a minimum of 120 threads must
be executed in parallel. Hence, we need to execute 120 MPI
processes with ExaML. An attempt to run ExaML in this
configuration resulted in a substantial slowdown, suggesting
the need for an alternative solution to exploit intra-MIC
parallelism.

For this reason, we implemented a hybrid MPI-OpenMP
approach by parallelizing the main loops over the alignment
sites in each kernel using OpenMP. Thereby, we need to
start only one MPI process per MIC card and can reduce
the MPI communication overhead to an absolute minimum.
Moreover, the ratio between the two parallelization levels
can be changed by starting more MPI processes and less
threads, respectively. Surprisingly, this strategy yielded bet-
ter results in some tests, which can be explained by an
improved trade-off between many inexpensive (OpenMP)
and a few expensive (MPI) synchronizations.

VI. PERFORMANCE EVALUATION

In the early days of GPGPU computing, it was common to
report 100-fold speedups [29]–[31]. Despite being impres-
sive, such results were often difficult to interpret because
of the somewhat arbitrary and poor baseline reference. The
comparison was usually made against a single-threaded,
poorly optimized implementation running on an inexpensive
desktop CPU. Recently, there has been a major shift towards
using more adequate software and hardware for performance
comparisons, resulting in more moderate speedups, rarely
exceeding a factor of 5 (e.g., [15], [32], [33]). Since differ-
ences in execution times are less striking nowadays, practical
considerations such as cost and energy efficiency become
more important and are often included in the analysis.

In our experiments, we try to follow these guidelines to
yield the performance comparison as fair as possible.

A. Experimental setup

1) Hardware: For our tests, we used two Xeon Phi 5110P
cards installed on the same host system (Intel Xeon E5-2630,
6 cores, 2.30GHz, 32GB RAM).

We chose a dual-socket (2S) Intel Xeon E5-2680 system
as a primary performance baseline. Its price and power
budget are higher than those of the Xeon Phi 5110P by
30% and 15%, respectively. This makes the systems roughly
comparable with respect to these parameters. Also, the 2S
E5-2680 system is one of the most powerful CPU-based
systems currently available on the market. For the same
reasons, similar configurations have been used in other
studies evaluating the Xeon Phi performance [14], [34],

allowing to put our results into perspective. We also included
a less expensive system based on the Xeon E5-2630 in
our comparisons to assess the intra-CPU variability of our
results.

The most important characteristics of all test systems are
summarized in Table I.

2) Software: On CPUs, we used the AVX versions of
RAxML-Light 1.1.1 (further denoted as RAxML-CPU) and
ExaML 1.0.9 (ExaML-CPU), that are both freely available
via GitHub4. On the coprocessor, we executed the same
codes using the MIC-optimized PLF kernels, which we will
refer to as RAxML-MIC and ExaML-MIC.

The code and test datasets used in this analysis are
available for download at http://exelixis-lab.org/material/
hicomb14mic.tar.gz. An up-to-date version of ExaML-MIC
is also available via GitHub5.

The respective versions of installed system software are
provided in Table II. We had to use the Intel C compiler
(icc) for the ExaML-MIC code due to lack of full MIC
support in the current gcc version (4.7.3). For the ExaML-
CPU we didn’t observe any significant performance differ-
ences between icc and gcc. So we ran all experiments
with gcc, since it is used in the production ExaML code.
Both ExaML-CPU and ExaML-MIC were compiled with
-O2 flag, because -O3 gave no measurable performance
improvement, while being less stable.

Table II: Software configuration of test systems

Xeon E5-2630
Linux kernel 2.6.32
gcc 4.7.0
Intel MPI 4.1.2.040

Xeon E5-2680
Linux kernel 3.0.93
gcc 4.7.3
Intel MPI 4.1.1.036

Xeon Phi
Linux kernel 2.6.32
icc 13.1.3
Intel MPI 4.1.2.040

3) Datasets: We used INDELible V1.03 [35] to simulate
8 test alignments with sequence length varying between
10,000 and 4,000,000 DNA characters/sites. Since number
of taxa has no influence on relative speedups, it is fixed
and equals 15 for all datasets. Also, there is no need
to include empirical datasets, because we are exclusively
testing parallel performance.

B. Results

For each system configuration, we performed 3 indepen-
dent runs, performing a full ML tree search and report the
median execution times here.

