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Abstract—Computing the polarization energy between a
ligand (i.e., a small molecule such as a drug molecule) and
a receptor (e.g., a virus molecule) is of utmost importance in
drug design. We have designed and implemented distributed-
memory and distributed-shared-memory parallel algorithms
for approximating GB-polarization energy (e.g., polar part
of free energy of hydration) of protein molecules. This is
an octree-based hierarchical algorithm, built on Greengard-
Rokhlin type near-far decomposition of data points (i.e., atoms
and points sampled from the molecular surface) for calculating
the polarization energy of protein molecules using the surface
based r6-approximation of Generalized Born radii of atoms.
We have shown that our implementations outperform state-
of-the-art GB-polarization energy implementations, such as
Amber 12, GBr6, Gromacs 4.5.3, NAMD 2.9 and Tinker
6.0. Using approximations, cache-efficient data structures and
efficient load-balancing schemes, we achieve a speedup factor
of ∼ 400 w.r.t Amber with less than 1% error w.r.t. the naı̈ve
exact algorithm using as few as 144 cores (i.e., 12 compute
nodes with 12 cores each) for molecules with as many as half
a million atoms.

Keywords-Polarization Energy, Generalized Born, Cluster of
Multicores, Hybrid Parallelism.

I. INTRODUCTION

Whenever a molecule comes under the influence of an
electric field, its charge distribution is relaxed in response
to that field. The energy associated with this relaxation
is known as the polarization energy (Epol). It is typically
negative in quantity, as a relaxation leads to decrease in
energy [27]. Electronic polarization plays a crucial role in
drug design, discovery & design of new proteins, antivirus
and antibiotics, protein-protein docking, molecular dynamics
simulations for determining the molecular conformation with
minimal total free energy, and so on.

The Poisson-Boltzmann [1], [15], [19], [25] model can
be used to approximate Epol. However, due to high com-
putational costs Poisson-Boltzmann method is rarely used
for large molecules such as proteins. Instead Epol is ap-
proximated using the Generalized Born (GB) model [16],
[17], [28] – a popular approximation model which considers
solvent as a statistical continuum. However, computing
Epol naı̈vely even based on the GB model takes time
quadratic in the number of atoms in the molecule, and thus
it remains computationally expensive for large molecules.
Hence, another level of approximation over the original GB-
approximation is required in order to reduce its complexity
below quadratic, and preferably to linear.

*This work used the Extreme Science and Engineering Discovery En-
vironment (XSEDE), which is supported by National Science Foundation
grant number OCI-1053575

An additional level of performance boost can be gained
in GB-approximation by introducing parallelism in the com-
putation [22]. In fact, multicore computers have already
become the mainstream computing devices, and the number
of cores in these devices is increasing rapidly. Not only
that most of our desktops and laptops are already mul-
ticore computers, nowadays most modern supercomputers
are also built as clusters of multicore machines. Before
multicores became widely available, distributed-memory
parallel algorithms were typically used in high performance
parallel computing, and these algorithms were designed to
use explicit distribution and communication of data among
compute nodes. Even though multicore computers allow
implicit communication among the cores through the mem-
ory hierarchy and the shared memory space, when run
on clusters of multicores, distributed-memory algorithms
typically require separate memory space for each core of
the same compute node, and explicit communication among
the cores. One natural way of avoiding the use of data
replication and explicit communication among the cores of
a compute node is to use hybrid algorithms – algorithms
that use shared-memory parallelism inside each multicore
node and distributed-memory parallelism across the nodes
of the cluster. The goal is to reduce space usage (due to
data replication) and communication time (due to explicit
communication among threads) whenever possible.

The main contribution of this paper is a hybrid distributed-
shared-memory parallel algorithm for approximating GB
polarization energy on a cluster of multicores. We use a
fast approximation scheme based on a hierarchical spa-
tial decomposition of the molecule1 [6], [7], and apply a
Greengard-Rokhlin type near-far approximation scheme [13]
on the decomposition. We also present detailed performance
results of our approach. We show that it runs faster than
other state-of-the-art implementations of GB polarization
energy namely, Amber 12 [9], GBr6 [35], Gromacs 4.5.3
[18], NAMD 2.9 [31], [34] and Tinker 6.0 [29], and can
handle molecules larger than most of them can process.
We have also compared our hybrid algorithm with our
own purely distributed-memory implementation of the same
algorithm. We found that though for small molecules the
hybrid algorithm runs slower, it outperforms the distributed-
memory version as the size of the molecule increases.

This paper extends our prior work for shared-memory ar-
chitectures [6], [7] to the distributed-shared-memory setting.
The resulting algorithm has the following properties:

1consisting of atoms and points sampled from the surface of the molecule

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.225

569



• Hybrid parallelism. We use shared-memory paral-
lelism inside each compute node and distributed-
memory parallelism across compute nodes.

• Cache- and space-efficient data structures. We use
octrees [20] for finding nonbonded atoms, which, un-
like traditional nonbonded lists [30], always use space
linear in the number of atoms in the molecule indepen-
dent of any distance cutoff used, and are also known
to be cache-friendly.

• Space-independent speed-accuracy tradeoff. The al-
gorithm uses user-defined approximation parameters,
and by tuning these parameters one can get a more
accurate approximation of Epol at the cost of increasing
the running time and vice versa. Unlike traditional
distance cutoff based methods, the space usage is inde-
pendent of the values of the approximation parameters.

