
Quantitative Trait Locus Analysis Using a Partitioned Linear Model on a

GPU Cluster

Peter E. Bailey∗, Tapasya Patki∗, Gregory M. Striemer†, Ali Akoglu†, David K. Lowenthal∗, Peter Bradbury‡

Matthew Vaughn§, Liya Wang¶, Stephen Goff‖

∗Department of Computer Science, The University of Arizona
†Department of Electrical and Computer Engineering, The University of Arizona

‡USDA/ARS and Cornell University
§Texas Advanced Computing Center
¶Cold Spring Harbor Laboratory

‖iPlant Collaborative

Abstract—Quantitative Trait Locus (QTL) analysis
is a statistical technique that allows understanding
of the relationship between plant genotypes and the
resultant continuous phenotypes in non-constant envi-
ronments. This requires generation and processing of
large datasets, which makes analysis challenging and
slow. One approach, which is the subject of this paper,
is Partitioned Linear Modeling (PLM), lends itself well
to parallelization, both by MPI between nodes and
by GPU within nodes. Large input datasets make this
parallelization on the GPU non-trivial.

This paper compares several candidate integrated
MPI/GPU parallel implementations of PLM on a cluster
of GPUs for varied data sets. We compare them to a
naive implementation and show that while that imple-
mentation is quite efficient on small data sets, when
the data set is large, data-transfer overhead dominates
an all-GPU implementation of PLM. We show that an
MPI implementation that selectively uses the GPU for a
relative minority of the code performs best and results
in a 64% improvement over the MPI/CPU version. As a
first implementation of PLM on GPUs, our work serves
as a reminder that different GPU implementations are
needed, depending on the size of the working set,
and that data intensive applications are not necessarily
trivially parallelizable with GPUs.

I. INTRODUCTION

According to the National Research Council, one

of the foremost challenges in plant biology is to

predict the collection of traits (i.e. phenotype) for

a particular plant, in a non-constant environment,

given a readout of its genetic code. Being able to

predict altered plant responses in an environment that

is undergoing anthropogenic change is very impor-

tant for conducting research in domains like plant

development and adaptation, plant physiology, crop

improvement and ecological genomics [1].

Genetic traits can be qualitative (discrete) or quan-

titative (continuous). Quantitative traits depend on

more than one gene and are influenced by the environ-

ment. The genetic architecture of diverse phenotypes

can be determined with the help of a statistical tech-

nique called Quantitative Trait Locus (QTL) analysis.

QTL analysis can be challenging as it requires the

generation and processing of large amounts of data.

A Partitioned Linear Model (PLM) that is amenable

to large-scale parallelism can be developed to perform

QTL analysis [2].

This paper focuses on comparing implementations

of PLM with both small and large input data sets.

We first created an MPI application and then turned

to investigating how amenable PLM is to GPU paral-

lelization within each MPI process. The data set size

is quite important in how best to design an imple-

mentation, because for large sizes, the benefit of GPU

parallelization can be outweighed by the overhead to

transfer the data from the CPU to the GPU. We found

that indeed, a different implementation is required for

the small and large data sets. For small input sets, a

typical GPU implementation where the GPU performs

all the computation achieves speedup; but on large

data sets, that same GPU implementation actually

caused slowdown. For the large input set, we then

investigated multiple implementations that selectively

parallelize only small portions of the MPI process

code onto the GPU. We achieved improvement up

to 64% over the MPI-only implementation. While

the GPU parallelized portion performs quite well, the

portion of the MPI process code that is parallelized

is relatively small.

The lesson learned is that GPU parallelization,

even when significant programmer time is invested,

does not necessarily result in a several-fold improve-

ment (or a several-hundred-fold improvement, as is

often reported in the GPU literature). Moreover, there

is not a “one size fits all” GPU implementation for a

given problem; the best implementation may be input

dependent—it is in our application, as it depends on

whether the input data set fits completely in GPU

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.93

746

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.93

746

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.93

752

RAM.

The rest of this paper is organized as follows.

Section II discusses the PLM problem. Section III de-

scribes our implementation, and Section IV provides

performance results. Section V discusses work related

to this paper, and Section VI summarizes the paper.

