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Abstract—Advances in wet-lab sequencing techniques allow
for sequencing between 100 genomes up to 1000 full tran-
scriptomes of species whose evolutionary relationships shall be
disentangled by means of phylogenetic analyses. Likelihood-
based evolutionary models allow for partitioning such broad
phylogenomic datasets, for instance into gene regions, for which
likelihood model parameters (except for the tree itself) can be
estimated independently. Present day phylogenomic datasets
are typically split up into 1000-10,000 distinct partitions. While
the likelihood on such datasets needs to be computed in parallel
because of the high memory requirements, it has not yet
been assessed how to optimally distribute partitions and/or
alignment sites to processors, in particular when the number
of cores is significantly smaller than the number of partitions.
We find that, by distributing partitions (of varying lengths)
monolithically to processors, the induced load distribution
problem essentially corresponds to the well-known multiproces-
sor scheduling problem. By implementing the simple Longest
Processing Time (LPT) heuristics in the PThreads and MPI
version of RAxML-Light, we were able to accelerate run times
by up to one order of magnitude. Other heuristics for multi-
processor scheduling such as improved MultiFit, improved
Zero-One, or the Three Phase approach did not yield notable
performance improvements.
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I. INTRODUCTION

The on-going accumulation of molecular sequence data
that is driven by novel wet-lab techniques poses new chal-
lenges regarding the design of programs for phylogenetic in-
ference that rely on computing the Phylogenetic Likelihood
Function (PLF [1]) for reconstructing evolutionary trees. In
all popular Maximum Likelihood (ML) and Bayesian phy-
logenetic inference programs, the PLF dominates both, the
overall execution time as well as the memory requirements
by typically 85% - 95% [2]. The PLF is relatively straight-
forward to parallelize by exploiting the fine-grain loop
level parallelism in the PLF using, for instance, OpenMP,
PThreads, CUDA, OpenCL, and MPI [3] [4].

To accommodate the increasing dataset sizes we have re-
cently developed a dedicated light-weight, production-level,
and checkpointable PThreads and MPI version of the widely-
used RAxML code for ML-based phylogenetic inference
that is called RAxML-Light (available at https://github.com/
stamatak/RAxML-Light-1.0.5). We are currently involved

in a large sequencing and data analysis project that aims
to reconstruct the phylogeny of 1000 insect transcriptomes
(http://www.1kite.org). The preliminary scalability tests (us-
ing the MPI version of RAxML-Light) conducted for this
project and the unprecedented data masses have given rise to
the present work. Thus, program development and scalability
is in a situation where it tries to catch up with the data.

While just a few years ago, phylogenomic datasets con-
sisted of tens of genes, they now comprise hundreds or even
thousands of genes. Thus, initially there were typically less
partitions p than cores n available and measures needed to
be taken to distribute the input alignment sites (regardless
of the underlying model) in a cyclic round-robin fashion
to obtain “good” load balance. This allowed for computing
the likelihood of a tree with 10 partitions on a 48-core
machine for instance. While the distribution strategy does
not affect performance on unpartitioned datasets, it can, as
we show, substantially influence performance on partitioned
datasets. One of the main reasons for this is that, apart
from computing the per-site log-likelihood scores, we also
need to compute the transition probability matrices for each
partition for each highly fine-grained parallel region of the
code. Thus, when p � n, the ratio of the number of sites
computed per calculation of the transition probability matrix
(which is carried out locally on each core) becomes highly
unfavorable. In other words, the local computations of the P
matrix will dominate execution times. Hence, another data
distribution strategy is required for phylogenomic datasets
that minimizes the number of P matrix calculations per
core and at the same time yields an approximately even
distribution of alignment sites to all cores.