• Load balancing. Inside each compute node, we use dy-
namic load balancing based on efficient (fast and cache-
efficient) randomized work-stealing [3], and across
nodes, we use static load balancing in order to reduce
the communication overhead.

The rest of the paper is organized as follows. In Section
II we provide necessary background on polarization energy
as well as on the data structures and algorithms we use.
In Section III we describe related work on the estimation
of polarization energy. Section IV presents our algorithms
along with their theoretical complexity analysis. In Section
V we present simulation results and a detailed comparison
with other existing approaches namely, Amber 12, GBr6,
Gromacs 4.5.3, NAMD 2.9 and Tinker 6.0. Finally, Section
VI concludes the paper with some future research directions.

II. BACKGROUND

In this section we first explain the mathematical expres-
sions for estimating Epol. Then we provide some background
on the cache-efficient octree data structure, and the near-far
approximation scheme from [6], [7] which we extend to the
distributed-shared-memory setting.
Polarization Energy: The polarization energy of a molecule
depends on the difference of potential of that molecule in
solvent and gas-phase, and its charge density:

Epol =
1

2

∫
Øreaction(r).ρ(r), (1)

where Øreaction=Øsolvant − Øgass−phase, and Ø(r) and
ρ(r) are the electrostatic potential and charge density of the
molecule, respectively.

In the GB-model, the polarization energy of a molecule
is given by the following equation:

Epol =
1

2

(
1− 1

εsolv

)∑
i,j

qi.qj

fij
GB

, (2)

where fij
GB =

[
rij

2 +RiRj exp
−rij

2

4RiRj

] 1
2

, and εsolv =

solvent di-electric, rij = distance between atoms i and j,
Rk and qk (k ε{i, j}) denote the Born radius and charge
value of atom k, respectively.

The effective Born radius reflects how deep a charge is
buried inside the molecule. The Born radius of an atom i,
Ri shows the extent of interaction of the atom with a solvent
when it is dissolved in that solvent. If the atom is close to
the molecular surface, Ri is small. An atom with large Ri
has a weaker interaction with the solvent.

To approximate Born radii and polarization energy, we
have used Gaussian quadrature points sampled from the
molecular surface. Gaussian quadrature attempts to obtain
the best numerical estimate of an integral (e.g., molecular
surface function) by picking optimal abscissas xi to evaluate
the function. Gaussian quadrature is considered to be optimal
as it fits all polynomials exactly up to a certain degree [36].
The triangulation of Gaussian quadrature function of the
molecular surface yields an estimation of molecular surface
normal at triangulation vertices, and at Gauss quadrature
numerical integrations points in each triangle’s interior. A
constant number of quadrature points per triangle are needed
for high accuracy of the Born radii calculation.

The evaluation of Born radii is essentially based on the
Coulomb field approximation [14], which assumes that the
electric displacement is in the Columbic form. Using this
approximation Born radii can be calculated as follows:

1
Ri

= 1
4π

∫
1

|r−xi|4 d
3r,

where xi represents the center of atom i.
We can obtain a discrete approximation of Born radii

by applying Gaussian quadrature as shown in Equation 3
(known as r4-approximation) [11]:

1

Ri
≈ 1

4π

N∑
k=1

wk
(rk − xi).−→nk
|rk − xi|4

, (3)

where rks denote N Gaussian quadrature points on the
molecular surface, −→nk is the unit outward surface normal
at rk, and wk is a weight assigned to the quadrature point
in order to achieve higher order of accuracy for small
N . However, the following approximation of Born radius
(known as r6-approximation) shows better accuracy for
spherical solutes, e.g., proteins [14]:

1

Ri
3 =

3

4π

∫
1

|rk − xi|6
≈ 1

4π

N∑
k=1

wk
(rk − xi).−→nk
|rk − xi|6

. (4)

Octrees vs. Nblists: An Octree is a tree data structure that
recursively and adaptively sub-divides the 3D space into 8
octants, and is often used as a container for rectilinear scalar
field data. Octrees are very cache friendly because of their
recursive nature. We use octrees to store the atoms in a
molecule and the surface quadrature points. Once an octree
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Figure 1: In the Born radius approximation algorithm two octrees
are constructed: one for the atoms in the molecule, and the other
for the quadrature points. Born radii of all atoms are approxi-
mated by recursively traversing both octrees simultaneously. For
simplicity, the octrees are drawn as quadtrees.

is built, it can be used for any approximation parameter
(similar to distance cutoff used in other molecular dynamics
(MD) packages). Some existing MD packages, e.g., Amber,
NAMD and Gromacs use nblists (nonbonded list) to
represent interacting atom pairs. The size of the nblist
of any given atom grows linearly with the number of atoms
in the system, and cubically with the distance cutoff that
truncates the non-bonded interactions. On the other hand,
an octree uses space linear in the number of data points it
holds, and its size does not change with the approximation
parameter. Updating the nblist after the initial construc-
tion is costly and also not scalable with the distance cutoff.
Often MD implementations that use nblists run out of
memory for molecules with millions of atoms. For large
cutoffs, octree is more space-efficient, update-efficient and
cache-efficient compared to nblists [8].
Approximating Born Radii and GB Energy: This section
gives a quick review of the approximation algorithms for
Born radii and polarization energy calculation described in
[6]. We use the same basic ideas of near-far approximation
in our distributed and distributed-shared-memory algorithms,
although we change the algorithms as well as the approxi-
mation schemes for efficient work-division. Let A be the set
of atoms in a molecule, and Q be the set of quadrature points
(denoted q-points) sampled from the molecular surface.
First, two octrees TA and TQ for A and Q, respectively, are
built, and then Born radii are approximated by traversing
them simultaneously starting at their root nodes.