II. OVERVIEW

The Plant Science Cyberinfrastructure Collabora-

tive (PSCIC) program is intended by NSF to create a

new organization—a cyberinfrastructure collaborative

for the plant sciences—that will enable conceptual

advances through integrative, computational thinking

[3]. The iPlant Collaborative (iPC) [4] involves using

modern computational science and cyberinfrastructure

solutions to address grand challenges in the plant

sciences. iPG2P—relating plant genotypes to pheno-

types in complex environments—is one of the current

projects of the iPC. This initiative brings together

researchers and experts from various domains like

plant biology, bioinformatics, computational genetics,

statistics and computer science.

The problem we are addressing is stated as fol-

lows. We are given (1) a particular species of plant

(e.g. maize, rice, soybean), (2) a genetic description

of an individual (genotype), and (3) a phenotype,

the trait of interest, (flowering time, yield, or any of

hundreds of others). The goal is to predict, in non-

constant environments, the quantitative result (pheno-

type) that causes the desired trait in different sub-

species.

A. QTL Analysis

As discussed in Section I, QTL analysis is a

statistical method that allows us to explain the genetic

basis of variation in complex traits. Scientists require

two pieces of data to perform such an analysis: a

set of genotypes and at least one phenotype for each

group of individuals drawn from a population of

interest. Based on a regression analysis, the traits

occurring due to a given phenotype can be determined

and traced across the group of individuals in the

species. If the group of individuals is sufficiently

large and properly samples the population, the results

should apply to the population as a whole.

As an example, consider a set of maize inbred

lines from a broad range of backgrounds that vary

in the number of days from planting to pollen shed.

These can be chosen to study the genes affecting

flowering time and represents a phenotype data set

that could be used to make inferences about maize

in general. The genotype data might be a large set of

genetic markers that distinguish between these lines

scored on the same set of individuals.

A single nucleotide polymorphism, or SNP, can be

defined as single base pair within a DNA sequence

that can differ among individuals and can lead to

genetic variation. An example of a SNP is the change

from A to T in the sequences AATGCT and ATTGCT.

SNPs serve as genetic markers for QTL as they are

mutations that have been successful in surviving and

occur in a significant proportion of the population of

a species.

SNPs can be used to divide the individuals into

two classes. Testing whether the two classes are

statistically different for the phenotype of interest is

straightforward. After applying this test to all the

SNPs in the genotype set, the SNP that results in

classes with the highest probability of being different

is selected. That SNP is added to the linear model,

the fixed effects matrix, and all other SNPs are re-

tested in iterations to locate a second, third, fourth,

etc. SNPs. Through a series of these steps, a forward

regression model is built.

B. Forward Regression using PLM

In this work we use PLM for forward regression

due to its potential for parallelization. Figure 1 il-

lustrates the workflow for forward regression, and

Algorithm 1 provides pseudocode for it. The algo-

rithm iterates through each possible input SNP to

calculate an F-value (see Algorithm 1). The SNP with

the highest F-value is selected. Each SNP contributes

to a column of the genotype set in Algorithm 1.

The input fixed effects matrix, M, contains a number

of rows equal to the length of the input SNPs, or

lenSNP. Initially each of the columns of M represent

each of the populations. Each row is a genotyped

homozygous inbred individual plant. A two-valued

indicator variable is used for SNP values (0 or 2).

Floating point data is the imputed genotype based

on flanking markers and weighted by their genetic

distances [5].

An advantage of PLM is that it is amenable to

large-scale parallelism on the GPU; it exhibits data-

parallelism at the SNP level. Computations performed

on a SNP are independent of the ones being per-

formed on other SNPs. Steps 5 to 14 of Algorithm 1

indicate the set of operations that the kernel performs

on each SNP independently. At the end of each

iteration, a reduction to determine the maximum F-

value is carried out, followed by updating the fixed-

effects matrix with the chosen SNP. This process is

also suitable for mapping onto a GPU.

