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Abstract—Dynamic programming (DP) is an effective 
technique for many search and optimization problems. 
However, the high arithmetic complexity limits its 
extensive use. Although modern processor architectures 
with multiple cores and SIMD (single instruction 
multiple data) instructions provide increasingly high 
computing power, even the state-of-the-art fully 
optimized algorithm still largely underutilizes modern 
multi-core processors. In this paper we propose to 
improve one family of DP, nonserial polyadic DP 
(NPDP), targeting a heterogeneous multi-core 
architecture, the Cell Broadband Engine. We first 
design a new data layout which efficiently utilizes the on-
chip memory system of the Cell processor. Next we 
devise a CellNPDP algorithm with two tiers. The first 
tier is a SPE (a co-processor on the Cell processor) 
procedure which efficiently computes a block of data 
that can fit into one SPE’s local store. The second tier is 
a parallel procedure which enables all SPEs to efficiently 
compute all blocks of data. To evaluate CellNPDP, we 
use both performance modeling and experiments. The 
performance model reveals that the processor utilization 
of NPDP can be independent of the problem size. To 
empirically evaluate CellNPDP, we use two platforms: 
the IBM QS20 dual-Cell blade and a CPU platform with 
two latest quad-core CPUs. On both platforms, the 
processor utilization of CellNPDP is larger than 60%, 
which demonstrates that our optimizations and 
CellNPDP can be architecture-independent. Compared 
to the state-of-the-art fully optimized algorithm on the 
CPU platform, CellNPDP is 44-fold faster for single-
precision and 28-fold faster for double-precision, which 
is a significant improvement to NPDP. 

Keywords-Bioinformatics, Zuker algorithm, nonserial 
polyadic dynamic programming, Cell processor, multi-core, 
SIMD 

I. INTRODUCTION 
YNAMIC programming (DP), which aims to find an 
optimal solution among many potential ones, is an 

effective technique for many search and optimization 
problems, e.g., inventory management, scheduling and 
packaging. However, the high arithmetic complexity 
limits its extensive use. Modern computer 

architectures with multiple cores and SIMD (single 
instruction multiple data) instructions provide 
increasingly high computing power to perform DP. To 
improve DP with modern computers, Grama et al. [13] 
classified DP into four classes: serial monadic DP 
(SMDP), serial polyadic DP (SPDP), nonserial 
monadic DP (NMDP) and nonserial polyadic DP 
(NPDP). In this classification, the terms serial and 
monadic correspond to uniform data dependences. 
This kind of DP has been well studied and optimized 
[19, 20]. The term nonserial polyadic stands for 
another family of DP with nonuniform data 
dependences, which is more difficult to be optimized. 
The applications of NPDP include optimal matrix 
parenthesization problem, binary search tree, Zuker 
algorithm [17], etc. In this paper, we focus on the 
NPDP in the Zuker algorithm. Zuker is an important 
bioinformatics algorithm for predicting RNA 
secondary structure. It searches an optimal structure 
with a minimal free energy. 

Recently, there are continuing efforts [7, 24, 25, 26] 
to improve NPDP on modern multi-core processors. 
These works demonstrate that the optimizations of 
tiling (or blocking), helper threading and 
parallelization can significantly improve NPDP.  In 
spite of the significant performance improvement, 
these works still largely underutilize modern multi-
core processors. Firstly, they all focus on 
homogeneous processors with cache systems. NPDP 
on heterogeneous processors or on processors without 
cache systems has not been studied yet. Second, SIMD 
capability, which becomes increasingly important to 
modern processor architectures, is almost all wasted. 
Third, the parallel performance is not good enough, 
which still underutilizes the multiple cores on modern 
processors. Consequently, the processor utilization of 
the state-of-the-art fully optimized algorithm [26] is 
less than 4% (please refer to Section VI-C for details).  