Approximate integrals (using Equation 4) are collected at
appropriate internal nodes of TA and atoms of A. Suppose at
some point during this traversal we are at node A ∈ TA and
node Q ∈ TQ. Let rA (resp. rQ) be the radius of A (resp.
Q). If A and Q are far enough, i.e., the distance between
their centers, rAQ is larger than (rA+rQ)

(
(1+ε)1/6+1
(1+ε)1/6−1

)
for

some user-defined approximation parameter ε > 0, then the
contribution of all q-points in Q to the Born radius integral
of each atom in A can be approximated by treating A (resp.
Q) as a single pseudo-atom (resp. pseudo q-point) centered
at the geometric center of the atoms (resp. q-points) under
it. These approximated contributions are collected in A. If
A and Q are not far enough but at least one of them is a

non-leaf, we recurse using the children of the non-leaf/non-
leaves. If both are leaves, then we compute the contributions
exactly using the atoms under A and the q-points under Q,
and collect them in the respective atoms. Next, we traverse
TA top-down, and collect and add partial integrals from
all ancestors of an atom to it. Finally, we compute the
Born radii values from these accumulated values [6]. Epol
is approximated using similar techniques. The pseudo-code
for the Born radii and Epol calculation can be found in
[6]. Note that the accuracy and speedup of these algorithms
can be tuned by changing the approximation parameters, ε;
increasing ε gives better speedup while sacrificing accuracy
in results more and vice-versa.

III. RELATED WORK

Octree-based hierarchical treecode algorithms have al-
ready been used for energetics computations. These algo-
rithms are typically based on Barnes-Hut clustering [21]
or the Fast Multipole Method (FMM) [4], and have been
implemented for both serial and distributed-memory parallel
machines to compute Coulomb, London, Lennard-Jones, H-
bonds potentials [10], [33], polarized Coulomb interactions
[24], Yukawa potential [37], etc.

A. Popular Parallel Epol Implementations

The well-known Amber 12 [9] package has an MPI-
based distributed-memory implementation for GB-energy
calculation. Amber also has a shared-memory parallel im-
plementation of GB-energy which uses vectorization [32].
Gromacs [18] has OpenMP based shared-memory and MPI
based distributed-memory implementations of Epol. On the
other hand, NAMD [31], [34] uses Charm++ [23] and MPI
for its shared and distributed-memory implementations, re-
spectively. Tinker-6.0 [29] is also a well-known MD package
which supports OpenMP based shared-memory parallelism.
On the other hand, GBr6 has a serial approximation algo-
rithm that uses volume-based r6-approximation of Born radii
as opposed to our surface-based r6-approximation. Note
that all existing MD packages currently use either shared-
memory or distributed-memory parallelism for computing
GB-energy. Most of these MD packages support multiple
GB-models such as HCT [17], STILL [16], OBC [28] etc.

IV. OUR CONTRIBUTIONS

Our main contributions in this paper are as follows:

• We have designed an efficient and scalable hybrid
distributed-shared memory parallel algorithm for ap-
proximating Born radii and polarization energy. A
number of different load balancing/work distribution
schemes have been explored.

• We have analyzed the time complexity and scalability
of the algorithm.
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• We have implemented our algorithm with distributed-
shared- & distributed-memory parallelism, and com-
pared our implementations with five other state-of-the-
art implementations of Epol, namely, Amber 12, GBr6,
Gromacs 4.5.3, NAMD 2.9 and Tinker 6.0, and showed
that our implementations outperform all of them.

The major difference of our approach from algorithms
presented in [6] is that we only traverse one octree instead of
two, and hence the approximation scheme is also different.
Figures 2 and 3 show our modified algorithms.

A. Load Balancing

There are basically two ways of load balancing in our
distributed-shared- and distributed-memory algorithms:

• distribute only the work/computation (each process will
have all the data),

• distribute both the data and work evenly among the
processes (each process gets only a part of the data).

In the current paper, we have reported only the implemen-
tations in which we divide the work (each process has a
complete set of data).

Load balancing on octree data structures has been dis-
cussed in [5]. We have used both static and dynamic load
balancing schemes in our algorithms. We use static load
balancing among the processes because static load balancing
is more efficient and less costly than dynamic load balancing
in this case. Our load balancing scheme works as follows:

• EXPLICIT STATIC LOAD BALANCING: Work is divided
evenly among processes. The ith process computes the
Born radii and Epol for the ith segment of atoms and
leaf nodes, respectively, from the atoms octree.

• IMPLICIT DYNAMIC LOAD BALANCING:We also en-
sure dynamic load balancing among the threads inside a
compute node using the cilk++ work-stealing sched-
uler [3].