4https://github.com/stamatak
5https://github.com/amkozlov/ExaML

523



Table I: Specifications of CPUs and accelerators used for performance evaluation

(Co-)processor Peak DP GFLOPS No. of cores Core clock Memory Memory BW Max TDP Approx. price

2S Xeon E5-2630 220 12 2.30 GHz 32 GB 85.2 GB/s 190 W $ 1224
2S Xeon E5-2680 346 16 2.70 GHz 32 GB 102.4 GB/s 260 W $ 3486

1S Xeon Phi 5110P 1074 60 1.053 GHz 8 GB 320 GB/s 225 W $ 2649
2S Xeon Phi 5110P 2148 120 1.053 GHz 16 GB 640 GB/s 450 W $ 5298
NVIDIA K20 (ref.) 1170 2496 0.706 GHz 5 GB 208 GB/s 225 W $ 2800
1S = single slot, 2S = dual slot; NVIDIA K20 listed for reference only
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Figure 3: Speedups of the individual PLF kernels (relative to the
CPU baseline).

1) Kernel performance: To assess the speedups of indi-
vidual PLF kernels, we instrumented the RAxML-CPU and
RAxML-MIC codes and measured the total time spent in
the corresponding functions during one complete program
run (tree search). As Figure 3 shows, the highest speedup
(2.8x) was achieved for the derivativeSum kernel. This
is, because derivativeSum performs a simple element-
wise multiplication of vector entries (see Figure 2), which
can be efficiently vectorized. The other kernels exhibit a
less favorable mixture of numerical operations. Hence, the
speedups for these kernels are at most a factor of two.
These findings are in line with the results for our GPU
implementation [12].

2) Tree search on a single MIC: Initially, we used the
RAxML-Light versions, RAxML-CPU and RAxML-MIC,
to assess the application-level performance on a single
MIC card. This is because we assumed that, the PThreads-
based parallelization scheme of RAxML-Light would be
more efficient than the hybrid scheme employed by ExaML
(MPI/OpenMP). However, this only holds for the smaller
alignments. Furthermore, speedups for both implementation
pairs (RAxML-CPU vs. RAxML-MIC and ExaML-CPU
vs. ExaML-MIC) are almost identical. For the sake of
clarity, we thus only report results for ExaML.

With ExaML-CPU, we used one MPI rank for each
physical core available (i.e., 12 ranks on the E5-2630 and
16 ranks on the E5-2680). With ExaML-MIC, we tested
different combinations and found that, 2 MPI ranks and 118
OpenMP threads per rank yield the best performance for
almost all datasets. Thus, we always used this configuration
in our experiments.

The results are summarized in Table III. On small align-
ments, ExaML-CPU is significantly faster than the MIC
version. This is expected, because in ExaML-MIC each of
the 236 OpenMP threads only processes a very small number
of alignment sites that have been assigned to it. Therefore,
the computational gain is not sufficient to outweigh memory
access latencies and a high synchronization overhead relative
to the amount of computation. For the 100K sites alignment,
the execution times are almost identical, and on larger
datasets ExaML-MIC shows superior performance. The
difference increases rapidly with growing alignment size,
and stabilizes at a factor of two for 1000K-4000K sites. This
is nonetheless still significantly smaller than the theoretical
hardware performance difference between the platforms
(∼3x in both peak GFLOPS and memory bandwidth, see
Table I). However, this hypothetical maximum performance
has almost never been achieved for real applications, with
typical speedups ranging between 1.7x and 2.8x. [34].

Note that, the 4000K dataset already uses all available
memory on our Xeon Phi card (8GB), suggesting that more
on-card RAM would be desirable to attain improved perfor-
mance on large-scale datasets. At present, a 16GB version
of the coprocessor is available (Xeon Phi 7120P), and Intel
announced plans to offer a user-extendable system memory
in future MIC series. While this might imply giving up
the high-throughput GDDR5, the overall effect for memory-
intensive applications like ML tree inference will be positive.

3) Scaling to multiple MICs: To further evaluate scalabil-
ity, we executed ExaML-MIC on two MIC cards residing
on the same host. As in our previous experiments, we used
2 MPI ranks with 118 OpenMP threads per card. Execution
times and speedups relative to the baseline CPU system
are given in Table III, whereas Figure 4 shows runtime
improvements compared to the single MIC card.