The remainder of this paper is organized as follows: In
Section II we briefly discuss related work on algorithms
for the multi-processor scheduling problem and on load
balance in PLF computations. In Section III we describe
the cyclic and monolithic data distribution approaches for
computing the phylogenetic likelihood function in parallel.
In the subsequent Section IV, we briefly describe the multi-
processor scheduling algorithms we have tested and adapted.
Thereafter, (Section V) we discuss the experimental setup
and the results. We conclude in Section VI.
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II. RELATED WORK

A. Algorithms for Multi-Processor Scheduling

The partition distribution problem we face is essentially
equivalent to the multiprocessor scheduling problem that
falls into the category P ||Cmax using the three-field classi-
fication scheme introduced by Graham et al. [5]. We want to
assign p independent jobs to n identical cores, p > n ≥ 2.
Let Ci be the completion time of core Mi, then the goal
is to minimize the maximum completion time (makespan)
Cmax = max{Ci}. The category of problems P ||Cmax

is NP-hard in the strong sense [6]. There exist exact as
well as heuristic algorithms for P ||Cmax. Evidently, exact
algorithms using branch-and-bound [7] or cutting plane [8]
approaches are only applicable to problem instances with a
small number of jobs and cores (roughly under 50 jobs and
15 cores [8]). To this end, we do not deploy exact algorithms
because the number p of partitions (jobs) will typically
be larger than 100. For instance, the human genome, is
estimated to comprise roughly 30,000 genes, albeit there is
a large variation in this gene number estimate.

Heuristic approaches to the multi-processor scheduling
problem can roughly be classified into constructive heuristics
and improvement/refinement heuristics. The LPT (longest
processing time) algorithm [9] probably represents the best-
known and most widely-used constructive heuristic algo-
rithm. LPT is also implemented in the GIT version of
RAxML-Light. Initially, LPT sorts all jobs (partitions) in
descending order by their processing time (number of site
patterns in the respective partitions). Thereafter, starting with
the longest job (largest partition), all jobs (partitions) are
successively assigned to the least loaded processor. In other
words, a job is assigned to the processor that will complete
its tasks earlier than all other processors. In phylogenetics,
we keep track of the number of site patterns assigned to
each processor and assign the next partition to the processor
with the least accumulated number of site patterns. LPT has
a worst case performance of 4

3 −
1
3n , where n is the number

of cores. This means that, in the worst case, the schedule
computed by LPT will take 1.3̄ times longer to completion
than the optimal solution. Simulations have shown that, LPT
exhibits good average performance, in particular when p (the
number of jobs/partitions) is large [10].

Numerous alternative constructive approaches have been
proposed such as MultiFit [11] and, more recently, PSC [12].

Improvement/refinement heuristics that have been pro-
posed include the 0/1 interchange [10] method, the 3-
PHASE [13] heuristics as well as more complex approaches
such as the cyclic exchange neighborhood [14] method and
genetic algorithms [15].

B. Load Balance in the PLF

To the best of our knowledge, the present paper is the
first to discuss this specific load distribution problem. This

is because, RAxML-Light is, as far as we know, the only
production-level MPI parallelization of the PLF that can
handle datasets with RAM requirements of up to 1TB as
well as full-genome alignments with up to 1000 species.
Preliminary test with partitioned analyses on real data from
full-genome and full-transcriptome sequencing projects have
only now revealed this issue.

In previous work, we had focused on load balance issues
for computing the PLF on partitioned datasets at a smaller
scale [16]. In particular, we assessed the performance of si-
multaneously evaluating model and/or branch length param-
eter changes across all partitions and all cores. We showed
that, proposing and evaluating changes simultaneously for
all partitions can substantially improve parallel efficiency
for partitioned analyses. This improvement was achieved
by assigning larger chunks of work to each processor per
broadcast/synchronization point in the code. At the same
time, this also allowed for significantly reducing the number
of synchronization points and/or barriers in the code. For
details please refer to [16]. Note that, these experiments still
relied on a cyclic distribution of per-partition sites to cores.
Thus, the results of this previous work still hold and have
in the meantime been integrated into RAxML-Light. What
we report on here, is implemented on top of this previous
work and deals with load balance at a more coarse-grained
level.