When using forward regression, PLM can be

distinguished from a similar linear model called the

General Linear Model (GLM) by the way it calculates

beta in Step 6. GLM uses a O(numCols3) algorithm

747747753

Figure 1. Forward regression workflow

to calculate the inverse, where numCols is the num-

ber of columns in the X matrix. This is followed by a

matrix-matrix multiplication to calculate beta in each

iteration. PLM, on the other hand, calculates the in-

verse and XT y incrementally at the end of each itera-

tion, which reduces the complexity to O(numCols2).
Note that if we have simple regression (with only

one iteration), both these algorithms would be equally

efficient. When we add a new column (say SNPj) to

the X matrix (Step 5), we can calculate the new XTX
as follows:

XT
newXnew =

[
XTX XTSNPj

SNPT
j X SNPT

j SNPj

]

Here, Xnew is the matrix X appended with SNPj ,

which is the SNP under consideration. Updating

(XT
newXnew)

−1 given a partitioned XT
newXnew has

been discussed by Hager [6]. Similarly, the new XT y
can be calculated incrementally with the help of the

old XT y and SNPT y.

III. IMPLEMENTATION

Our parallel implementation of PLM is hierarchi-

cal: the top-level parallelization (across nodes) is via

MPI, and then each MPI process uses GPU paral-

lelization. We describe each in turn in this section.

A. Inter-Node Parallelization with MPI

We use MPI to parallelize our implementation

of forward regression with PLM. All MPI ranks are

statically-assigned, equally-sized, disjoint portions of

the input SNP data, with each rank receiving an

integral number of SNPs. All ranks retain the fixed

effects and residuals in their entirety.

Once the work has been divided, the following

process continues until iteration termination: a single

iteration of forward regression continues locally on

each rank until a local maximum F value is found. A

max-reduction is then performed across all ranks to

find the global maximum F value, Fmax. The SNP

associated with Fmax is then broadcast to all ranks,

which each rank uses to update its local model in

preparation for the next iteration.

After all iterations are complete, the indices of

SNPs incorporated into the model and the associated

P values are reduced from their originating ranks onto

rank 0, where they are written to a file.

B. General Intra-Node GPU Parallelization

As PLM is at the core of forward regression,

we first detail our implementation of a PLM kernel.

The kernel takes as inputs the intermediate terms

XTSNP and SNPTSNP for each SNP, and G =
(XTX)−1, y, and errorSS globally, with output F
for each SNP.

After the calculation of XTSNP , most of the

computational work in PLM is due to the calculation

of G∗XTSNP . Thus, we optimize the design of the

PLM kernel to efficiently compute G∗XTSNP using

numCols threads, where numCols is the number of

columns in the design matrix, X .

This mapping of SNPs to thread blocks is com-

paratively efficient, considering its alternatives. If we

were to use a single thread per SNP, each thread

would be forced to make more reads from global

memory due to lack of sufficient storage in registers

or shared memory for intermediate terms. While this

arrangement would allow for greater multiprocessor

occupancy via larger thread blocks, the additional

memory-induced latency would not be worthwhile,

especially given the low computational intensity of

the problem.

Similarly, a mapping of multiple SNPs per thread

block is unlikely to improve performance, as it would

require either additional registers per thread if the

SNPs in a block were processed serially, or additional

threads per block and additional registers per thread

if the SNPs in block were processed in parallel. Both

cases are likely to have limited occupancy due to

register usage, and the latter case will suffer from

warp divergence if not implemented carefully.

The remaining work consists of vector-vector and

matrix-vector operations between numCols-unit vec-

tors and the numCols-by-numCols matrix G =
(XTX)−1. If we were to use numCols2 threads

per SNP, computation of the matrix-vector product

would be inefficient, because the occupancy would

be limited to a single SNP per multiprocessor. With

748748754

Algorithm 1

PLM pseudocode. The inputs are (1) a genotype set, SNP, comprising of n SNPs, each with length lenSNP;

(2) a fixed effects matrix, M, with lenSNP rows, which initially contains 26 columns; and (3) the phenotype,

y, which is a column vector of length lenSNP. The algorithm iteration threshold is determined by iter.

1: TotalSS ← yT y
2: K ← [zeros(1:n-1) 1]
3: for i = 0→ iter do
4: for j = 0→ n do
5: X ← append(M,SNP [j])
6: beta← (XTX)−1

∗ (XT y) � Calculated Incrementally
7: ModelSS ← betaT

∗XT y
8: TotalSS ← ErrorSS −ModelSS
9: F = [(KT

∗ beta)T × (KTGK)−1
× (KT

∗ beta)]/[ErrorSS/(n− rank(X))]
10: if Ftemp > threshold then
11: Fvalue[j]← Ftemp

12: else
13: Fvalue[j]← 0
14: return
15: end if
16: end for
17: Fmax ← max(Fvalue[1 : n])
18: genotype← SNP with Fmax

19: M ← append(M, genotype)
20: end for

numCols threads per SNP, occupancy reaches eight

SNPs per multiprocessor.