Different Work Distribution Approaches: In the
distributed/distributed-shared-memory algorithms, one
can distribute the work of calculating Born radii and
polarization energy among the processes or the cores of the
compute nodes of a cluster, either by dividing the leaf nodes
(NODE-BASED-WORK-DIVISION2) or by dividing the atoms
(ATOM-BASED-WORK-DIVISION3). We have used MPI
[12] and cilk++ [26] to implement our distributed and
distributed-shared-memory algorithms. We chose cilk++
because our algorithms are mainly based on nested
parallelism, and such recursive parallel algorithms can be
implemented very easily in cilk++. Also, cilk++’s
randomized work-stealing scheduler allows efficient parallel
execution of these recursive divide-and-conquer algorithms.
In the rest of the paper we will refer to our Hybrid

2Each compute node computes only for the leaves assigned to it.
3Each compute node computes only for the atoms assigned to it.

distributed-shared implementation as OCTMPI+CILK and
distributed implementation as OCTMPI .
WORK DISTRIBUTION FOR BORN RADII CALCULATION:
For Born radii calculation work can be divided by first
dividing the atoms or nodes from any of the two octrees
(atoms octree or quadrature points octree) evenly among
the processes, and then assigning the job of computation
on a particular segment of nodes or atoms to a particular
process. To compute Born Radii, we distribute the work in
two phases. Firstly, we evenly divide the leaf nodes from the
quadrature points octree to the MPI processes. We assign
the work of computing approximated integrals for the ith

segment of leaf nodes to the ith MPI process. In the second
phase (in PUSH-INTEGRALS-TO-ATOMS), we divide the
atoms evenly among the processes, and the ith MPI process
computes the final Born Radii for the ith segment of the
atoms. Note that each MPI process only traverses the atoms
octree, and for each leaf node of the quadrature points octree
that has been assigned to it, it computes the approximated
integrals. In another implementation, we divide the atoms in
both of these phases, and each process traverses both octrees
(TA and TQ), but computes only for those nodes and atoms
that fall within its range.
WORK DISTRIBUTION FOR Epol CALCULATION: For Epol
calculation, we first divide the leaf nodes of the atoms
octree into P equal segments, where P is the number of
MPI processes. Then we assign the work of computing
the interaction of the ith segment of leaf nodes with the
entire atoms octree to the ith MPI process. In this case,
each process computes the interaction energy due to all leaf
nodes assigned to it, either by considering them in parallel
(in OCTMPI+CILK) or by taking them one at a time (in
OCTMPI ) while it traverses the other atoms octree. We refer
to the work division that divides leaf nodes for Born radii
and energy computation as the node–node work division.

Other combinations of work divisions (e.g., atom–node,
atom–atom, qpoint–node, node–atom, etc.) are also possible,
but the node–node type work division scheme performed
better than other alternatives in the experiments we con-
ducted. We have observed that atom–node work division
takes slightly more time than the purely node based (node–
node) work division. Moreover, in node–node work division,
only leaf nodes (of one octree) are considered during inter-
action computation (with other octree) which leads to less
approximation compared to approximating at internal nodes.
For this reason, the node–node work division performs better
than others with respect to the percentage of error in the
energy value. The error of atom based work division keeps
changing with the number of processes even when the
approximation parameters are kept fixed, because different
division boundaries can split the same treenode differently in
atom-based work division. On the contrary, for node-based
work division, the error is constant for constant parameters,
because each compute node always gets a full treenode, and
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APPROX-INTEGRALS( A, Q ) (Here A denotes a node from atoms octree, and Q denotes a leaf node from quadrature points octree. For each atom a under the subtree
rooted at the given node A in the atoms octree, this function approximates

∑
q∈Q wq

(pq−pa)·nq
|pq−pa|6

. By pa = 〈xa, ya, za〉 we denote the center of an atom a, while by

pq = 〈xq, yq, zq〉, wq and nq = 〈nxq, nyq, nzq〉 we denote the location of a quadrature point q, weight assigned to q, and the unit outward normal on the molecular
surface at q, respectively. By rA (resp. rQ) we denote the radius of the smallest ball that encloses all atom centers (resp. integration points) under A (resp. Q). The distance
between the geometric centers of A and Q is given by rA,Q. We also assume ñxQ =

∑
q∈Q wqnxq . Similarly for ñyQ and ñzQ. Each atom a has a field sa, and each

node A in the atoms octree has a field sA, all of which are initialized to zero. The approximated sum is added to sA provided A and Q are far enough in space so that the sum
can be approximated reasonably well (controlled by an approximation parameter ε > 0). Otherwise the sums are computed recursively and added to the s field of appropriate
descendants of A. By CHILD(A) we denote the set of non-empty octree nodes obtained by subdividing node A.)

1) if rA,Q− (rA + rQ) > 0 ∧
rA,Q+

(
rA+rQ

)
rA,Q−

(
rA+rQ

) > (1 + ε)
1
6 then sA = sA+

ñxQ·(xQ−xA)+ñyQ·(yQ−yA)+ñzQ·(zQ−zA)

(rA,Q)6
{far enough to approximate}

2) elif LEAF(A) then {too close to approximate; compute exact value}
for each atom a ∈ A do

for each quadrature point q ∈ Q do
sa = sa +

wq(nxq·(xq−xa)+nyq·(yq−ya)+nzq·(zq−za))
(ra,q)6

3) else ∀A′ ∈ CHILD(A) : APPROX-INTEGRALS(A′, Q )

PUSH-INTEGRALS-TO-ATOMS( A, s , sid, eid) (A is a node in the atoms octree, and s =
∑
A′∈ANCESTORS(A) sA′ . This function pushes s + sA to each descendant of A.

If A is a leaf it computes the Born radius of each atom a ∈ A using s+ sA + sa. Here, sid and eid denote the start id and end id of the atoms assigned to a process.)