To further improve NPDP, we take a well-known 
heterogeneous multi-core architecture, the Cell 
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Broadband Engine [6], as the processor platform and 
identify the optimizations which make NPDP highly 
efficient on modern multi-core processors. Our main 
contributions are: 

1. A new data layout which significantly improves 
the utilization of the on-chip memory system. 

2. A two-tiered NPDP algorithm CellNPDP. The 
first tier targets the SPE (a co-processor on the 
Cell processor) procedure and efficiently utilizes 
the instruction pipelines and SIMD instructions to 
compute a block of data which can fit into one 
SPE’s local store. The second tier is a parallel 
procedure which enables all SPEs to efficiently 
compute all blocks of data. 

3. Performance modeling and experiments to 
evaluate CellNPDP. The performance model 
reveals that the processor utilization of NPDP can 
be independent of the problem size. Experimental 
results show that CellNPDP is highly efficient on 
modern multi-core processors. To the best of our 
knowledge, no Cell implementation of NPDP has 
been published. So we compare CellNPDP to the 
state-of-the-art fully optimized algorithm on the 
same CPU platform. On average, CellNPDP is 
44-fold faster for single-precision and 28-fold 
faster for double-precision, which significantly 
improves NPDP. 

The rest of the paper is organized as follows. 
Section II introduces the background and related work. 
Section III presents an improved data layout. Section 
IV presents CellNPDP. Section V evaluates CellNPDP 
through performance modeling. Section VI empirically 
evaluates CellNPDP. Finally, we conclude this paper 
in Section VII. 

II. BACKGROUND AND RELATED WORK 

A. Background 
In this subsection, we introduce the NPDP in the 

Zuker algorithm [17]. Figure 1 shows the flowchart, 
where n is the problem size. This algorithm 
corresponds to a three-level loop, with algorithmic 
complexity n3/6. Given the problem size 12, Figure 2 
shows an example of NPDP, where the gray nodes are 
used to compute the black node step by step and each 
two nodes used in one step are linked with a line in 
Figure 2. According to Figures 1 and 2, we find two 
features of NPDP. First, the logical structure is 
triangular. Second, the data dependences are 

nonuniform. Each data directly or indirectly depends 
on the data on its left side or below it. For example, 
given three data A, B and C in Figure 2, data A directly 
depends on data B while data B directly depends on 
data C. This also means that A indirectly depends on 
C. 

B. Related Work 
The previous works of optimizing DP can be 

classified into three categories. The first category [2, 9, 
11, 15, 18] focuses on reducing the time complexity 
and communication overhead with different theoretical 
parallel models. The second category [1, 4, 10, 22, 23] 
focuses on the performance on distributed systems, 
where the communication overhead cannot be 
neglected. The third category [7, 24, 25, 26] focuses 
on the performance on modern multi-core processors. 
Modern multi-core processors with SIMD instructions 
can provide a level of performance that was formerly 
possible only on supercomputer and clusters. As this 
paper focuses on the performance of NPDP on modern 
multi-core processors, we next review works targeting 
these processors in more detail.  

To improve the performance of NPDP on the multi-
core processors with shared cache, Tan et al. [24, 25, 
26] first designed a tiling approach to improve the 
cache reuse and leveraged the helper threads to hide 
the cache miss latency. Next they designed a parallel 
algorithm which performs NPDP step by step. In each 
step, a block of data which can fit into the shared 
cache is computed by all cores in parallel. Chowdhury 
et al. [7] further designed a cache-efficient algorithm, 
which develops a tiling sequence to improve the 
performance on the multi-core processors with 
different types of cache systems.  

Although these works can achieve a significant 
performance improvement, they still largely 
underutilize modern multi-core processors. First, 
SIMD capability is almost not utilized at all. Note that 
SIMD becomes increasingly important to boost the 
computing power of modern processors. Second, when 
all cores are used, the parallel efficiency is less than 
60%, indicating that there is still underutilization of 
the multiple cores on modern processors. Third, they 
focus on the homogeneous multi-core processors with 
cache systems. The performance of NPDP on 
heterogeneous processors or on processors without 
cache systems has not been studied yet. 
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Figure 1.  Original flowchart of NPDP 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  An example of NPDP 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Architecture of the Cell processor 
 
 
 

C. Cell Processor 
The Cell processor is a well-known heterogeneous 

multi-core processor with SIMD capability. It can 
execute 200G 32-bit operations per second. Many 
recent studies [3, 5, 8, 12, 16, 21, 27] show that the 
Cell processor is effective to improve many algorithms 

and applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4(a): The data of NPDP after tiling. The rows in each block are not adjacent 
to each other in memory space.  