C. Intra-Node GPU Parallelization on Small

Datasets

If the input problem is small enough that all SNP

data fits entirely in GPU RAM on each MPI rank, we

use the CPU primarily for MPI communication be-

tween iterations. All computation, with the exception

of updating the model with the Fmax SNP, takes place

on the GPU. Using this approach, we minimize over-

head associated with data transfer. Additionally, we

benefit from the relatively high memory bandwidth

of the GPU.

In addition to the PLM kernel, the implementation

for small datasets also features a kernel to compute

the dot product of each pair of SNPs in parallel. This

kernel efficiently computes the dot product of each

column of a matrix with itself. The kernel computes

one column dot product per thread block. Comput-

ing a single dot product per thread is possible, but

our approach is more appropriate for column-major

matrices, which follow the CUBLAS data storage

convention.

D. Intra-Node GPU Parallelization on Large

Datasets

For large problems, the SNP data does not fit

into GPU RAM, which presents issues that must be

addressed. Two approaches are possible. In the first

approach, all computation is performed on the GPU,

but SNPs are processed in batches, and only a subset

of a rank’s SNPs reside on the GPU at any point

(similar to out-of-core parallel programming, which

has a long history [7], [8], [9], often with poor per-

formance). This incurs many large transfers between

host RAM and GPU RAM, increasing execution time.

The second approach minimizes such transfers

by performing some computation on the CPU and

transferring partial results to the GPU for completion.

By carefully selecting computation for the CPU, we

substantially reduce the size of the transfer from

CPU to GPU. We focus on the second approach

in this paper. Additionally, we investigate multiple

approaches in which partial results are transferred.

One SNP per thread block.: Our baseline

version of PLM is based on the second approach,

where we split the execution of different operations

between the CPU and GPU depending on suitability.

For example, multiplying SNPTSNP and updating

XTSNP in each iteration of PLM (see Section II)

is of low arithmetic intensity, and is more efficient

to execute on the CPU. Choosing to place such low

intensity operations eliminates unnecessary and extra

latency due to data transfer. Additionally, the resulting

values of these chosen operations require substantially

less storage than their arguments, which reduces the

consumption of limited GPU memory.

Similarly, there are several other instances in the

algorithm that can be more efficiently computed on

the CPU. This is because some of the operations only

need to be computed once for a given iteration of SNP

749749755

regressions, and some that need only be computed

once for all kernel iterations. An example is in choos-

ing the maximum F-value; the SNP corresponding to

the maximum F-value is appended to the X matrix,

which is then multiplied with its transpose. This pro-

cess is only required to be completed once the max F-

value is found among all GPU kernels processing all

SNPs for a given regression iteration. By selectively

performing this operation on the CPU rather than the

GPU, we are able to reduce redundancy.

Two SNPs per thread block.: In an effort to

increase the work per thread-block and reduce the

memory consumption of the on-chip shared memory

and overhead, we implemented a version of the PLM

code in which threads work cooperatively to compute

F-values for two SNPs rather than a single SNP per

thread-block. The two SNP version maintains the

same basic flow as discussed in the one SNP version;

however, each computation performed is executed

twice for two different SNPs.

The advantages with this strategy are (1) it reduces

the shared memory requirements by a factor of two,

because the same shared memory allocation used on

the GPU for cooperative reductions among threads

is used for both SNPs on a thread-block in this

implementation, and (2) it reduces the number of

required thread-blocks in half for a given number of

SNPs. The disadvantage, however, is that it increases

register utilization by about 50%.

Because the GPU is limited to having a maximum

of 65,536 thread-blocks in a given grid dimension,

increasing the number of thread-blocks essentially

doubles our maximum processing capacity for each

GPU kernel.

Single-precision.: We also explored the option

of implementing a single-precision version of PLM.

The accuracy of results as well as performance are

important issues for scientific computing applications.

Determining whether or not to use double-precision

during the implementation phase can thus be a diffi-

cult choice to make.