1) if LEAF(A) then ∀a ∈ A that falls in [sid, eid]: Ra = max

{
ra,

(
sa+s+sA

4π

)− 1
3

}
{compute Born radii of A’s atoms}

2) else ∀A′ ∈ CHILD(A) : PUSH-INTEGRALS-TO-ATOMS(A′, s+ sA ) {push integrals to A’s descendants (parallel)}

Figure 2: Octree-based algorithm for r6-approximation of Born radii.
APPROX-Epol(U, V ) (For two given nodes U and V in the atoms octree TA where, V is a leaf, approximate the part of Epol resulting from the interaction between the set of
atoms under U and V . By rU we denote the radius of the smallest sphere that encloses all atom centers under U . For any atom u ∈ U , its center, radius, charge and Born radius
are given by (xu, yu, zu), ru, qu and Ru, respectively. For 0 ≤ k < Mε = log1+ε (Rmax/Rmin), qU [k] =

∑
(u∈U) ∧ (Ru∈[Rmin(1+ε)k,Rmin(1+ε)k+1))

qu,
where Rmin and Rmax are the minimum and the maximum Born radius among all atoms in A. By CHILD(A) we denote the set of non-empty octree nodes obtained by
subdividing node A.)

1) if LEAF(U) then return − τ2
∑

(u∈U) ∧ (v∈V ) quqv
/√

r2uv + RuRve
−r2uv/4RuRv {exact value}

2) elif rU,V > (rU + rV )
(
1 + 2

ε

)
then return − τ2

∑
0≤i,j<Mε qU [i] · qV [j]

/√
r2UV + R2

min(1 + ε)i+je−r
2
UV

/4R2
min

(1+ε)i+j {approximate}

3) else return
∑

U ′ ∈ CHILD(U) APPROX-Epol( U
′, V ′ ) {recurse on U (parallel)

Figure 3: Octree-based algorithm for approximating Epol from Born radii.

hence the approximation does not change with the change of
division boundaries. We have also observed the same trend
of errors in Gromacs that also uses atom based work division
techniques.
Dynamic load balancing among threads: In our
distributed-shared-memory algorithm, inside each compute
node multiple threads (or cores) are used to accomplish the
work assigned to a process. The cilk++ runtime system
provides dynamic load balancing among threads using a
randomized work-stealing scheduler [3]. In cilk++ work-
stealing scheduler, each thread maintains a double ended
queue (deque) to store its outstanding work/tasks and adds
the newly generated work to the bottom of the queue.
On the other hand, when a thread runs out of work, it
chooses a random victim thread and steals work from top
of the victim’s queue which helps to reduce inter-thread
communication and guarantees progress [2].

B. Algorithm

Figure 4 shows a sketch of our Hybrid distributed-shared-
memory parallel octree based GB-radii and Epol algorithms,
where p denotes the number of threads running concurrently
in shared-memory and is upper bounded by the number of
cores in a single compute node. If the distributed-shared-
memory algorithm runs with P processes, each running
p threads internally, the corresponding distributed-memory
algorithm should run P x p MPI processes to achieve
the same level of parallelism (using the same number of
cores). It is important to design hybrid (distributed-shared)

algorithms and explore their performance for the following
reasons.

• Most modern supercomputers are networks of multi-
cores, and hence the future computation model is likely
to be of distributed-shared-memory type.

• A purely distributed-memory approach typically re-
quires more memory than its distributed-shared-
memory counterpart.4

• Running two threads on the same compute node (multi-
core machine) incurs less communication overhead than
running two single threaded processes on two different
compute nodes.

• No distributed-shared-memory implementation of GB-
energy is available yet.

Suppose, in a shared-memory algorithm k threads share the
same data of size s. Now if we launch these k threads as
k different processes as in a distributed-memory setting,
each process will require a separate copy of the same
data occupying ks space in total. As long as this ks data
fits in the shared-cache/main memory, the speedups from
both distributed and distributed-shared memory approaches
should be comparable. However, as k independent processes
(distributed) use k times more memory than used by one pro-
cess with k threads (shared), at some point, the distributed-
shared-memory algorithm should outperform the distributed-
memory algorithm. This happens when the input becomes so

4Distributed memory implementations are typically designed to replicate
data instead of sharing.
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DISTRIBUTED/DISTRIBUTED-SHARED-MEMORY OCTREE BASED GB-POLARIZATION ENERGY COMPUTATION ALGORITHM (Suppose, we have
P processes, each of which is running p threads internally. Therefore, if p = 1, it’s a purely distributed approach and if p > 1, it’s a distributed-shared
approach. We first divide the work among the processes as evenly as possible. Inside each node, work is further distributed among multiple threads
dynamically by the cilk++ framework.)

1) Each compute node builds atoms-octree, TA and quadrature-points-octree, TQ independently.
2) For 1 ≤ i ≤ P [in parallel], the ith process calculates the approximated integrals due to the ith segment of leaf nodes from the quadrature points

octree by traversing TA using the APPROX-INTEGRALS algorithm. {Node based work division}.
3) Each process gathers the partial approximated integrals due to other segments of leaf nodes computed by other processes using MPI Allreduce.
4) For 1 ≤ i ≤ P [in parallel], the ith each process calls the PUSH-INTEGRALS-TO-ATOMS function and computes final Born radii for the ith

segment of atoms.
5) Each process gathers the Born radii of other segments of atoms from other processes.
6) Each process traverses TA, and for 1 ≤ i ≤ P [in parallel], the ith process calculates partial energy by computing the one-to-one interactions of

the ith segment of leaf nodes from TA on other nodes of TA. {Node based work division}.
7) The master process accumulates partial energy values form step 6 and generates the final Epol.