Recently, Ayres et al. introduced a library implementation
for computing the PLF [4] that can offload likelihood
computations to multi-core processors using OpenMP or
to GPUs via CUDA. The x86 implementation has also
been optimized via SSE3 vector intrinsics. However, the
BEAGLE library does not provide mechanisms yet for
conducting partitioned analyses and does also not provide
a distributed memory MPI implementation.

III. CYCLIC VERSUS MONOLITHIC DATA DISTRIBUTION

As mentioned in the introduction, the computation of
the per-partition probability transition matrix P (t) = eQt

represents the main cause of inefficiencies associated to
computing the PLF on partitioned datasets with p partitions
when a cyclic distribution of per-partition site patterns to
cores is deployed.

To better explain this, consider the “classic” formula
of the Felsenstein pruning algorithm [1] for recursively
computing the conditional likelihood vector entries at a node
k, given the two child nodes i and j. Given the probability
vectors ~L(i) and ~L(j) of the child nodes, the respective
branch lengths leading to the children bi and bj , and the
transition probability matrices P (bi), P (bj), the probability
of observing an A at position c of the ancestral (parent)
vector ~L

(k)
A (c) is computed as follows:

~L
(k)
A (c) =

( T∑
S=A

PAS(bi)~L
(i)
S (c)

)( T∑
S=A

PAS(bj)~L
(j)
S (c)

)
(1)
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This operation as well as structurally analogous arith-
metic operations for computing the log likelihood at the
root of the tree and for optimizing the branch lengths in
RAxML (and other ML-based inference programs) largely
dominate execution times (approximately 90%). A fine-grain
parallelization of Equation 1 is straight-forward because
the likelihood vector entries ~L(k)(c), ~L(k)(c + 1) for site
patterns c and c + 1 can be computed independently and
thus simultaneously. Note that, P (bi) and P (bj) remain
constant over all site patterns c = 1...m, where m is
the number of site patterns in the partition that evolves
according to the instantaneous nucleotide substitution model
Q for time dt. To obtain P (bi) for instance, we need to
exponentiate Q by computing P (bi) = eQbi via a standard
eigenvector/eigenvalue decomposition. As long as we do not
change the values in Q, the eigenvectors and eigenvalues
of Q will not change. However, as we traverse a tree for
evaluating it, we still need to compute P (b) = eQb for every
branch and every partition of the dataset. Also note that, the
matrix exponentiation must be conducted prior to computing
the entries in ~L(k)(c) for all c. The cost of computing P (b)
is relatively small compared to the operations in Equation 1
when the number of site patterns m is large. However, when
m is small, that is, there are only a few site patterns that
evolve under a model Q, matrix exponentiation can dominate
run times.

Let us consider a simple example as outlined in Figure 1
with two cores c0, c1, and an alignment with two partitions
p0, p1 and two site patterns per partition. If we use a cyclic
distribution of per-partition site patterns to cores, c0 will
conduct likelihood operations on one site of partition p0 and
one site of partition p1. The same holds true for c1. Because
the dataset is partitioned, p0 will evolve under a model of
nucleotide substitution Q0 and p1 under a model Q1. Thus,
if we use a cyclic per-partition site pattern distribution, each
core will have to carry out a total of 4 matrix exponentiations
for Q0 and Q1 to compute Equation 1. If we distribute the
partitions monolithically to c0 and c1, then c0 will only need
to exponentiate Q0 and c1 only Q1.

Note that, especially for the distributed memory paral-
lelization of Equation 1, it is not desirable to have each MPI
process compute some P matrices and subsequently gather
them (as needed) via a MPI collective communication opera-
tion. By using a monolithic partition-to-process assignment,
we can avoid deploying an additional collective communica-
tion (or a barrier in the PThreads code) altogether, between
the matrix exponentiations and the likelihood computations
in Equation 1.