In general, we observed substantially better scaling on
larger datasets for two reasons. First, in the dual-MIC
scenario each card processes only one half of the entire
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Table III: ExaML execution times and speedups on CPUs and MIC

System
Dataset size (# alignment patterns)

10K 50K 100K 250K 500K 1000K 2000K 4000K
Inference time (s) and speedup (x)

2S Xeon E5-2630 5.6 0.73 32.4 0.74 93.5 0.72 183 0.81 372 0.84 753 0.84 1465 0.84 2965 0.84
2S Xeon E5-2680 4.1 1.00 24.0 1.00 66.9 1.00 148 1.00 312 1.00 633 1.00 1237 1.00 2494 1.00

1S Xeon Phi 5110P 12.9 0.32 29.7 0.81 65.6 1.02 101 1.47 176 1.77 328 1.93 619 2.00 1228 2.03
2S Xeon Phi 5110P 18.7 0.22 32.0 0.75 54.4 1.23 72 2.06 122 2.56 203 3.12 354 3.49 667 3.74

dataset, such that the effective alignment size is halved. This
makes the comparison ’unfair’, given that, performance is
generally better on larger datasets (see above). Second, the
overhead of intra-MIC communication is almost constant for
all datasets, and hence contributes a larger fraction to overall
execution time for short alignments.

Still, even on the largest dataset the speedup is 1.84x and
thus suboptimal. This is most probably caused by a rather
inefficient MPI communication over the PCIe bus. In partic-
ular, using the most recent version of the Intel MPI library
(4.1.2.040, November 2013), we measured that the latency of
an AllReduce is approximately 20 µs between two MIC
cards compared to less than 5 µs between two cluster nodes
connected via a QLogic InfiniBand interconnect. This is a
major bottleneck, since ExaML communication pattern is
dominated by AllReduce calls with very small packet size
(usually just one or several doubles, for instance, to sum over
partial tree likelihoods after evaluate()). On the other
hand, latency has already improved substantially, compared
to the previous Intel MPI releases (∼35 µs with 4.0.3.008),
and we expect it to further improve as the MIC software
stack matures. Also, work is underway to introduce better
MIC support in alternative MPI implementations. Recently,
some optimizations for both, intra-node [36] as well as
inter-node [37] communication in MIC clusters have been
proposed for MVAPICH2.

4) Energy efficiency: We estimated the energy consump-
tion for each system and program run using the following
equation:

E [Wh] = MaxTDP [W ]×RunTime [s] / 3600,

where E is an estimate of the energy consumed,
MaxTDP is the thermal design power of CPU and the
MIC, respectively, and RunTime is the corresponding total
execution time of the ML tree search. Then, we normalized
the values to the energy consumed by the CPU baseline
system to obtain relative energy savings (see Figure 5).
The single MIC system becomes more energy-efficient on
100K alignments, and consumes up to 2.3x less energy on
the largest datasets. Adding a second MIC card reduces
the energy efficiency on all datasets. This is expected,
given the suboptimal scalability of ExaML across two cards.
Nevertheless, for alignments over 500K sites, the double-
MIC configuration is still significantly more efficient than
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Figure 4: Relative speedup of 2 MICs vs. 1 MIC depending on
alignment size.
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Figure 5: Relative energy savings compared to the CPU baseline.

both CPU systems, and also 3.7 times faster. Finally, we
observe that the difference between the two CPU systems
we tested is rather negligible (10–13%).

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an optimized MIC implemen-
tation of the PLF kernels. We show that, for sufficiently large
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datasets (>100,000 alignment sites) both, execution time,
and energy efficiency of ML tree search algorithms can be
improved compared to current CPU-based systems. Despite
the fact that, the speedups are slightly suboptimal, they are
in line with previous results for real-world applications on
the MIC.

We also identify a relatively small per-card memory and a
currently high MPI latency as main limitations of the current
Xeon Phi platform with respect to PLF performance. We
expect, however, that both shortcomings will be addressed
by future hardware and software improvements.

We plan to extend our implementation to cover a broader
subset of the ExaML functionality (e.g., support protein data
and the CAT model of rate heterogeneity). Also, further
performance optimizations and new load balancing strategies
for partitioned alignments are required, given the popularity
of such datasets and corresponding analyses in empirical
biological studies.

Another direction of future work might be to extend this
beyond the classical tree inference task and apply MIC
kernels to accelerate other likelihood-based phylogenetic
methods. In particular, the Evolutionary Placement Algo-
rithm (EPA, [38]) appears to be a promising candidate, since
different placement branches and query sequences can be
evaluated independently, allowing for efficient paralleliza-
tion with less communication overhead.
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