 
 
 
 
 
 
 

 4(b): Flowchart of NPDP after tiling 
Figure 4.  The tiling approach proposed by the previous works 
 
 

As shown in Figure 3, the Cell processor consists of 
one general-purpose PowerPC processing element 
called PPE and eight special-purpose synergistic 
processor elements called SPEs. The PPE runs the 
operating system and provides the SPE threads 
control. The SPEs [14] provide the bulk of the 
application performance. Each SPE is a 128-bit 
processor, where each instruction can execute four 32-
bit operations or two 64-bit operations simultaneously. 
It has 128 128-bit wide registers and two instruction 
pipelines capable of different instruction types. When 
the instruction types do not match, the two instructions 
aligned in a fetch group cannot be dual-issued. Instead 
of cache systems, each SPE has its own 256KB local 
store which holds both instructions and data. The load 
and store instructions can only access the data in the 
local store. The transfers between the local store and 
main memory, as well as the transfers between 
different local stores, are performed through 
asynchronous DMA (direct memory access) 
commands. The peak memory bandwidth is up to 

for (j=0; j<n; j=j+1) 
  for (i=j-1; i>-1; i=i-1) 

for (k=i; k<j; k=k+1) 
d[i][j]=min(d[i][j], d[i][k]+d[k][j]) 
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25.6GB/s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  The new data layout of NPDP. Each memory block is a square 
block whose data are stored sequentially in memory space. Triangular 
block can be padded into square block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6(a):  Memory blocks and computing blocks. The size of each data is 32-
bit. 

 
 
 
 
 
 
 
 
 
 
 
 

 6(b):  SIMD instructions of one step for a computing block and the 
corresponding dependence graph 
Figure 6.  Computing blocks and SIMD implementation. 
 
 

III. DATA LAYOUT 
In order to efficiently utilize the Cell processor, we 

first investigate the data layout. As the logical 
structure of NPDP is triangular, almost all previous 
works [7, 24, 25, 26] use a row-major triangular 
matrix to store the data, as shown in Figure 2. Given 
the original flowchart in Figure 1, we find two 
problems of this data layout. First, given the innermost 
loop, ‘d[k][j]’ corresponds to discrete memory 
accesses with non-uniform address intervals because 
the row-major triangular matrix has non-uniform row 
sizes. This kind of accesses can be viewed as poor 
spatial data locality. Second, when the data of NPDP 
are large, the temporal data locality will be poor. For 
example, each iteration of the outermost loop 
computes a column of the data. To compute the jth 
column, all data on the left of the jth column will be 
used. These data will be reused for computing the 
(j+1)th column. However, when these data are too large 
to fit into the cache or local store, they have to be 
fetched from main memory when reusing them. In the 
previous works, Tan et al. [24, 25, 26] and Chowdhury 
et al. [7] have demonstrated that the tiling approach 
can dramatically improve the cache reuse as well as 
the performance of NPDP.  

To efficiently utilize the local stores on the Cell 
processor, we propose to leverage the tiling approach. 
However, as this approach does not change the data 
layout in memory, it cannot efficiently utilize the 
memory bandwidth. Figure 4 shows an example of the 
tiling approach. When computing the block (0,m-1), 
according to the flowchart in Figure 4(b), we use the 

BLOCK(0,0) BLOCK(0,1)

BLOCK(1,1) BLOCK(m,m)

BLOCK(1,m-1)

BLOCK(0,m-1)BLOCK(0,1)BLOCK(0,0)

BLOCK(1,1)

BLOCK(m-1,m-1)

Continuous main memory space

Compuing block A

C[4]

C[1]
C[2]
C[3]

B[4]

B[1]
B[2]
B[3]

A

B

C

Compuing block C

Compuing block B

Memory Block(0,m-1)Memory Block(0,1)

Memory Block(1,m-1)