Thus, if the number of partitions p is much larger than
the number of cores n, our objective is to assign an approx-
imately equal number of site patterns to each core and to
distribute partitions monolithically to cores for amortizing
the cost for Q matrix exponentiations. Ideally, we also
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monolithic distribution of partitions
cyclic distribution
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Figure 1. Example for cyclic and monolithic distribution of sites and
partitions to cores for a simple alignment with four sites and two partitions.

want each core to conduct an equal number of matrix
exponentiations, that is, we want to balance the number of
sites and partitions per core.

IV. PARTITION SCHEDULING ALGORITHMS

As already mentioned the current production-level im-
plementation of RAxML-Light that is available via https:
//github.com/stamatak/RAxML-Light-1.0.5 implements the
simple and fast LPT heuristics. The monolithic per-partition
data distribution to cores/MPI processes can be invoked via
the -Q command line flag. If -Q is not specified, the parallel
PThreads and MPI versions of RAxML-Light will use the
standard cyclic per-partition distribution of site patterns to
cores.

In addition to LPT, we also implemented three slightly
modified standard heuristics and a dedicated algorithm that
also tries to balance the number of partitions per core (and
not only the number of sites).

Henceforth, we consistently use phylogenetic terminology
for describing the algorithms, that is, partitions instead of
jobs and number of site patterns instead of job length.

A. Standard Heuristics

Improved 0/1 interchange (iZO): The 0/1 interchange
algorithm by Fin and Horwowitz [10] comprises two steps:
The first step initialize the n cores by randomly placing p
partitions on them. In the second step, one partition will be
moved from the most loaded core to the least loaded core if
the makespan can be decreased. These interchanges are ap-
plied iteratively until makespan can not be further improved.
The worst-case performance of this approach is 2 − 2

n+1 .
The improved 0/1 interchange heuristics [17] simply use
LPT for the first step instead of random assignments. Hence,
the makespan of this improved 0/1 interchange method can
never exceed that of LPT. It can be demonstrated that, the
improved 0/1 interchange has the same worst-case ratio as
LPT.

Modified 3-PHASE (mTP): The 3-PHASE algo-
rithm [13] —as the name suggests— consists of three
phases: (i) the initialization phase, (ii) the job interchange
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phase, and (iii) the job exchange phase. The job interchange
phase is similar to the 0/1 interchanges algorithm. However,
it uses the trivial lower makespan bound C =

∑n
i=1 Ci/n

for guiding job reassignments, which can potentially gener-
ate better results. Finally, the job exchange phase attempts
to exchange jobs between pairs of cores to further reduce
the makespan. To yield the two algorithms (3-PHASE versus
iZO) more comparable, we adapted the initialization phase
of 3-PHASE to also use LPT. Note that, these modified 3-
PHASE heuristics can not perform worse than the improved
0/1 interchange.

Improved MultiFit (iMF): The MultiFit method [11] is
inspired by a bin-packing method. It uses a bisection search
for the minimal bin capacity Cmin such that all p partitions
can be fit into n bins (cores). Then, for each detected
capacity, the First Fit Decreasing (FFD) [11] method is
used to assign the partitions to the bins. As LPT, the FFD
method requires all partitions to be sorted in descending
order according to the number of site patterns. The main
difference is that, FFD will then (after sorting) subsequently
assign the partitions to the core with the lowest index that
can complete the job within the capacity Cmin, instead of
assigning the partition to the core with the least number
of site patterns (LPT). This difference in the assignment
strategy can generate a large variation in the number of
partitions that are assigned to each core. The bisection search
will search Cmin between the upper bound max(Pmax, 2C)
and the lower bound max(Pmax, C), where Pmax is the
largest partition, and C =

∑n
i=1 Ci/n. MultiFit has a worst-

case performance of 11
9 + 2−k where k is the number of

executed bisection searches. Improved MultiFit (iMF) [18]
deploys tighter bounds to improve the efficiency of the
algorithm. iMF first runs LPT to determine the makespan
M . If M ≥ 1.5C then it stops, otherwise it will execute
standard MultiFit with an initial upper bound of M and a
lower bound of max( M

4
3−

1
3n

, Pmax, C).

