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Abstract—The past few years has seen an explosion in the use
of sequence technologies for metagenomics i.e., determination
of the collective genome of microorganisms co-existing within
several environments. In parallel, there has been rapid devel-
opment of computational tools for the quantification of abun-
dance, diversity and functionality of different species within
these communities. Several clustering algorithms (also called
binning algorithms) have been developed to categorize similar
metagenome sequence reads for efficient post-processing and
analysis.

In this paper we present a distributed algorithm for clus-
tering metagenome sequence reads. The algorithm is imple-
mented within the Map-Reduce based Hadoop platform, and
approximates the computation of pairwise sequence similarity
with a minwise hashing approach. The algorithm is capable of
performing agglomerative hierarchical clustering or a greedy
clustering approach and is referred to as MrMC-MinH. The key
advantage of MrMC-MinH is it’s ability to handle large volumes
of sequence reads obtained from targeted 16S metagenomic
or whole metagenomic data. We evaluate the performance
of our algorithm on several real and simulated metagenome
benchmarks and demonstrate that our approach is compu-
tationally efficient, and produces accurate clustering results
when evaluated using external ground truth. The source code
for MrMC-MinH will be made available at the supplementary
website1.

Keywords-map-reduce, metagenome clustering, minwise
hashing

I. INTRODUCTION

The process of “metagenomics” involves sequencing of

the genetic material of organisms co-existing within ecosys-

tems ranging from ocean, soil and human body [1], [2], [3].

Researchers have embarked on various metagenomic-related

studies, that range from characterizing the microbial biodi-

versity within the ocean or understanding the pathogenic

role played by microbes within the human gut. Advances in

sequencing technologies have allowed this revolution where

genomic information can be determined for entire microbial

communities, without requiring the separation of individual

species.

However, current sequencing technologies do not provide

the whole genome for the different organisms, but produce

short, contiguous subsequences (referred to as reads) that

1http://www.cs.gmu.edu/~mlbio/MrMC-MinH

are fragmented from random positions of the entire genome.

Metagenome assembly involves the complex challenge of

separating the reads from multiple organisms and stitching

together different reads using overall information to produce

organism-specific genomes. Other challenges are introduced

due to the varying abundance, diversity, complexity, genome

lengths of previously uncultured (or never sequenced before)

microbes within different communities. Genomic technolo-

gies also produce large number of sequence reads, and reads

that may have varying error idiosyncracies [4]. As such, the

metagenome assembly and analysis problem is complex and

challenging [5].

Targeted metagenomics or 16S rRNA gene sequencing

provides a first step for the quick and accurate characteri-

zation of microbial communities. 16S sequences are marker

genes, which exists in most microbial genomes and have

a conserved portion for detection (primer development)

and a variable portion that allows for categorization within

different taxonomical groups [6]. Targeted metagenomics

are also effective in detecting species with low abundances.

However, they may not be good in discovering unique

species (orphans) that have never been sequenced before.

Several algorithms have been developed to analyze tar-

geted metagenomes (16S rRNA marker gene) and whole

metagenome samples [4]. Clustering/binning approaches in-

volve the unsupervised grouping of sequences that belong

to the same species. Successful grouping of sequence reads

has several advantages: (i) it improves the metagenome

assembly, (ii) it allows computation of species diversity

metrics and (iii) it serves as a pre-processing step by reduc-

ing computational complexity within several workflows that

analyze only cluster representatives, instead of individual

sequences within a sample.

In this paper, we present a new, scalable Map-Reduce

based algorithm for metagenome clustering using minwise

hashing. We refer to this approach as MrMC-MinH, which is

an extension of our previously developed, greedy clustering

algorithm MC-MinH [7]. The key contributions of this work

include: (i) development of the distributed map-reduce based

implementation of clustering algorithm and (ii) ability to

perform hierarchical agglomerative clustering instead of a

greedy clustering approach.
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MrMC-MinH uses minwise hashing [8] for quickly

and accurately computing approximate pairwise sequence

similarity (Jaccard similarity) to cluster 16S and whole

metagenome sequence reads. Clustering results at different

hierarchical taxonomic levels are also produced by setting

similarity threshold within a cluster.