Our analysis indicates that the single-precision

implementation chooses exactly the same SNP at the

end of each iteration to add to the design matrix, X .

Furthermore, a comparison of the P values shows

that the average error introduced is quite small (less

than 0.0001), which means that we can improve

performance (especially when parallelizing large data

sets) by using single-precision for PLM, as discussed

in Section IV-B.

IV. PERFORMANCE RESULTS

Our experiments were run on the Dell XD Vi-

sualization Cluster (named “Longhorn”) at the Texas

CPU strong scaling via MPI

1M SNPs
Cores (2 cores/node)

C
om

pu
ta

tio
n

tim
e

(s
)

1 2 4 8 16 32

 1
2.

5
 2

5.
7

 5
0.

2
10

5.
3

20
8.

0
45

0.
6

●

●

●

●

●

●

Figure 2. Performance at different node counts of MPI-only
version of PLM.

Advanced Computing Center (TACC). Longhorn has

256 nodes, each with 48GB of RAM, eight 2.5

GHz Intel Nehalem cores, and two NVIDIA Quadro

FX5800 GPUs [10]. The FX5800 GPU is of compute

capability 1.3 and contains 30 multiprocessors (MPs),

each containing 8 streaming processing cores, 16,384

32-bit registers, 16KB of shared memory, 64KB

(device) constant memory with a 16KB cache (per

MP), and 4GB of global RAM. The source code was

compiled with GCC version 4.4.1 and CUDA toolkit

version 3.2.

We first present the results of the base MPI

implementation of PLM. Following that, we present

the results of various integrated MPI/GPU imple-

mentations of PLM on small data sets (100K SNPs

of length 5k) that fit entirely within GPU memory.

Finally, we present the results of integrated MPI/GPU

PLM implementations on large data sets (1 million

SNPs of length 5k) that do not fit within GPU

memory. Here, it is necessary to investigate carefully

several alternatives to the naive GPU parallelization

of performing all computation on the GPU.

Our baseline MPI program (Figure 2) uses one

core on each socket, even though the sockets have

multiple cores. This is because we have not (yet)

implemented an MPI/GPU PLM version in which we

spawn one MPI process per core, where those MPI

processes share the GPU. Such an implementation is

more complicated because of a potential bottleneck

at the GPU (or else a different programming model

is needed). We leave this for future work; but for

this paper, we used a one-to-one mapping of cores to

750750756

1 GPUs 2 GPUs 4 GPUs 8 GPUs 16 GPUs

GPU only
selective GPU

Strong scaling across GPUs via MPI (small datasets)

100k SNPs total

Im
pr

ov
em

en
t o

ve
r

C
P

U
 M

P
I (

%
)

0
50

10
0

15
0

20
0

25
0

Figure 3. Performance of various implementations on small
datasets (fewer than 100K SNPs per process each with length of
5k).

GPUs. Therefore, the baseline MPI program uses one

core per socket.

As described in Section III-A, the forward regres-

sion algorithm with PLM lends itself to a straight-

forward MPI implementation. Figure 2 presents the

results of MPI forward regression on CPUs (i.e., each

MPI process is sequential and does not use the GPU).

As expected, as forward regression is an “embarrass-

ingly parallel” application from the point of view

of distributed-memory computing, the performance

scales linearly in the number of nodes. We refer to

this as the baseline implementation when evaluating

the GPU implementations.

A. MPI/GPU Implementation on Small Datasets

This section describes utilizing the GPU within

each MPI process in the case that the SNP data

assigned to each MPI process can fit entirely in

GPU RAM. The results for a 100K double-precision

SNP input of length 5k with relative improvement to

the MPI-only version are presented in Figure 3. We

observe that performing all computation on the GPU

is best in this case (more than a two-fold improvement

over the MPI CPU-only version). As forward regres-

sion with PLM is of low computational intensity,

this improvement is due to the superior memory

bandwidth of the GPU. In particular, the CPU imple-

mentation achieves 4.6 GB/s on a single core, and

the GPU implementation for small datasets achieves

14.5 GB/s. The CPU and GPU in our experiments

have theoretical maximum memory bandwidths of

25.6 GB/s and 102 GB/s, respectively.

The speedup of the version that selectively paral-

lelizes PLM (see next section) on the GPU is much

less for small data sets, showing an improvement of

up to 7% in some cases. It also exhibits a slowdown

as we scale up to 8 and 16 GPUs. As the number of

GPUs increases, communication overhead increases;

this overhead eventually causes a slowdown (beyond

8 nodes).