B. Dedicated Heuristics

The algorithms described so far are designed to minimize
the makespan, as given by the number of accumulated site
patterns per core. Since, on top of this, we desire each core
to also be assigned an equal number of monolithic partitions
(see Section III), we developed additional heuristics of our
own. We introduce the vIC (interchange of jobs to minimize
job number variance) method that strives to decrease the
variance in the number of partitions per core, and at the
same time strives not to increase the makespan.

The vIC method consists of three steps:
Step 1: Execute one of the standard multiprocessor algorithms

to obtain an initial partition-to-core assignment and
calculate the makespan M .

Step 2: Find the core Mmax that has the largest number of
partitions with the number of accumulated site patterns
Smax. Also find the core Mmin which has the smallest

number of partitions and the corresponding number of
accumulated site patterns Smin. Note that, Mmin and
Mmax do not need to have been assigned the largest
and smallest number of site patterns. Scan all partitions
Pi with Si sites that have been assigned to Mmax. If
Smin + Si ≤M , then assign Pi to Mmin. Repeat step
2 until no further improvement can be made.

Step 3: Find the core Mmax which has the largest number of
partitions and Smax accumulated site patterns. For all
the other cores Mj has Sj sites, scan all partitions Pi

with Si sites on Mmax, if Sj +Si ≤M , then reassign
Pi to Mj and go to step 2; else the algorithm terminate.

V. EXPERIMENTAL SETUP & RESULTS

A. Experimental Setup

We generated simulated alignments to assess performance
of the new data distribution scheme and the heuristics
described in Section IV. To emulate a realistic partition
length distribution, we extracted the gene lengths from the
human protein reference sequence database (ftp://ftp.ncbi.
nih.gov/refseq/H sapiens/mRNA Prot/). The distribution of
human protein sequences lengths (corresponding to partition
lengths in ours experiments) is provided in Figure 2.

We applied INDELible [19] to four distinct tree topolo-
gies with 10 taxa each to simulate two protein and two
DNA datasets. The properties of the simulated datasets are
summarized in Table I. The test datasets together with the
source code that implements various scheduling algorithms
in RAxML-Light can be downloaded at www.exelixis-lab.
org/Scheduling online material.zip. Note that, for our per-
formance assessment it does not matter if we use simulated
or real data, as long as the partition length distribution is
realistic.

Table I
TEST DATA SET SIZES

Test data set 100 partitions 200 partitions 500 partitions 800 partitions 1000 partitions
Protein 1 58032aa 106984aa 273578aa 445940aa 570970aa
Protein 2 50621aa 110827aa 290336aa 437574aa 521612aa
DNA 1 146875nt 336755nt 882494nt 1342040nt 1744252nt
DNA 2 153802nt 333170nt 876077nt 1288862nt 1646677nt

Tests were run on an Infiniband-connected cluster at the
Heidelberg Institute for Theoretical Studies that is equipped
with 50 48-core AMD Magny-Cours nodes and 128GB of
RAM each. We executed runs with the PThreads and MPI-
based version of RAxML-Light on 24, 48, and 96 cores.

B. Experimental Results

The evaluation of the alternative scheduling algorithms
was based on two values: makespan (maximum accumulated
number of sites assigned to a core) and the variance of the
number of partitions among cores. Both values should ide-
ally be minimized. We measured RAxML-Light execution
times for the standard implementation with a cyclic data
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Table II
MAKESPAN (M), VARIANCE (VAR), VARIANCE OF VIC (VAR-VIC), EXECUTION TIMES UNDER GAMMA (T-G) AND EXECUTION TIMES UNDER CAT

(T-C) IN SECONDS FOR 4 SCHEDULING ALGORITHMS AND THE STANDARD CYCLIC DATA DISTRIBUTION ON 24, 48, AND 96 CORES. THE VAR
COLUMN SHOWS THE JOB NUMBER VARIANCE OF THE SCHEDULING ALGORITHMS THAT DO NOT USE VIC IMPROVEMENT. THE NEXT COLUMN