We evaluate the performance of MrMC-MinH on two 16S

simulated metagenome samples, eight 16S environmental

metagenome samples [9] and twelve simulated and real

whole metagenome samples [10]. Our comparative study

shows the strength of MrMC-MinH in comparison to several

other metagenome clustering algorithms when evaluated on

the basis of clustering quality and pairwise sequence simi-

larity of sequences within a cluster. Further the source code

along with benchmarks is available on the supplementary

website; http://www.cs.gmu.edu/~mlbio/MrMC-MinH

II. RELATED WORK

One of the main challenges with current methods for

metagenome clustering is the ability to handle large volumes

of data while maintaining the quality of clustering. This

is particularly an issue for terabyte-scale metagenomics

projects. The HiSeq 2000 system can generate up to 0.6

TB of data per run [11].

Among the existing methods, CD-HIT [12] and UCLUST

[13] can handle relatively large datasets. UCLUST and CD-

HIT are greedy clustering algorithms that achieve compu-

tational efficiency by first identifying gapless, high-scoring

common subsequences referred to as seeds or hits. Use of

seeds reduces the number of needed full length sequence

comparisons or alignments. However, UCLUST and CD-

HIT are intended for clustering sequences that are highly

similar. On the other hand, DOTUR [14], MOTHUR [15]

and ESPRIT [16] are exclusively designed for clustering 16S

sequences. These methods compute an all-pairwise distance

matrix as input and then perform hierarchical clustering.

ESPRIT is efficient in comparison to Mothur and DOTUR

because it computes k-mer distance for each pair of input

sequences, avoiding the expensive global alignment distance

calculation. ESPRIT also implements several heuristics to

reduce the number of sequence comparisons. In our previous

work, we implemented a greedy clustering approach using

locality sensitive hashing (LSH) for binning 16S sequences

[17], [18].

MetaCluster [19] implements a two-phase (top-down

separation and bottom-up merging) approach to cluster

metagenome reads or contigs. Clusters are assigned on the

basis of k-mer frequency and Spearman distance computa-

tion. Other methods, such as sketching techniques [20] and

parallel clustering or alignment algorithms [21], [22] are de-

signed to handle large datasets, but are implemented for 16S

sequence data. Yang et. al. [23] proposed a Hadoop-based

algorithm for the metagenome clustering. They adapted

the sketching technique [8] to identify pairwise sequence

homologs and produced hierarchical taxonomic clustering

results. However, their approach was benchmarked for 16S

metagenome sequences only.

Inspired from our previous greedy clustering algorithm

called MC-MinH [7], we use minwise hashing [8] to par-

tially offset the time complexity for computing pairwise

sequence similarity or alignments. For distributed comput-

ing, we implement our algorithm using the Pig scripting

language, which provides a high-level platform for develop-

ing Map-Reduce applications on Hadoop [24]. The map-

reduce paradigm has been drawing attention within the

computational biology community [25], [26], [27]. However,

majority of these applications are limited to simply distribut-

ing the data which is then handled by existing sequential

software.

III. METHODS

In this section, we present our approach to cluster

metagenome sequences using minwise based hashing and

agglomerative hierarchical clustering. The hashing approach

allows us to reduce the complexity of computing ex-

act pairwise string matching or multiple sequence align-

ment. We refer to our greedy clustering approach as

MrMC-MinHg and agglomerative hierarchical clustering ap-

proach as MrMC-MinHh. We first review the minwise hash-

ing approach and then describe our greedy and agglomera-

tive hierarchical clustering algorithms.

A. Min-Wise Hashing Algorithm

Given a sequence represented as a set of k-mers

(words/features), the similarity between two sequences can

be defined as the Jaccard similarity between two correspond-

ing sets of k-mers. If sequence s1 has k-mer set denoted

by Is1 and sequence s2 has k-mer set Is2 then the Jaccard

similarity is defined as:

sim(s1, s2) =
|Is1 ∩ Is2 |
|Is1 ∪ Is2 |

. (1)

Now, we define the notion of min-wise independent fam-

ilies of permutations. Given Sn as the set of all independent

permutations of �n� = 1 . . . n, we define a family of

permutations, F ⊆ Sn to be min-wise-independent, if for

any set X ⊆ �n� and any x ∈ X , when π is chosen at

random in F , we have

Pr(min{π(X)} = π(x)) =
1

|X| (2)

Thus, any element in the set X has an equal probability to

become the minimum element of X under the permutation

π [8]. Given a random permutation, every element has the

same probability of being the smallest element in its subset.