B. MPI/GPU Implementation on Large Datasets

This section describes utilizing the GPU within

each MPI process in the case that the SNP data

assigned to each MPI process is too large to fit within

the GPU RAM. This presents significant problems

with parallelizing the code within each MPI process.

Table I illustrates the critical point: a naive GPU

parallelization—in which all computation, but not all

data, takes place on the GPU—performs not just

poorly, but worse than the MPI CPU-only implemen-

tation. This is because execution time for this version

is dominated by the time to copy the data from CPU

RAM to GPU RAM over the PCI Express bus (this

is the update of XTSNP). The important lesson is

that GPU parallelization must be done selectively for

cases in which the working set does not fit in GPU

RAM.

We evaluated four approaches by selectively par-

allelizing on the GPU only the matrix-vector multi-

plication, vector-vector multiplication, and reductions.

We show the relative improvement of each approach,

compared to the MPI-only version, for 1 million SNPs

of length 5k, in Figure 4.

Double precision, 1 SNP per thread block.:

When using 1 SNP per thread block and double

precision, we achieved up to a 40% improvement over

the MPI CPU-only version. It is important to note that

the GPU-specific speedup was over a factor 3, but

only a small portion of the code is being parallelized

via the GPU.

Single precision, 1 SNP per thread block.: The

best result achieved used single precision and 1 SNP

per thread block. Here, we improved performance

over the MPI CPU-only implementation by up to

64%, and 45% at minimum. Additionally, we found

that the single-precision code performs at least 37%

and up to 47% better than the double-precision code,

with identical SNP selection at each iteration. This

is because on the FX5800 GPU (compute capabil-

ity 1.3), a multiprocessor contains eight processing

elements capable of single precision arithmetic; how-

ever, it only contains one double-precision processing

element [11].

751751757

Version/Number of Cores 1 2 4 8 16 32

MPI CPU-only 450.6 208.0 105.3 50.2 25.7 12.5

GPU-all 832.3 416.1 208.1 104.0 52.0 26.0

Table I
RESULTS OF GPU-ALL IMPLEMENTATION COMPARED TO MPI CPU-ONLY IMPLEMENTATION ON AT MOST TWO CORES PER NODE

(TIMES IN SECONDS) FOR DIFFERENT NUMBER OF TOTAL CORES. THE GPU-ALL VERSION INCLUDES ONLY THE DATA TRANSFER

TIME AS WELL AS THE TIME TO PERFORM THE MATRIX MULTIPLICATION AND SO IS A LOWER BOUND; STILL, IT IS slower THAN NOT

UTILIZING THE GPU AT ALL.

32 16 8 4 2 1

SP 1 SNP
SP 2 SNP
DP 1 SNP
DP 2 SNP

Strong Scaling across GPUs via MPI (Large Datasets)

(Dataset: 1 million SNPs total)
Number of cores

Im
pr

ov
em

en
t o

ve
r

C
P

U
 M

P
I (

%
)

0
10

20
30

40
50

60
70

Figure 4. Performance of distinct MPI/GPU implementations on
large datasets (1M SNPs, length 5k). SP indicates single precision
and DP indicates double precision; 1 SNP and 2 SNP indicate
whether a version uses 1 or 2 SNPs per thread block, respectively.

Double precision, 2 SNPs per thread block.:

We also experimented with using 2 SNPs per thread

block. Here, we achieved up to a 41% improvement

over the MPI-only version. Overall, there is no signif-

icant difference in terms of performance when using

one-SNP versus two-SNPs per thread-block with dou-

ble precision. (Again, this is because each multipro-

cessor contains only one double-precision processing

element.) Increasing thread-workload and decreasing

thread-blocks does not help in this strategy, because

we are limited by the double precision capabilities of

the device.