Figure 4: Octree based distributed- and distributed-shared-memory algorithm.

large that the ks data does not fit into the shared-cache/main
memory or incurs severe memory overhead (page fault/cache
misses) causing a slowdown of the program. Moreover, the
typical cost of communication among k threads in shared-
memory < (is less than) cost of communication among
k processes on a single compute node/socket < cost of
communication among k processes on different sockets or
computing nodes across the cluster. This also implies that as
we increase the number of processes, the overhead of purely
distributed algorithm will be more than the distributed-
shared-memory algorithm. We have also observed similar
trends in our experiments.

C. Analysis of Time Complexity

In this section, we present the time complexity analysis
of our distributed/distributed-shared-memory octree-based
algorithms. We have used complexity results proved in [6]
and [7] for this analysis. Let P be the number of MPI
processes, and p be the number of threads running internally
inside each process. Let, the molecule has M atoms in it.
Computational Cost, Tcomp:
Step 1: Each process builds octrees from atoms and quadra-
ture points which takes O(M logM) time (assuming the
number of Gaussian quadrature points, m = O(M)) [6].
Once the octrees have been built, we can approximate for
any ε (recall that ε is an approximation parameter) without
reconstructing them. Moreover, for drug-design and docking
where we need to place the ligand at thousands of different
positions w.r.t. the receptor, we can move the same octree
to different positions or rotate it as needed by multiplying
with proper transformation matrices, and then recompute
the energy values. Therefore, we can consider the octree
construction cost as a pre-processing cost and ignore it.
Step 2: Each process calculates the Born radii by traversing
the atoms octree starting at the root node. The ith process
computes only for the ith segment of leaf nodes from
the quadrature points octree using the APPROX-INTEGRALS
algorithm. Since each process gets approximately dM/P e
atoms, and inside each process each of the p cores/threads
again does approximately dM/Pe

p part of the work, it costs
O(( 1

ε3 (MP
1
p + log M

P )) = O(( 1
ε3 (MP

1
p + logM)) time as

M >> P (using results from [7]).

Step 4: Each process calls PUSH-INTEGRALS-TO-ATOM,
and the ith process calculates Born radii only for the ith seg-
ment of atoms. Traversing the entire tree takes O(M logM)
time but each process traverses only that part of the tree
that falls in its range. Eventually each thread traverses
approximately O( 1

P ( 1
p )) fraction of the tree. Therefore, this

function will take O( 1
P ( 1

p (M logM))) time.
Step 6: Each process traverses TA, and the ith process
calculates partial energy by computing the one-to-one in-
teractions of the ith segment of leaf nodes from TA with
other nodes of TA. Since each process gets d1/P e fraction
of the total number of leaf nodes from the atoms-octree
containing approximately dM/P e atoms, each core/thread
will get around dM/Pe

p of the atoms for computation. Hence,
this step will take O( 1

P ( 1
ε3 (Mp + 1) logM)) time (using

results from [7]).
Therefore, the total computation time is, Tcomp =

O
(

1
P

1
ε3 (Mp + 1) logM

)
.

Communication cost Tcomm:
Step 3 & 5: Each process gathers the approximated integrals
and Born radii of other segments from other processes. It
takes O(ts logP+tw

M
P (P−1)) time, where ts is the startup

time and tw is the message passing time per word (costs for
MPI primitives can be found in Table 4.1 of [12] ).
Step 7: The master process accumulates partial energy
values from Step 6 using MPI Allreduce and generates the
final Epol which takes O(ts logP + tw(P − 1)) time.
Therefore, the total parallel time, Tp = Tcomp + Tcomm

= O
(

1
P

1
ε3 (Mp + 1) logM + ts logP + tw

M
P (P − 1)

)
= O

(
1
Pp

1
ε3M logM + twM

)
.

Attribute Name Property
Processors 3.33 GHz-Hexa-Core 64-bit Intel-Westmere
Cores/node 12
RAM size and speed 24 GB, 1333 MHz
Cluster Interaction Type InfiniBand, fat-tree topology, 40Gb/s p2p bandwidth
Cache 12 MB L3, 64 KB private L1, 256 KB private L2
Operating System Linux CentOS 5.5.
Parallelism Platform Intel Cilk-4.5.4, MPI (MVAPICH2/1.6)
Optimization parameter -O3

Table I: Simulation Environment
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V. SIMULATION RESULTS

All experiments included in this section were performed
on the Lonestar4 computing cluster located at the Texas
Advanced Computing Center (TACC). All algorithms were
tested on ZDock Benchmark Suite-2.0 containing 84 com-
plexes (168 proteins) both in bound and unbound states.
We used proteins from the bound dataset only. The number
of atoms per protein varied from around 400 to 16,000.
Important properties of the simulation environment are sum-
marized in Table I.

We have compared three different octree based im-
plementations, namely, the shared-memory, distributed-
memory, and distributed-shared-memory implementations
with GBr6 [35], and the GB-polarization energy implemen-
tations from four existing well-known Molecular Dynamics
Packages, namely, Gromacs 4.5.3 [18], NAMD 2.9 [31], [34],
Amber 12 [9] and Tinker 6.0 [29]. Table II summarizes
some important properties of these programs. We have also
reported the running times and energy values computed by
the naı̈ve serial implementations of Equations 2 and 4.

Package GB-Model Parallelism
Gromacs 4.5.3 [18] HCT [17] Distributed (MPI)
NAMD 2.9 [34] OBC [28] Distributed (MPI)
Amber 12 [9] HCT Distributed (MPI)
Tinker 6.0 [29] STILL [16] Shared (OpenMP)
GBr6 [35] STILL Serial
Name GB-Model Parallelism
OCTCILK STILL Shared (cilk++ )
OCTMPI STILL Distributed (MPI)
OCTMPI+CILK STILL Distributed (MPI+cilk++)
Naı̈ve STILL Serial

Table II: Packages with GB models and types of parallelism used.