Given input sets of n, k-mers (maximum value of n = 4k)

and given a min-wise independent permutation, π chosen

randomly from set F , the similarity between two sets

(sequences s1 and s2) Is1 and Is2 is given by:
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Pr(min{π(Is1 )} = min{π(Is2 )}) =
|Is1 ∩ Is2 |
|Is1 ∪ Is2 |

= sim(s1, s2) (3)

The probability of having the same minimum value within

a permutation for two sets equals the Jaccard similarity

between the two sets. As such, we can choose n independent

random permutations π1, π2, . . . , πn and for each sequence

s, we store the list:

s = (min{π1(Is)},min{π2(Is)}, . . . ,min{πn(Is)}) (4)

We can easily estimate the similarity between s1 and s2 by

performing set intersection and set union of min-wise values

in s1 and s2. The list s1 for s1 is known as the fixed size

sketch for representing the sequence.

B. Algorithm Details

For given metagenome sequences represented by k-mer

sets, we choose n min-wise independent permutations, repre-

sented as π1, π2, . . . , πn. The problem with this approach is

that it not feasible to permute a large sequence set. Drawing

random permutations is time consuming and practically

inefficient. Fortunately, it is possible to simulate the effect of

a random permutation by using universal hashing functions.

This requires storing few hash values [28]. The standard

universal hash function [29] is defined as

hi(x) = ( (aix + bi) mod p ) mod m, i = 1, 2, . . . , n (5)

where m is the size of feature set, p > m is a prime number

and n is the number of hash functions. The parameters ai
and bi are chosen uniformly from {0, 1, . . . , p− 1}. Instead

of storing πi, we now only need to store 2n numbers, a and

b for each hash function.

In our approach, instead of picking n random

permutations, we pick n universal hashing functions

{h1, h2, . . . , hn} to approximate the random permutations.

To compute the min-wise hash values for a given feature set

I , we iterate over all k-mer features x and map them to their

hash values hi(x). We then iterate over all the hash values

to find their minimum, which will be the ith min-wise value

for that feature set. We formulate the minHash function as

the smallest element of a set I under the ordering induced

by the universal hashing function h, given by:

minHash (h(I)) = argminh(x)
x∈I

(6)

Using the min-wise hashing property, the probability of

hashing collision for two sets is equal to their Jaccard

similarity. For metagenome sequence clustering we are inter-

ested in finding those clusters which contain sequences that

have similarity greater than some pre-defined threshold θ.

Therefore, in our greedy algorithm, we formulate the prob-

ability of collision such that if Pr[minHash (h(Is1)) =
minHash (h(Is2))] > θ, then s1 and s2 belong to the

same cluster, otherwise a new cluster is created. In case

of the hierarchical algorithm, we compute the all pairwise

similarity matrix using the input sequence reads with the

Jaccard similarity given by Equation 3.

The pseudocode of our approach is described in Algorithm

1 and Algorithm 2. The input parameters include k-mer size

k, number of hash functions n and similarity threshold θ. To

compute the feature set I for given sequences (line 2), each

sequence is converted to a set of fixed length subsequences

of length k, called k-mers. This allows both approaches to

handle variable length sequences. After the feature sets are

computed, we use universal hash functions h() defined in

Equation 5 to compute hash value for each element in feature

set I . At the end of this procedure, each sequence has n min-

wise hash values, where n is the number of hash functions.

1) Greedy Approach: The greedy algorithm follows a

step-wise, incremental procedure. The pseudo code is de-

scribed in Algorithm 1. After computing the minwise values

for each sequence, we begin by choosing the first sequence

(or any one in the set S) and assign the sequence to the

first cluster. Using the list representation (Equation 4), we

can compute the Jaccard similarity between the unassigned

sequences and the cluster representative. Sequences which

have similarity greater than specified threshold θ are as-

signed to same cluster. We iterate through Steps 5-14 for

all sequences in set S until cluster label is assigned to every

sequence. When θ is set to 1, the MrMC-MinHg algorithm

will consider sequences to be similar if and only if all the

min-wise values are identical in both sequences. Similarly,

when θ is set to 0.95, sequences will go into the same

cluster only if 95% of total min-wise values are same in both

sequences. Thus lower value of θ allows more sequences to

gon into the same cluster, resulting in less number of total

clusters.