(VAR-VIC) SHOWS THE VARIANCE IMPROVEMENT (IF ANY) OBTAINED BY APPLYING VIC. THE NUMBER OF PARTITIONS VARIES FROM 100 TO 1000.
THE RUNS ON 24 AND 48 CORES WERE EXECUTED USING THE PTHREADS VERSION, RUNS ON 96 CORES RUNS WERE TESTED USING THE MPI

VERSION ON DATA SETS WITH 1000 PARTITIONS ONLY.

Protein 1 LPT / iZO / mTP iMF Standard implementation
n p M Var Var-vIC t-G t-C M Var Var-vIC t-G t-C t-G t-C

24 100 2268 1.472 0.888 134 41 2268 13.97 0.888 144 43 179 303
200 2931 0.638 0.555 218 76 2907 25.80 218 100 349 616
500 7441 0.388 549 190 7430 197.2 554 270 881 1497
800 12046 0.638 0.305 893 309 12015 586.7 570.6 903 435 1434 2393

1000 15125 11.13 1113 402 15107 1010 1127 565 1779 3035
48 100 2268 0.493 0.118 128 39 2268 0.493 0.118 128 38 129 292

200 1802 0.763 0.388 121 40 1802 10.34 1.347 136 42 264 593
500 3746 0.659 0.618 288 103 3718 47.99 46.28 291 144 654 1443
800 6019 0.430 466 167 6011 140.5 138.5 473 239 1063 2307

1000 10118 9.263 8.597 668 219 10118 457.9 47.38 750 250 1313 2920
96 100 2268 0.039 - - 2268 0.039 - - - -

200 1802 0.493 0.097 - - 1802 0.493 0.097 - - - -
500 2624 0.789 0.519 - - 2624 26.20 1.456 - - - -
800 3026 1.034 - - 3009 33.68 32.72 - - - -

1000 10118 1.847 1.180 581 179 10118 1.847 1.180 585 179 1129 2847
Protein 2 LPT / iZO / mTP iMF Standard implementation

24 100 2138 1.222 0.722 156 49 2138 9.638 2.388 161 51 223 354
200 4143 0.472 0.388 341 111 4091 28.97 27.80 341 136 478 709
500 10647 0.472 867 304 10603 283.3 276.9 878 389 1216 1783
800 16120 0.388 1328 441 16089 647.7 628.9 1338 575 1895 2791

1000 19274 0.222 1581 551 19260 940.8 934.6 1598 730 2306 3512
48 100 2138 0.534 0.118 138 43 2138 0.534 0.118 139 43 158 338

200 2483 1.138 0.638 184 57 2483 10.63 1.722 209 63 334 673
500 5326 0.951 456 155 5307 69.70 64.61 457 208 845 1690
800 8062 0.388 692 235 8048 154.8 715 324 1327 2668

1000 9666 0.305 0.263 813 292 9631 239.2 235.8 830 417 1627 3319
96 100 2138 0.039 - - 2138 0.039 - - - -

200 2483 0.597 0.097 - - 2483 0.597 0.097 - - - -
500 3830 1.581 0.894 - - 3830 31.97 2.081 - - - -
800 4067 0.951 - - 4026 37.53 34.15 - - - -

1000 4855 0.701 0.618 411 180 4819 58.18 52.43 423 230 1289 3319
DNA 1 LPT / iZO / mTP iMF Standard implementation

24 100 3287 0.555 87 75 3229 6.055 4.722 91 76 97 99
200 7123 1.138 385 373 7099 24.72 387 375 409 457
500 18851 0.305 0.138 2264 2161 18756 175.9 163.1 2285 2151 2335 2369
800 28812 0.222 5587 5638 28735 501.7 493.6 5595 5670 5703 5978

1000 36950 2.638 2.555 9429 9289 36856 839.8 800.4 9455 9307 9559 9682
48 100 2816 0.576 0.118 78 74 2816 0.576 0.118 78 74 84 98