V3=LOAD(A[1]) V4=SHUFFLE(A[1, 1])V2=LOAD(B[1])V1=LOAD(C[1])

V5=ADD(A[1, 1] , B[1]) V6=CMP(V1, V5) V7=SEL(V1, V5, V6) C[1]=STORE(V7)
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blocks (0,1) and (1,m-1) in the first step, and then use 
the blocks (0,2) and (2,m-1) in the next step. In one 
step, the blocks used in the next step can be prefetched 
into the local store. As the rows in each block are not 
adjacent to each other in memory, we have to use a 
number of DMA commands to prefetch each row into 
the local store. We note that the efficiency of DMA 
depends on the size of each DMA transfer. To 
maximize the size of each DMA transfer, we design a 
new data layout for NPDP, where each block of data is 
stored sequentially in memory as shown in Figure 5. 
With this layout we can achieve the optimal memory 
performance.  

The remaining problem is how to determine the 
shape and the size of each block. We do not use 
rectangular blocks but only use square blocks, because 
the reuse of the local store is determined by the 
smaller one of the block length and width. We 
determine the block size according to the size of the 
local store. There should be at least six buffers in the 
local store, where three buffers are used in the current 
step and the other buffers are used to prefetch the 
blocks for the next step. Therefore, the block size 
should not exceed 1/6 of the local store size. Note that, 
the local store also holds instructions. 

As the new data layout focuses on efficiently 
utilizing the on-chip memory system, in what follows 
we refer to blocks in the new data layout as memory 
blocks. 

IV. CELLNPDP ALGORITHM 
In this section, we present our CellNPDP algorithm. 

According to the architecture of the Cell processor, we 
devise the algorithm with two tiers. The first tier is a 
SPE procedure which efficiently computes a memory 
block on a SPE. The second tier is a parallel procedure 
which enables all SPEs to efficiently compute all 
memory blocks. 
 
 

A. SPE Procedure 
To maximize the reuse of the local store, in 

CellNPDP, one SPE only computes a memory block 
each time. According to Section II-A, a memory block 
depends on the blocks on its left side and below it. For 
example, the memory block (0,m-1) in Figure 4(a) 
directly depends on the memory blocks on the 0th row 
and (m-1)th column. Besides, as a memory block 

contains multiple data, there are dependences between 
these data. We call these kinds of dependences inner 
dependences of the block. According to Figure 1, there 
are strong dependences to compute a data, which 
results in low ILP (instruction-level parallelism) and 
low DLP (data-level parallelism). To improve the ILP 
and DLP, we should compute several independent data 
simultaneously. The challenge is the inner 
dependences. To minimize the impact of the inner 
dependences on the ILP and DLP, we propose to 
divide each memory block into a number of much 
smaller square blocks named computing blocks, as 
shown in Figure 6(a). As each register on the SPEs is 
128-bit wide, we design the computing block with four 
128-bit rows (given that the data size is 32-bit). Each 
128-bit row is used to fully utilize the 128-bit wide 
SIMD capability and the four rows are used to fully 
utilize the instruction pipelines. The computing blocks 
still have the problem of inner dependences because a 
block also contains multiple data. However, the 
computing power wasted due to the inner dependences 
is trivial because the computing blocks are small. Here 
we’d like to point out that there are triangular 
computing blocks because the logical structure of 
NPDP is triangular. We can pad them into square 
blocks. The overhead of padding is also trivial. 

Next we study how to compute all computing blocks 
in a memory block according to the various data 
dependences. First, each computing block depends on 
the computing blocks in the dependent memory 
blocks. For example, the black block C in Figure 6(a) 
depends on the gray blocks. Second, there are 
dependences between the computing blocks in the 
same memory block and each computing block has 
inner dependences. Therefore, we use two stages to 
compute a memory block. The first stage does not 
consider the inner dependences of the memory block. 
The second stage computes the computing blocks one 
by one, where the blocks on the left side and closer to 
the bottom are computed earlier. For each computing 
block, we first compute it with the dependent 
computing blocks in the same memory block and next 
use the original flowchart in Figure 1 to process its 
inner dependences.  