A. Dealing with NUMA Effect

Note that to reduce the impact of NUMA (Non-uniform
memory architecture) on Intel machines, we ran all the
MPI programs with ibrun tacc affinity, which is basically
a wrapper around the mpirun or mpiexec, and it fixes the
affinity of the processes to the cores, sockets and caches to
reduce overall cache misses. On the other hand, cilk++
does not provide any thread affinity manager. The cilk++
work-stealing scheduler allows a thread to steal from any
other thread. However, by stealing the oldest entry from
a deque (least recently used data), it tries to reduce the
number of cache misses. On Lonestar4, each machine was
dual socket, and we launched one process with 6 threads
on each socket for the OCTMPI+CILK program, which
bounded those 6 threads only to one socket and alleviated
the NUMA effect.

B. Scalability

Figures 5 and 6 show the scalability of our OCTMPI and
OCTMPI+CILK implementations from which we observe
how the running time decreases and speedup increases
with the number of cores. We ran this experiment on the
Blue Tongue Virus (BTV) that has 6 million atoms and

more than 3 million quadrature points. Since for smaller
number of cores (or processes), each core needs to handle
a comparatively larger data segment, the segment may not
fit in the cache fully at the same time leading to more
cache misses. However, as the number of cores or processes
increases, because of the balanced work division, each core
will work only on a smaller portion of data which can
easily fit into the cache. For OCTMPI program we ran 12
processes in each compute node, and for OCTMPI+CILK

program we ran 2 processes each with 6 threads each.
For each configuration, we ran all programs 20 times and
plotted the minimum and maximum running times in the
Figure 6. We observe that the minimum running time
of OCTMPI+CILK is always smaller than the minimum
running time of OCTMPI after the core count reaches 180,
whereas we always (independent of core count) see the
opposite for the maximum running times. As the OCTMPI

program has 6 times more processes than OCTMPI+CILK ,
the communication overhead of OCTMPI was more than
OCTMPI+CILK . Similarly, the memory overhead was also
more in OCTMPI . For these reasons OCTMPI+CILK

eventually ran faster than OCTMPI . For BTV, when run on
a single node with 12 cores, OCTMPI+CILK (2 processes,
each with 6 threads) took approximately 1.4GB of memory,
whereas OCTMPI+CILK (12 processes, each with 1 thread)
occupied 8.2GB, which is 5.86 times more than that of
OCTMPI+CILK (as expected). This ratio continues to hold
as we increase the number of compute nodes.

C. Running Time and Speedup

Next we ran OCTMPI and OCTMPI+CILK on a 12-
core machine for the ZDock benchmark molecules, and com-
pared their performance with that of OCTCILK . Note that
the algorithms underlying OCTMPI and OCTMPI+CILK

were different from the one used by OCTCILK . All these
algorithms were run with approximation parameters set to
0.9 (Born Radii) and 0.9 (Epol), respectively. We used
approximate math for computing square root and power
functions. No vectorization was used. We observed that
OCTCILK showed better performance than both OCTMPI

and OCTMPI+CILK for molecules with less than 2500
atoms, since for small molecules the communication cost
dominated computation cost. The OCTMPI implementa-
tion was significantly faster than OCTCILK for molecules
with greater than 2500 atoms, because for larger molecules
computation costs beaten communication cost, and the
differences in running times increased with the size of
the molecules. The OCTMPI implementation was also
slightly faster than OCTMPI+CILK for molecules with
less than 7500 atoms. After molecule size 7500, both
OCTMPI and OCTMPI+CILK showed similar perfor-
mance. As OCTMPI was using almost 6 times more mem-
ory than OCTMPI+CILK , the difference in performance
diminishes with the size of the molecule. MPI turns out to be
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more optimized compared to the cilk++ implementation5

and cilk++ does not maintain thread affinity. There is an
additional overhead of interfacing cilk++ and MPI. These
overheads of OCTMPI+CILK were prominent for smaller
molecules and became less dominant as the size of the
molecule increased.
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Figure 7: Performance Comparison of Different Octree Based
Algorithms (Results are sorted by the OCTCILK time).

Note that Gromacs also has a shared-memory implementa-
tion of GB-energy, and we observed that for Gromacs, too,
the distributed-memory implementation was slightly faster

5We have used cilk-4.5.4, which is a predecessor of Intel cilk plus, and
Intel cilk plus is likely to be much better optimized than cilk-4.5.4.
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Figure 8: Performance Comparison of Different Algorithms. Results
are sorted by molecule size.

than the shared-memory implementation. Hence, in the rest
of this section, we only compare the MPI based distributed-
memory implementation of Gromacs.