200 6050 1.013 0.430 350 367 6050 1.013 0.430 350 367 367 448
500 9462 0.659 2176 2125 9382 42.28 40.95 2178 2131 2227 2345
800 14397 0.388 0.347 5438 5581 14381 121.2 5441 5577 5547 5942

1000 18529 4.388 3.763 9225 9199 18432 207.6 199.1 9242 9209 9364 9641
96 100 2816 0.039 - - 2816 0.039 - - - -

200 6050 0.472 0.097 - - 6050 0.472 0.097 - - - -
500 5261 1.164 0.727 - - 5261 13.12 3.644 - - - -
800 7261 0.868 0.722 - - 7192 29.18 28.18 - - - -

1000 16429 1.305 1.180 8878 8921 16429 1.305 1.180 8878 8921 9051 9357
DNA 2 LPT / iZO / mTP iMF Standard implementation

24 100 3584 0.305 96 94 3470 3.972 2.638 96 95 105 120
200 7295 0.805 0.722 381 354 7219 25.47 23.80 381 353 400 418
500 19498 0.305 2269 2186 19433 172.5 2269 2157 2313 2341
800 29095 0.472 0.388 5418 5897 29004 426.5 422.2 5417 5904 5496 6160

1000 36771 0.222 8863 8754 36729 782.2 8887 8779 8969 9077
48 100 2452 0.368 0.159 85 92 2452 3.076 0.159 90 94 92 119

200 5512 0.763 0.388 347 348 5512 0.763 0.388 347 348 365 411
500 9806 0.409 2177 2150 9727 40.99 38.32 2185 2152 2236 2321
800 14549 0.388 0.305 5277 5848 14505 107.2 5283 5863 5382 6141

1000 18411 0.138 8682 8696 18368 190.8 8688 8708 8795 9047
96 100 2452 0.039 - - 2452 0.039 - - - -

200 5512 0.513 0.097 - - 5512 0.513 0.097 - - - -
500 5170 0.560 0.394 - - 5170 10.43 4.269 - - - -
800 7358 0.638 0.555 - - 7262 24.65 22.86 - - - -

1000 9283 0.472 0.430 8398 8463 9189 45.86 44.57 8412 8484 8545 8962
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Figure 2. Human protein sequences length distribution. Five proteins that
are longer than 9000 amino acids are not shown in the histogram.

distribution strategy and the scheduling heuristics including
vIC improvement. The results are depicted in Table II.

Across all test configurations, LPT, iZO, and mTP re-
turned identical results. This suggests that partition inter-
change and/or exchange as implemented in iZO and mTP
does outperform LPT in our experiments. Generally, iMF
yielded a smaller makespan, but at the cost of a substan-
tially larger per-core partition number variance. When we
applied vIC, the variance could be further reduced without
increasing the makespan in most of the cases. Nonetheless,
the iMF partition number variance is still much larger than
for other algorithms, even after applying vIC to correct for
this. As indicated by our results, the processing times for
iMF-based data distribution is still longer than for alternative
approaches, because of the high partition number variance
and despite the fact that the makespan is smaller.

With respect to absolute execution times, LPT (iZO and
mTP) returned the best results. For one protein dataset
(1000 partitions on 48 cores) under the CAT model of rate
heterogeneity [20], we observed an 11-fold speedup with
respect to the standard implementation. For protein data
under the Γ model of rate heterogeneity [21] the average
speedup is around two-fold. On the DNA datasets, we
observe an average speedup of 1.386 under CAT model (see
Figure 3) and 1.046 under Γ speed up.

The main reason for the differences between DNA and
protein data is that matrix exponentiation of the 20× 20 Q
matrix is substantially more expensive than for the 4 × 4
nucleotide substitution matrix. The difference between the
CAT and Γ models of rate heterogeneity is due to the fact,
that more Q matrix exponentiations are required per partition
to obtain the transition probability matrices P for each per-
site rate category ri (for details please see [20]). Overall, the
expected performance improvements depend on the ratio of
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Figure 3. Execution times for 500 DNA data partitions under the CAT
model (DNA 1).