Now we study the SIMD implementation. We first 
introduce the SIMD instructions used. According to 
Figure 1, there are three kinds of operations: memory, 
minimum and add. The memory instructions used 
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include load, store and shuffle. They are used for the 
data transfer between the local store and the registers. 
As the SPEs do not have the minimum instruction, we 
first use the compare instruction to mark the minimum 
values in the two registers and then use the select 
instruction to pick out the minimum values. With 
regard to the add operation, we use the add instruction. 
Here we’d like to point out that these SIMD 
instructions are not unique to the Cell SPEs [28]. 
VMX [29] and SSE [30] instruction sets also provide 
similar instructions. Next we design the SIMD 
procedure. Let’s study an example. As shown in 
Figure 6(a), we want to compute the computing block 
C with blocks A and B, where each block is a 4*4 
matrix and each data is 32–bit wide. As each row is 
128-bit wide, we compute the four values in each row 
of C simultaneously. Let’s investigate the first row 
C[1] of C. It depends on the first row A[1] of A and the 
entire matrix of B. There are four steps to compute 
C[1], where each step uses one value in A[1] and the 
corresponding row in B. For example, the first step is 
formulated as C[1]=min(C[1], <A[1][1],A[1][1], 
A[1][1],A[1][1]> + B[1]), where A[1][1] means the 
first value in A[1], and <A[1][1], 
A[1][1],A[1][1],A[1][1]> means a four-value vector. 
The SIMD procedure of this step is as follows: 

1. Load C1 into a register V1: V1=load(C1) 
2. Load B1 into a register V2: V2=load(B1) 
3. Load A1 into a register V3: V3=load(A1) 
4. Set all values in a register V4 to A11: 

V4=shuffle(V3, mask) 
5. Add V2 and V4 to a register V5: V5=add(V2,V4) 
6. Compare V1 and V5 to a register V6: 

V6=compare(V1, V5) 
7. Select minimum values from V1 and V5, 

according to V6: V7=select(V1,V5,V6) 
8. Write V7 into C1: Store(V7, C1) 
 
 

 
TABLE I 

CHARACTERIZATION OF THE SIMD INSTRUCTIONS USED FOR 
COMPUTING A COMPUTING BLOCK WITH TWO BLOCKS. DATA TYPE IS 

SINGLE-PRECISION FLOATING-POINT. 

Instruction Execution 
number 

Latency 
(cycles) 

Pipeline 
type 

Load 12 6 1 
Shuffle 16 4 1 

Add 16 6 0 

Compare 16 2 0 
Select 16 2 0 
Store 4 6 1 

 
 

 

 

 

 

 

 

 

 

 
Figure 7.  Scheduling blocks and task dependence graph 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.  Flowchart of CellNPDP 

 

In sum, there are 16 steps to compute the block C 
with the blocks A and B, where 16*8=128 SIMD 
instructions are executed. We find that we can utilize 
the registers to reduce the SIMD instructions. During 
the 16 steps, there are multiple times of data transfer 
between the registers and the blocks A, B and C. After 
buffering these blocks in 12 registers, we can save 48 

Memory Block

Computing Block

Scheduling Blocks

Subroutine: PPEprocedure 
(1) Initialize the task dependence graph and task queue 
(2) While there are unfinished tasks 
(3)  Assign the ready tasks in the task queue to SPEs 
(4) Receive finished tasks from SPEs 
(5) Notify the tasks according to the finished tasks and 

then insert the ready tasks into the task queue 
 
 

Subroutine: SPEprocedure 
(6) While there are unfinished tasks 
(7) Fetch a ready task T from the PPE 
(8) For each memory block MB in the scheduling block 

corresponding to T  
(9)    Compute MB without considering the inner 

dependences 
(10)    For each computing block CB in MB 
(11)          Compute CB according to the other 

computing blocks in MB 
(12)          Process the inner dependences of CB with 

the original code in Figure 1 
(13) Send T to the PPE 
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memory instructions. At last, only 80 SIMD 
instructions are executed. 