Single precision, 2 SNPs per thread block.:

The single-precision, two-SNPs per thread block ver-

sion also appears to have no significant change over

the one-SNP code. Though there is additional work

per thread-block, which translates to additional work

per warp, the occupancy on a multiprocessor de-

creases due to the fact that each thread-block requires

about 50% more registers for the two-SNP code. The

two-SNP version would, however, be beneficial in

●

●

●

●

●

Node level comparison

Number of nodes

S
N

P
s

pr
oc

es
se

d
pe

r
se

co
nd

1 2 4 8 16

1.
00

e+
04

5.
00

e+
04

1.
00

e+
05

1.
91

e+
05

●

●

●

●

●

CPU SNPs/sec
GPU SNPs/sec

Figure 5. SNPs processed per second by using 8 cores/node
with the MPI CPU-only implementation and 2 GPUs/node with
the double-precision, 1 SNP per thread block implementation

small GPU systems where the number of available

GPUs is limited. This is because there are kernel

launches required with large data-sets that exceed the

maximum allowable thread-block configuration for a

CUDA grid.

C. Using all the available cores and GPUs on each

node

The Longhorn cluster at TACC has 8 Intel Ne-

halem cores per node, and 2 NVIDIA Quadro FX5800

GPUs per node. Figure 5 shows the comparison of

the MPI CPU-only implementation to the double-

precision, one-SNP implementation when using all of

the available cores on each node and all the available

GPUs on each node.

D. Effect of varying SNP length

After the total number of SNPs, SNP length is the

major driver of memory requirements. The forward

regression algorithm is time- and space-linear in the

752752758

0 1000 2000 3000 4000 5000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

Time per SNP vs SNP length

1M double−precision SNPs
SNP length

T
im

e
pe

r
S

N
P

cpu
gpu

Figure 6. Effect of SNP length on computation time per SNP for
CPU and GPU

number of SNPs, but also in the SNP length. How-

ever, a portion of the algorithm is independent of SNP

length. This portion was selected for parallelization on

the GPU due to its predictable memory requirements

and FLOPS/word ratio. As a result, Figure 6 shows

a consistent time difference between CPU and GPU

implementations that is independent of SNP length.

As SNP length increases, the portion of code that

depends on SNP length begins to dominate execution

time, and the advantage of the GPU diminishes.

V. RELATED WORK

We are certainly not the first researchers to

use GPUs to parallelize domain-specific applications.

GPUs have been used to parallelize applications from

linear algebra [12] to physics [13]. Closer to this

work, GPU parallelization is common in systems

biology [14] and sequence analysis [15], [16].

More specific to our project are GPU paralleliza-

tions of genome applications. For example, multi-

factor dimensionality reduction (MDR) is a tech-

nique that uses data mining to determine values

of dependent variables from independent variables

[17]. GPU parallelizations of MDR exist, including

one applied to allow genome-wide testing for the

disease ALS [18]. In addition, there was a test for

bipolar disorder enabled by GPU parallelization of

SNP-SNP interaction [19]. Davis et al. [20] studied

GPU vs CPU parallelization for SNP ranking and

concluded that with similar effort, CPU parallelization

was competitive. In general, the approaches above do

not specifically study GLM.

Finally, research groups have been studying port-

ing the R statistics package [21] to GPUs [22], [23].

This would provide speedup to any program that used

R. However, these packages are not fully developed

(one is in beta, for example). Also, this approach is

necessarily general, so it is likely that a hand-tuned

approach such as ours will yield better performance.

Considering the massive potential data sets we must

consider, such a performance improvement may be

worth the extra programming effort.

VI. SUMMARY

This paper has described an integrated MPI/GPU

implementation of PLM on both small and large data

sets. While a straightforward implementation sufficed

for small data sets, a more nuanced implementation

was required for large data sets. For these imple-

mentations, we achieved speedups of 3.15 and 1.64,

respectively.

Our future work will focus on handling ever-

growing data sets. Specifically, the iPlant collabora-

tive wishes to handle 50 million or more SNPs. This

implies that the SNP data will not fit in memory,

requiring a specialized out-of-core implementation.

This will be challenging, adding complexity which

may require re-implementation of the GPU kernels.

In addition, we will work to improve the performance

of the multiple-SNP GPU code.

ACKNOWLEDGMENT

This work was funded by a grant from the Na-

tional Science Foundation Plant Cyberinfrastructure

Program (DBI-0735191).

REFERENCES

[1] “iPG2P: Relating genotypes to phenotypes in complex
environments,” http://www.iplantcollaborative.
org/grand-challenges/about-grand-challenges/
current-challenges/ipg2p, 2010.