CPU cycles required for exponentiating the Q matrix and
for computing Equation 1.

The iMF-based partition distribution is always slower than
LPT (iZO and mTP) because of the large variances. See, for
instance, protein dataset 2 with 500 partitions on 24 cores
where iMF returned a makespan of 10, 603 and LPT( iZO
and mTP) a makespan of 10, 647 site patterns. However, the
partition number variance of iMF is 276.9 compared to a
variance of only 0.472 for LPT(iZO and mTP). Therefore,
the iMF-based partition distribution is 28% slower than the
LPT(iZO and mTP)-based approach under the CAT model
of rate heterogeneity. With respect to parallel scalability, the
standard implementation (cyclic distribution of sites) scales
poorly above 4 cores, while the LPT(iZO and mTP)-based
parallelization scales well, in particular on large protein data
sets under the CAT model (see Figure 4).

The simple LPT heuristics, return the best results in our
test data. This is not only because it can distribute the pro-
cessing time (number of site patterns) evenly among cores,
but also because it assigns an approximately equal number
of partitions to each core. Thus, each core calculates the
likelihood vector entries on approximately the same number
of site patterns and computes roughly the same number of
P matrices. iMultifit did not perform well, despite the fact
that it can distribute the sites more evenly among cores than
LPT. This is because iMultifit assigns few large partitions
to cores with the lower index number, and many, small
partitions to cores with higher index numbers. Therefore,
cores with higher index numbers need to calculate many
more P matrices such that the load balance actually becomes
worse. Hence, more elaborate heuristics than LPT, did not
substantially improve the makespan. This may be due to
the distribution of human gene lengths we sampled from
to obtain partition lengths and the limited number of data
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Figure 4. Speedup of LPT+vIC over the standard implementation (cyclic
distribution of sites) for 1000 protein data partitions under the CAT model
(Protein dataset 2).

sets we tested. One may expect more elaborate heuristics to
improve the makespan when there is a large number of very
small jobs. However, one important result from our study is
that, the simple LPT heuristics that are easy to implement
already yield substantial performance improvements.

In general, multiprocessor scheduling algorithms for par-
titions should be used and implemented for cases where
p� n. In cases where the largest partitions is greater than
the average completion time C =

∑n
i=1 Ci/n, the makespan

will be dominated by this partition and the code will hence
not scale well. One such example is the protein dataset 1
with 100 partitions.

VI. CONCLUSION & FUTURE WORK

To the best of our knowledge, this paper is the first to de-
scribe the analogy of the multi-processor scheduling problem
to load balance issues in large parallel partitioned phyloge-
netic analyses. Essentially, the phylogenetic scheduling/data
distribution problem represents a bi-criterion problem, since
the number of sites and partitions assigned to each core
needs to be balanced.

We show that, the simple and fast-to-compute LPT heuris-
tics work well for solving the load balance problem. LPT has
already been integrated into the production-level version of
RAxML-Light. Moreover, we show that, parallel execution
times can be improved by up to one order of magnitude
for partitioned protein datasets under the CAT model of rate
heterogeneity when partitions are distributed monolithically
to cores using LPT. The techniques we have developed and
assessed here, can be generally applied to all likelihood func-
tion implementations (Bayesian and Maximum Likelihood
inference) that exploit the intrinsic parallelism of the PLF
at a fine-grain level.

With respect to future work, we intend to integrate a
mechanism in RAxML that will automatically and adap-
tively determine whether cyclic or monolithic scheduling
shall be deployed. Moreover, we will work on fine-tuning
and further optimizing load balance by allowing for a
mix of cyclic as well as monolithic data distribution of
sites/partitions to cores. The problems that we will encounter
in this context are similar to the multi-processor scheduling
problem with preemption.
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