Finally, we study how to explore the ILP. Table 1 
characterizes the 80 SIMD instructions for a 
computing block with two blocks. As there are 
independent instructions in Figure 6(b) and the 
procedure of computing each row of a computing 
block is independent, we can hide the high instruction 
latency through mixing the execution of the 16 steps. 
However, we cannot achieve the ideal pipeline 
utilization because the pipeline type restriction results 
in more instructions executed by the pipeline 0, as 
shown in Table 1. We also note a problem that the first 
instruction executed by the pipeline 0 must be 10 
cycles later than that of the pipeline 1, because of the 
data dependence and instruction latency. To fully 
utilize the pipelines, we develop an approach of 
software pipelining to hide the 10-cycle latency. At 
last, it takes only 54 cycles to execute the 80 SIMD 
instructions. 

B. Parallel Procedure 
To efficiently utilize all SPEs, we use a task queue 

model which dynamically schedules the computation 
of all memory blocks among SPEs. As introduced in 
Section IV-A, each SPE computes a memory block 
each time. Thus each task contains at least one 
memory block. When the problem size of NPDP gets 
bigger or the local stores get smaller (there may be 
other multi-core or many-core processors with smaller 
local stores in future), there will be more memory 
blocks. To reduce the overhead of task scheduling, we 
use the scheduling blocks each of which is a square of 
memory blocks. When executing a task on a SPE, the 
SPE computes the memory blocks in the 
corresponding scheduling block one by one, where the 
memory blocks on the left side and closer to the 
bottom are computed earlier. 

As there are dependences between the memory 
blocks, there are also dependences between the 
scheduling blocks. Therefore, the task queue model 
should guarantee that the task of a scheduling block is 
not scheduled until the computation of all dependent 
scheduling blocks is finished. To further reduce the 
overhead of task scheduling, we build a simplified 
dependence graph, where a task depends on at most 
two tasks: the nearest task on its left side and blow it 
respectively. For example, Figure 7 shows the task 
dependence graph corresponding to Figure 4(a). In the 

parallel execution, when a task is finished, the two 
tasks depending on it will be notified. When a task has 
been notified twice, it becomes ready for scheduling 
and will be inserted into the task queue. 

TABLE II 
PERFORMANCE ON THE IBM QS20 CELL BLADE. TIME SECONDS 

Problem size 4,096 8,192 16,384 

Single-
precision 

original 
algorithm 

one PPE 715 21961 187,945
one SPE 3,061 24,588 198,432

CellNPDP (16 SPEs) 0.22 1.77 13.90 

Double-
precision 

original 
algorithm 

one PPE 1015 27821 241,759
one SPE 5,096 40,752 327,276

CellNPDP (16 SPEs) 4.41 34.54 389.15 

 
TABLE III 

PERFORMANCE ON THE 8-CORE CPU PLATFORM. TIME SECONDS 
Problem size 4,096 8,192 16,384 

Single-
precision 

original algorithm 108.01 1041.1 11021 
CellNPDP (8 cores) 0.43 3.25 25.56 

Double-
precision 

original algorithm 119.79 1234.3 13624 
CellNPDP (8 cores) 0.8159 6.185 48.170 

 
 

C. Putting It All Together: CellNPDP Algorithm 
Incorporating the two procedures, we construct 

CellNPDP, an efficient NPDP algorithm on the Cell 
processor. Figure 8 shows its flowchart. The 
subroutine PPEprocedure is executed by the PPE. It 
manages the task queue. The subroutine SPEprocedure 
is executed by each SPE. It executes the ready tasks 
one by one. There are three levels of blocking 
implemented. The first level is the scheduling block 
which reduces the overhead of task scheduling. The 
second level is the memory block which efficiently 
utilizes the on-chip memory system. Note that we have 
used asynchronous DMA commands in Steps from 8 
through 12. The third level is the computing block 
which efficiently utilizes the instruction pipelines and 
SIMD capability. Note that, the steps 9 and 11 have 
been accelerated using SIMD instructions. 