2) Agglomerative Hierarchical Approach: Instead of fol-

lowing a heuristic approach, MrMC-MinHh implements an

exhaustive approach for clustering sequences (See Algo-

rithm 2). After computing the minwise values for each

sequence, MrMC-MinHh computes all pairwise similarity

matrix amongst the input sequences. We use Jaccard co-

efficient as a similarity function which is defined as the

size of the intersection divided by the size of the union

between minwise values of two feature sets. This similarity

matrix is then used to build a dendrogram by iteratively

linking each row of matrix according to the linkage policy

(single, average or complete) in a bottom up manner. The

dendrogram is represented as a series of merge steps for the

rows of the similarity matrix, where each row is initially

assigned to its own cluster. The similarity threshold θ
decides the cutoff level on dendrogram. It produces the

clusters such that no pair of sequences within a cluster have

less than the pre-defined threshold, θ percent similarity.

C. Overview of MrMC-MinH

Figure 1 provides an overview of our approach. Each

sequence in fasta format is stored as a HDFS (Hadoop
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Algorithm 1 Greedy Clustering

Input: N sequences S = {s1 . . . sN}, each of variable length.

Parameters: k-mer size k, number of hash functions n, similarity threshold θ
Functions: Is denotes k-mer size feature set for sequence s. minHash (h(I)) computes the min-wise hash value for

I using hash function h .

Output: Cluster Assignments, indexed by different sequences C[s1 . . . sN ]

1: Initialize array C, ∀si ∈ S, C[si] = −1.

2: ∀s ∈ S, compute k-mer feature set Is
3: ∀s ∈ S, compute minHash (h(Is)), where hi(x) = ((aix+ bi) mod p) mod m | x ∈ Is and i = 1, 2, . . . , n
4: repeat
5: Choose si ∈ S , such that C[si] == −1 i.e., si is not assigned

6: Assign C[si] to a new cluster label.

7: Remove si from S
8: for ∀sj ∈ S do
9: /* For all sj in S that are not assigned, try to assign these sequences the same cluster label */

10: if � |minHash(Isi ) ∩ minHash(Isj )|
|minHash(Isi ) ∪ minHash(Isj )|� ≥ θ then

11: C[sj ]← C[si]
/* si and sj are in the same cluster */

12: Remove sj from S
13: end if
14: end for
15: until S is empty and all sequences are assigned.

16: return C

Algorithm 2 Agglomerative Hierarchical Clustering

Input: N sequences S = {s1 . . . sN}, each of variable

length.

Parameters: k-mer size k, number of hash functions n,

similarity threshold θ
Functions: Is denotes k-mer size feature set for se-

quence s. minHash (h(I)) computes the min-wise

hash value for I using hash function h .

Output: Cluster Assignments, indexed by different se-

quences C[s1 . . . sN ]

1: ∀s ∈ S, compute k-mer feature set Is
2: ∀s ∈ S, compute minHash (h(Is)), where hi(x) =

((aix+ bi) mod p) mod m | x ∈ Is and i = 1, 2, . . . , n
3: ∀s ∈ S, compute all pairwise similarity matrix with

respect to minHash values.

4: Perform Agglomerative Hierarchical Clustering on all

pairwise similarity matrix with similarity threshold θ.

5: return C

Distributed File System) file. Each file is passed to individual

mappers to a perform series of operations. First, the DNA

alphabets for each sequence are encoded into an integer

value. Next, the sequence is transformed into contiguous

subsequences or k-mers of fixed size k. After this transfor-

mation, each k-mer in a feature set is mapped to hash values

using universal hashing functions. Finally, the minimum

hash values are chosen as the feature set representing each

sequence. These set of minwise hash values are then passed

to either of the two different clustering approaches: (i)

greedy clustering or (ii) agglomerative hierarchical cluster-

ing. For agglomerative hierarchical clustering, the calcula-

tion of all pairwise similarity is performed in parallel by

performing a row-wise partition. The final clustering output

contains cluster label for each sequence and is stored as a

HDFS file.

1) Map-Reduce Implementation using Pig Script: We

implement our Map-Reduce clustering framework using

Pig scripting language and Java. Pig is an apache project

developed for Hadoop to execute Map-Reduce jobs in an

easy way. It comprises of scripts for executing queries

which runs a Hadoop job in the background. Pig scripts

also contain UDFs (User Defined Functions) to implement

custom functions. Algorithm 3 shows the scripts used in

our implementation. Step 1 loads the fasta file from HDFS

(Hadoop Distributed File System) using UDF FastaStorage

which is implemented in Java. In Step 2, UDF StringGen-

erator maps the DNA alphabets into integer value. Step 3

calculates the k-mers for each sequence with size $KMER

by calling UDF TranslateToKmer. Similarly, Step 4 com-

putes the minwise hash values using UDF CalculateMin-

wiseHash with parameters $NUMHASH and $DIV, where

$DIV is a prime number greater than size of feature set

and $NUMHASH is the number of hash functions. In Step

5 which uses UDF CalculatePairwiseSimilarity, we see that
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Clustering

Output

Clustering

Output

Figure 1. MrMC-MinH Overview and Implementation.

pairwise similarity calculation is performed in parallel by

sending each record with the group of sequences. From

Step 6 to Step 9, agglomerative hierarchical clustering and

greedy clustering are performed using UDFs Agglomerative-

HierarchicalClustering and GreedyClustering, respectively.