[2] D. Falconer and T. Mackay, Introduction to Quantita-
tive Genetics, 4th ed. Prentice Hall, 1996.

[3] “iPlant project overview,” http://www.
iplantcollaborative.org/about/project-overview, 2010.

[4] “The iPlant Collaborative: Empowering a new plant
biology,” http://www.iplantcollaborative.org/, 2010.

[5] L.Wang, “General linear model for snp pair testing,”
https://pods.iplantcollaborative.org/wiki/display/
∼lwang/General+Linear+Model+for+SNP+Pair+
Testing, 2012, [Online; accessed 17-December-2012].

[6] W. W. Hager, “Updating the inverse of a matrix,”
SIAM Review, vol. 31, no. 2, pp. 221–239, 1989.

753753759

[7] M. Kandemir, J. Ramanujam, and A. Choudhary, “Im-
proving the performance of out-of-core computations,”
in International Conference on Parallel Processing,
Aug. 1997.

[8] R. Bordawekar, A. Choudhary, K. Kennedy,
C. Koebel, and M. Paleczny, “A model and
compilation strategy for out-of-core data parallel
programs,” in Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice or Parallel
Programming, Jul. 1995, pp. 1–10.

[9] T. C. Mowry, A. K. Demke, and O. Krieger, “A
compiler-inserted I/O prefetching for out-of-core ap-
plications,” in Proceedings of the Second Symposium
on Operating Systems Design and Implementation,
Oct. 1996, pp. 1–17.

[10] “Longhorn user guide,” http://www.tacc.utexas.edu/
user-services/user-guides/longhorn-user-guide, 2011.

[11] NVIDIA, “NVIDIA CUDA compute unified device
architecture programming guide version 4.0,” 2011.

[12] S. Lahabar, “Singular value decomposition on GPU
using CUDA,” in International Parallel and Dis-
tributed Processing Symposium, Apr. 2009.

[13] G. Shi, V. Kindratenko, I. Ufimtsev, and T. Martinez,
“Direct self-consistent field computations on GPU
clusters,” in International Parallel and Distributed
Processing Symposium, Apr. 2010.

[14] M. C. Schatz, C. Trapnell, A. L. Delcher, and
A. Varshney, “High-throughput sequence alignment
using graphics processing units,” BMC Bioinformatics,
vol. 8, p. 474, 2007.

[15] G. M. Striemer and A. Akoglu, “Sequence align-
ment with GPU: Performance and design challenges,”
in International Parallel and Distributed Processing
Symposium, Apr. 2009.

[16] H. Li and L. R. Petzold, “Efficient parallelization of
stochastic simulation for chemically reacting systems
on the graphics processing unit,” International Journal
of High Performance Computing Applications, vol. 24,
no. 2, pp. 107–116, 2009.

[17] “Mulitfactor dimensionality reduction,” http://www.
multifactordimensionalityreduction.org/, 2010.

[18] C. Greene, N. Sinnott-Armstrong, D. Himmelstein,
P. Park, J. Moore, and B. Harris, “Multifactor di-
mensionality reduction for graphics processing units
enables genome-wide testing of epistasis in sporadic
ALS,” Bioinformatics, vol. 26, no. 5, pp. 694–695,
Mar. 2010.

[19] X. Hu, Q. Liu, Z. Zhang, Z. Li, S. Wang, L. He, and
Y. Shi, “SHEsisEpi, a GPU-enhanced genome-wide
SNP-SNP interaction scanning algorithm, efficiently
reveals the risk genetic epistasis in bipolar disorder,”
Cell Research, vol. 20, no. 7, pp. 894–897, Jul. 2010.

[20] N. A. Davis, A. Pandey, and B. McKinney, “Real-
world comparison of CPU and GPU implementations
of snprank: a network analysis tool for GWAS,”
Bioinformatics, Dec. 2010.

[21] “The R project for statistical computing,” http://www.
r-project.org/, 2010.

[22] “R+cuda: Enabling GPU computing in the r
statistical environment,” http://gpgpu.org/2009/06/14/
r-gpgpu, 2009.

[23] “R+gpu,” http://brainarray.mbni.med.umich.edu/
brainarray/rgpgpu/, 2010.

754754760