For comparison purposes, we ran all programs mentioned
in Table II on a 12-core machine (single compute node). For
the distributed implementations (NAMD, Gromacs, Amber,
OCTMPI ), we ran 12 different MPI processes on these 12
cores. For NAMD we were not able to find any way to
compute only the GB-energy. So, we first computed the total
electrostatic potential with GB energy turned on, and then
computed the electrostatic energy with GB energy turned
off, and took the difference to retrieve actual GB energy.
We also took the difference of running times of these two
runs to get the time of GB energy computation. We took
the average of 10 runs to reduce noise. Figure 8 shows
the performance of different algorithms. From the plot of
running times for GB-energy (including Born radii), we ob-
serve that overall OCTMPI and OCTMPI+CILK perform
the best among all algorithms. The differences in perfor-
mance among Gromacs, OCTMPI and OCTMPI+CILK

become prominent as the size of the molecule increases.
On the other hand, Amber was much slower than both
OCTMPI and Gromacs but faster than NAMD, Tinker and
GBr6. Experiments show that Tinker is slightly faster than
GBr6. We can get a glimpse of the speedup achieved by
these programs on 12 cores of one compute node (1 core
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for GBr6) compared to Amber. Figure 8 (b) shows that
OCTMPI achieves a speedup of approximately 11 w.r.t.
Amber for a molecule of size 16,301 using only 12 cores,
whereas Gromacs achieves a speedup of ∼ 2.7 for the
same molecule (although the maximum speedup achieved
by Gromacs is 6.2 for a molecule with 2260 atoms). The
maximum speedup achieved by NAMD, Tinker and GBr6

for the ZDock benchmark molecules are 1.1, 2.1 and 1.14,
respectively.
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Figure 9: Energy Value Computed by Different Algorithms.
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Figure 10: Performance Change of OCTMPI+CILK with Approx-
imation Parameter; Born Radius ε is fixed at 0.9 and Epol ε varies.

D. Energy Value

Figure 9 plots the GB-energy values for the ZDock
benchmark molecules calculated by different algorithms
mentioned in Table II. The energy values computed by Am-
ber, GBr6, Gromacs, NAMD and OCTMPI match closely

with GB-energy computed by the naı̈ve approach. Energy
values reported by Tinker were around 70% of the naı̈ve
energy. All octree based algorithms reported approximately
the same energy value. We have observed that Tinker and
GBr6 do not work for larger molecules (> 12k and > 13k
respectively) as they run out of memory.

E. Change in Error and Running Time with Approximation
Parameter

Recall that the octree based algorithms are tunable, be-
cause we can change the error in result by changing the
approximation parameters. An increase in approximation
parameter ε increases error in energy value and decreases
running time. However, for small molecules, running times
do not depend on ε at all. Figure 10 shows the impact of
approximation parameter on our distributed-shared-memory
algorithm’s percentage of error in energy value and running
time. The distributed-memory algorithm also follows the
same trend. For this experiment, we kept the approximation
parameter of Born Radii calculation fixed at 0.9 and varied
the approximation parameter of Epol from 0.1 to 0.9. We
ran the OCTMPI+CILK implementation on all protein
molecules of the ZDock benchmark suite. Approximate math
was turned “off”. Turning approximate math “on” shifted the
error by 4−5% and decreased the running times by a factor
of 1.42 on average (Figure 7 vs. Figure 10). We collected
the average and standard deviation of percentage of error for
Epol, and plotted these avg. ± std. for all molecules.

F. Scalability with Larger Molecule

We also ran all octree-based implementations and Amber
on the Cucumber Mosaic Virus (CMV) shell consisting of
509,640 atoms and 1,929,128 quadrature points. GBr6 and
Tinker ran out of memory for CMV. We were able to run
Gromacs and NAMD on CMV only for cutoff values up
to 2 and 60, respectively, which are not reasonable cutoff
values for such a large molecule. For CMV, OCTMPI and
OCTMPI+CILK achieved a speedup of more than 400−500
using only 12 cores of a single compute node and 300−400
times speedup using 144 cores (12 compute nodes each
running 12-threads internally) w.r.t. Amber, while the errors
w.r.t. the naı̈ve energy were still less than 1% 6. Note that
we get such a high speedup because of three levels of
acceleration: (a) from parallelism, (b) from two levels of
approximations in calculations (in Born Radii and Epol),
and (c) from using the cache-friendly octree data structure.

To summarize, our octree based polarization energy ap-
proximation algorithms run faster than Amber, Gromacs,
NAMD, Tinker and GBr6, and can handle molecules with
millions of atoms which cannot be handled by most of the
other implementations. The octree-based approaches show

6At present, Amber does not support concurrent execution of more than
256 cores.
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with Naïve 

OCTCILK 12.5s X 187 X -1.48 -0.95

Amber 39min 3.3min 1 1 -1.44 2.2

OCTMPI+CILK 4.8s 0.61s 488 325 -1.47 -0.07

OCTMPI 4.5s 0.46s 520 430 -1.47 -0.07

Figure 11: Scalability on a large molecule (Cucumber Mosaic Virus shell).

very good speedup and scalability with the number of cores
and molecule size.

VI. CONCLUSION

In this work we have presented a hybrid distributed-
shared-memory parallel octree based approximation algo-
rithm for approximating polarization energy of protein
molecules, and provided detailed performance comparison
with Gromacs, NAMD, Amber, Tinker and GBr6. We
have shown that our octree-based approaches perform the
best among all and achieve a speedup of ∼ 400 for
molecules with half a million atoms w.r.t. to the popular MD
package Amber. We have also shown that the distributed-
shared-memory implementation of our algorithm performs
slightly better than the distributed-memory implementation
for larger molecules. We believe that distributed-shared-
memory parallelism is the right approach for implementing
high performance MD simulations. We also believe that
octree is the right data-structure to use in MD packages
instead of nonbonded lists that cause most MD packages to
run out of memory for very large molecules. Although our
octree based algorithms perform better than others without
explicit dynamic load balancing (except the one provided by
cilk++), we are planning to incorporate explicit dynamics
load balancing techniques such as work-stealing to improve
the performance even further. Distributing data as well as
computation is also an interesting approach to explore.
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