For UDF AgglomerativeHierarchicalClustering, parameter

$LINK gives a choice of selecting single-linkage, average-

linkage or complete-linkage method for hierarchical clus-

tering, whereas parameter $CUTOFF specifies the cluster

similarity threshold at which two clusters are merged to-

gether in a hierarchy. For UDF GreedyClustering, $CUTOFF

is required to put similar sequences in a cluster until all

the sequences are clustered. In the end, results are stored

in HDFS and can be accessed using Hadoop commands.

The keyword FOREACH ensures that every operation is

performed parallel on each sequence to provide distributed

computing.

IV. EXPERIMENTAL EVALUATION

A. Dataset Description

We evaluate the performance of our algorithm on both,

the 16S and whole metagenome sequence datasets.

1) 16S Simulated metagenome samples: The simulated

data contains 345,000 short sequences, generated by pyrose-

quencing two PCR amplicon libraries. The libraries contains

43 known 16S rRNA gene fragments using the Roche

GS20 system. Furthermore, simulated data is improvised by

incorporating some sequencing errors to test the clustering

results. This simulated data is originally used by Huse et.

al. [30].

2) 16S Environmental samples: This dataset comprises of

eight seawater samples taken from a study by Sogin et. al.

[9]. For each sample, a massively parallel DNA sequencing

technology [31] (454/Roche) is used to efficiently increase

Algorithm 3 Hadoop Map-Reduce Implementation using

Pig Script

1: A = LOAD ’$INPUT’ using FastaStorage as (rea-

did:chararray, d:int, seq:bytearray, header:chararray);

2: B = FOREACH A GENERATE FLATTEN (StringGen-

erator(seq, readid)) as (seq:chararray, seqid:chararray);

3: C = FOREACH B GENERATE FLATTEN (Translate-

ToKmer(seq, seqid, $KMER)) as (seqkmer:long, se-

qid2:chararray);

4: E = FOREACH C GENERATE FLATTEN (CalculateM-

inwiseHash(seqkmer, seqid2, $NUMHASH, $DIV)) as

(minwise:long, seqid3:chararray);

5: F = FOREACH E GENERATE FLATTEN (minwise),

FLATTEN (seqid3);

6: I = GROUP F ALL;

7: J = FOREACH F GENERATE FLATTEN (Calcu-

latePairwiseSimilarity(minwise, I.F)) as (similarityma-

trix: double);

8: K = FOREACH J GENERATE FLATTEN (Agglom-

erativeHierarchicalClustering(similaritymatrix, $LINK,

$NUMHASH, $CUTOFF)) as (clusterlabel: int);

9: L = FOREACH I GENERATE FLATTEN (GreedyClus-

tering(I.F, $NUMHASH, $CUTOFF)) as (clusterlabel:

int);

10: STORE K INTO ’$OUTPUT1’;

11: STORE L INTO ’$OUTPUT2’;

the number of sequenced PCR amplicons. These samples

provides a global in-depth description of the diversity of

microbes and their relative abundance in the ocean. Samples

contain unequal length sequences with average sequence

length of 60 bp. The description of these datasets are shown

in Table I.
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Table I
ENVIRONMENTAL DNA SAMPLES.

SID Site La◦N, Lo◦W Dep T Reads

53R Labrador seawater 58.300,-29.133 1,400 3.5 11218

55R Oxygen minimum 58.300,-29.133 500 7.1 8680

112R Lower deep water 50.400,-25.000 4,121 2.3 11132

115R Oxygen minimum 50.400,-25.000 550 7.0 13441

137 Labrador seawater 60.900,-38.516 1,710 3.0 12259

138 Labrador seawater 60.900,-38.516 710 3.5 11554

FS312 Bag City 45.916,-129.983 1,529 31.2 52569

FS396 Marker 52 45.943,-129.985 1,537 24.4 73657

Description of the samples used in this paper. These samples are collected
from North Atlantic Deep Water and Axial Seamount, Juan de Fuca Ridge.
La is the latitude, Lo is the longitude, Dep is the depth in meters, T is the
temperature in ◦C and Reads are the number of sequences in a sample.

3) Simulated and Real Whole metagenome sequences:
For whole metagenome sequences, we have 14 simulated

samples with varying proportions of microbes and 1 real

metagenome sample. For each sample, reads from multiple

genomes are pooled to model the challenges of metagenome

sequencing such as varying number of species, relative

abundance, phylogenetic diversity and the differences in GC

content between genomes. These datasets are taken from a

previous studies by Chatterji et al. [10]. Furthermore, we

test our method on a publicly available metagenome sample

R1 that contains sequence reads obtained from gut of the

glassy-winged sharpshooter Homalodisca coagulata (insect).

All samples are described in Table II.

B. Performance Metrics

We evaluate the performance of our algorithm with

different metrics and criteria. Taxonomic class labels for

each sequence are taken as ground truth for the simulated

datasets. Using these labels, we determine a weighted cluster

accuracy. Each cluster is designated by class/genera based

on the most frequent class in the cluster, and then the

accuracy is evaluated by computing the percent of correctly

assigned sequences with respect to the designated class. The

reported accuracy is averaged across all clusters, weighted

by the number of sequences in each cluster. This is denoted

by “W.Acc” in this paper. We also compute the sequence

similarity within the clusters for each clustering solution.

Typically, sequence similarity is evaluated by performing a

pairwise alignment operation (i.e., best arrangement of DNA

nucleotides (characters) to identify regions of similarity be-

tween sequences). Global alignments attempt to align every

character between the sequences and local alignments find

the best sub-regions of similar characters [32]. Generally, a

good sequence clustering solution should produce sequences

within a cluster that are similar to each other. We report only

the average global sequence alignment similarity (weighted

by number of sequences in a cluster). This quantity is

referred to as “W.Sim” in this paper. We report results for

clusters having number of sequences greater than 50.

C. Hardware and Software Details

The MrMC-MinH algorithm is implemented using the

Pig scripting language and Java. We evaluated our approach

on the Amazon Elastic Map-Reduce Hadoop environment.

Particularly, we used the M1 Large instance type (7.5 GiB

memory, 4 EC2 Compute Units, 850 GB instance storage)

nodes, and increase the number of nodes of same type for

our experiments evaluating speedup.

V. RESULTS AND DISCUSSION

We perform a comprehensive set of experiments to eval-

uate the performance of our algorithm on simulated and

real metagenome datasets. Our benchmarking focuses on the

quality of clustering evaluated using external ground truth,

computational complexity (run time) and pairwise sequence

similarity of sequences within a cluster.

A. Algorithm Evaluation

We compare the clustering performance of the greedy

clustering (described in Algorithm 1) and the agglomera-

tive hierarchical clustering (described in Algorithm 2). The

results are shown in Table III, benchmarked on the simulated

and real whole metagenome sequence read sets. We observe

from Table III that the hierarchical clustering approach

outperforms the greedy clustering in terms of clustering

accuracy and pairwise similarity. The hierarchical clustering

involves computing an all-pairwise sequence similarity (us-

ing minwise hashing), which will better capture the grouping

among the input sequence reads. On the other hand, the

greedy clustering is faster because it iteratively computes

similarities for a shrinking input set. For samples S1-S10,

the run time performance for MrMC-MinHh averages about

4m 20s. This is because the number of input sequence reads

are the same in these 10 samples and the cost of computing

the all pairwise similarity is the most time consuming and

identical for the 10 samples. These runs were benchmarked

on the Amazon cluster using 8 nodes of type described in

Section IV-C.

B. Scalability and Speed Up

We assess the scalability of MrMC-MinH algorithm by

varying the number of computing nodes and input sizes. We

specifically, report the run time results for the hierarchical

clustering algorithm by varying the number of computing

nodes from 2 to 12, and changing the number of input

sequence reads from 1000 to 10 million. The reads were ob-

tained from benchmark S1 (whole metagenome sequences)

shown in Table II. We observe in Figure 2, that increasing the

number of input nodes leads to a decrease in the run times,

as more parallelism is supported by a larger input size. For
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Table II
WHOLE METAGENOMIC SEQUENCE READS.

SID Species Ratio Taxonomic Difference # Cluster # Reads

S1 Bacillus halodurans [0.44], Bacillus subtilis [0.44] 1:1 Species 2 49998

S2 Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59] 1:1 Genus 2 49998

S3 Escherichia coli [0.51], Yersinia pestis [0.48] 1:1 Genus 2 49998

S4 Rhodopirellula baltica [0.55], Blastopirellula marina [0.57] 1:1 Genus 2 49998

S5 Bacillus anthracis [0.35], Listeria monocytogenes [0.38] 1:2 Family 2 49998

S6 Methanocaldococcus jannaschii [0.31], Methanococcus mariplaudis
[0.33]

1:1 Family 2 49998

S7 Thermofilum pendens [0.58], Pyrobaculum aerophilum [0.51] 1:1 Family 2 49998

S8 Gluconobacter oxydans [0.61], Rhodospirillum rubrum [0.65] 1:1 Order 2 49998

S9 Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59],
Nitrobacter hamburgensis [0.62]

1:1:8 Family,Order 3 49996

S10 Escherichia coli [0.51], Pseudomonas putida [0.62], Bacillus anthracis
[0.35]

1:1:8 Order, Phylum 3 49996

S11 Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59],
Nitrobacter hamburgensis [0.62], Rhodospirillum rubrum [0.65]

1:1:4:4 Family, Order 4 99998

S12 Escherichia coli [0.51], Pseudomonas putida [0.62], Thermofilum
pendens [0.58], Pyrobaculum aerophilum [0.51], Bacillus anthracis
[0.35], Bacillus subtilis [0.44]

1:1:1:1:2:14
Species, Order, Family,

Phylum, Kingdom
6 99994

S13 Acinetobacter baumannii SDF, Pseudomonas entomophila L48 1:1 - 2 4000

S14 Ehrlichia ruminantium Gardel, Anaplasma centrale Israel, Neorick-
ettsia sennetsu Miyayama

1:1:1 - 3 6000

R1 Glassy-winged sharpshooter endosymbionts - - - 7137

Simulated (S) and Real (R) metagenome shotgun datasets. Each dataset has a unique SID for reference. The GC content of each genome is written in []
brackets. S1-S12 are obtained from the work by Chatterji et al. [10]
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Figure 2. Runtime (in minutes) with respect to number of nodes and
number of reads.

the 10 million sequence benchmark, we can further reduce

the run time by introducing more nodes. On the other hand,

for the smallest input size of 1000 sequences, we observe

that there is no effect on run time of increasing the number

of nodes. This is because few nodes are sufficient for small

input size and therefore, using large number of nodes has

no effect on the system performance.

C. Comparative Performance

1) 16S Simulated dataset:: Table IV shows the perfor-

mance of different clustering algorithms for the 16S simu-

lated set derived from 43 distinct genomes. We report results

for reads that have less than 3% and 5% error. From Table

IV, we observe that for both, the 3% and 5% sequencing

error benchmarks, all algorithms either underestimate or

overestimate the number of species. At 5% error, number

of clusters produced by MrMC-MinHh (47), MrMC-MinHg

(37), MC-LSH (41) and CD-HIT (47) are closer to ground

truth. We also report the weighted pairwise similarity within

the clusters, and observe that MrMC-MinHh shows promis-

ing weighted similarity results with less number of clusters.

Different number of clusters with similar weighted sequence

similarity is due to the presence of single sequence clusters

which are not included in calculating weighted sequence

similarity.

2) 16S Environmental dataset:: In Table V, we report the

results of several clustering methods on 16S environmental

samples. We can observe that MrMC-MinHh outperforms

other methods by producing similar weighted similarity

(W.Sim) with less number of clusters. For example, Mothur

and DOTUR use the same all pairwise similarity in their
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Table III
CLUSTERING PERFORMANCE ON SIMULATED AND REAL WHOLE METAGENOME READS.

MrMC-MinHh Agglomerative Hie. Clustering MrMC-MinHg Greedy Clustering MetaCluster

SID # Cluster W.Acc W.Sim Time # Cluster W.Acc W.Sim Time # Cluster W.Acc W.Sim Time

S1 12 90.42 59.20 4m 25s 7 86.98 55.14 2m 35s 5 87.46 50.92 11m 25s

S2 10 88.05 57.35 4m 18s 6 85.70 54.05 2m 32s 7 85.19 50.20 12m 10s

S3 11 85.16 60.08 4m 20s 8 81.27 55.36 2m 35s 7 80.84 51.85 12m 48s

S4 8 93.72 61.44 4m 15s 3 90.16 57.40 2m 08s 3 92.34 54.30 11m 33s

S5 9 84.10 58.60 4m 17s 4 81.25 53.71 2m 10s 5 79.69 50.71 12m 18s

S6 8 98.64 57.40 4m 15s 7 98.14 56.92 2m 25s 8 99.12 56.67 13m 17s

S7 5 97.50 58.17 4m 13s 3 97.08 56.60 2m 04s 4 98.44 55.18 12m 51s

S8 13 96.22 59.25 4m 30s 6 93.65 55.78 2m 25s 5 92.29 53.05 13m 04s

S9 6 89.45 60.32 4m 15s 4 86.20 56.62 2m 04s 4 85.20 50.41 12m 28s

S10 7 98.06 57.78 4m 16s 5 97.44 56.90 2m 16s 7 98.63 54.66 13m 08s

S11 9 91.88 58.23 8m 35s 7 88.52 53.10 4m 15s 9 87.37 51.10 30m 25s

S12 15 97.54 60.56 8m 44s 10 95.32 57.45 4m 25 12 96.47 53.94 32m 10s

R1 7 - 59.18 2m 30s 4 - 55.80 1m 08s 3 - 50.45 6m 10s

All experiments are carried out with 5 k-mer and 100 hash functions. Number of clusters (# Cluster), weighted cluster accuracy in % (W.Acc), weighted
sequence similarity (W.Sim) in % and Running Time in minutes or seconds (Time) are the performance metrics. The numbers in bold indicate that
MrMC-MinHh algorithm performs better than MrMC-MinHg and MetaCluster. R1 represents the real metagenome sample (7137 sequences). S1-S12
represent simulated metagenome samples (each sample S1-S9 contains about 50,000 sequences of 1000 basepairs whereas each sample S11-12 contains
about 100,000 sequences of 1000 basepairs). Clustering results are trimmed after applying threshold on number of clusters.

Table IV
CLUSTERING RESULTS ON 16S SIMULATED DATASET

Dataset with 3% error Dataset with 5% error

Method # Cluster W.Sim # Cluster W.Sim

MrMC-MinHh 53 97.80 47 95.46
MrMC-MinHg 39 97.70 37 95.18

MC-LSH 47 97.70 41 95.20

UCLUST 91 97.74 53 95.20

CD-HIT 108 97.74 47 95.20

ESPRIT 180 97.78 86 95.20

DOTUR 210 97.80 135 95.46

Mothur 214 97.80 138 95.46

These datasets contain sequence reads upto 3% and 5% errors with respect
to reference 16S rRNA sequences. Number of clusters (# Cluster) and
weighted sequence similarity (W.Sim) in % are the performance metrics.
The numbers in bold indicate that result produced by an algorithm is closer
to the ground truth and performs better than other algorithms.

computation and produce large number of clusters as com-

pared to MrMC-MinHh.

3) Whole Metagenome Reads:: Table III compares the

clustering results for MrMC-MinHh, MrMC-MinHg and

MetaCluster on simulated and real whole metagenome se-

quence read samples. For datasets S1-S12, we have ground

truth labels to compute the clustering accuracy based on

species distribution. We see that MrMC-MinHh outper-

forms both MrMC-MinHg and MetaCluster in weighted

sequence similarity across all samples. We also observe that

MrMC-MinHh performs better in terms of weighted cluster

accuracy. For real metagenome sample R1, MrMC-MinHh

outperforms MrMC-MinHg and MetaCluster respect to

weighted sequence similarity. There was no ground truth

available for this sample to compute the clustering accuracy

metric.

VI. CONCLUSION

In this work, we present an efficient clustering algorithm,

MrMC-MinH for metagenome analysis. Our algorithm uses

the minwise hashing approach to approximate the computa-

tion of pairwise similarity and incorporates an agglomerative

hierarchical clustering method to group metagenome se-

quences. MrMC-MinH is developed on the widely available

Hadoop platform and uses Pig scripting language to create

Map-Reduce framework for distributed computation. It can

easily handle large datasets that are currently produced by

the second and third generation sequencing technologies for

metagenome studies. We evaluate MrMC-MinH on both,

the 16S and whole metagenome datasets and demonstrate

that MrMC-MinH is computationally efficient and accurate

in comparison to state-of-the-art clustering algorithms. The

source code along with benchmarks is available at the

supplementary website.
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