V. PERFORMANCE MODELING 

In this section, we will answer the following two 
questions through performance modeling: 

1. Which architecture features limit the efficiency of 
CellNPDP?  

2. Does the efficiency of CellNPDP depend on the 
problem size of NPDP? 

Due to the efficiency of the task queue model, 
CellNPDP can keep load balance and low overhead in 
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parallel execution. Thus the parallel performance of 
CellNPDP can be viewed as the ideal. As the size of 
the computing blocks is small, the overhead due to the 
inner dependences can be neglected. Therefore, we can 
use the fully optimized memory performance and 
computing performance to estimate the performance of 
CellNPDP.  

The memory performance depends on the local store 
size and the memory bandwidth. As presented in 
Section II, the memory block should not exceed 1/6 of 
the local store. Given the local store size LS, the 
maximum side length of the memory blocks is 

S
LN S

*62 = , where S is the size of each data. Given 

the problem size N1, each row has at most 
2

1
N
N  

memory blocks. Given a memory block with index 
(j,i), it depends on (j-i)*2 memory blocks. To compute 
this memory block, we need to fetch (j-i)*2 memory 
blocks into the local store. In sum, the total number of 
the memory blocks fetched into the local stores is 
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the other hand, the write into main memory can be 
neglected because each memory block is written into 
main memory only once. Therefore, the memory time 

is 
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Next we study the computing time. Given that each 

computing block is an N3*N3 square, each row has at 

most 
3

1

N
N  computing blocks. In sum, there are about 

3
3

3
1

*6 N
N  times to compute all computing blocks. Each 

time, we use two computing blocks to compute a 
computing block. Therefore, the overall computing 

time is 
N

C
C CfN

CNT
**

*
3
3

3
1≈ , when CC is the number of 

cycles to compute a computing block each time, f is 
the frequency of the processor and CN is the number of 
cores.  

The execution time of CellNPDP is 
),max( CMAll TTT = . To fully utilize the computing 

power, we should guarantee CM TT ≤ . In this case we 

derive the constraint 
C

N
S C

CfSNLB ***
3
*6*

2/33
3≥ . 

This formula indicates that the efficiency of CellNPDP 
depends on the memory system and is more sensitive 
to the memory bandwidth. The processor utilization of 

CellNPDP is ),1min(*
*
**

M

C
C

All

CC
All T

TU
fT
UfTU == , where 

UC means the processor utilization of computing one 
computing block with two computing blocks. As both 

TM and TC have the factor of N1
3, 

M

C

T
T  is independent 

to N1. Therefore, the efficiency of CellNPDP is 
independent of the problem size of NPDP. To the best 
of our knowledge, this is the first work revealing that 
the efficiency of NPDP can be independent of the 
problem size on modern multi-core processors.  

VI. EXPERIMENTAL EVALUATION 
To empirically evaluate CellNPDP, we use two 

platforms: an IBM QS20 dual-Cell blade and a CPU 
platform with two quad-core Nehalem processors. On 
the two platforms, the processor utilization of 
CellNPDP is larger than 60%, which demonstrates the 
high efficiency of CellNPDP on modern multi-core 
processors. Tables 2 and 3 show the performance of 
the original NPDP algorithm in Figure 1 and 
CellNPDP on the two platforms. To the best of our 
knowledge, there is no available Cell implementation 
of NPDP. Therefore, we only use the CPU platform to 
compare CellNPDP to the state-of-the-art algorithm 
proposed by Tan et al. [26] (denoted as TanNPDP). 
The code of the algorithm is provided by the authors. 
It is a fully optimized implementation with 
optimizations including tiling, helper threading and 
parallelization. In the following context, we first 
evaluate the impact of each kind of optimizations, 
including the new data layout (denoted as NDL), SPE 
procedure (denoted as SPEP) and parallel procedure 
(denoted as PARP) on the two platforms. Next we 
compare CellNPDP to TanNPDP on the CPU 
platform. Finally, we evaluate the performance of 
CellNPDP given that the local stores get smaller. 

A. Performance Anatomy on the Cell Processor 
On the Cell processor, we set the memory block size 

to 32KB which is smaller than 1/6 of the local store 
size, because the local stores also hold instructions. In 
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the following context,  we first  evaluate  the 
performance with the single-precision floating-point 
(SPFP) data in Sections from VI-A. The baseline here 
is the original algorithm on one SPE, where each 
DMA command prefetches multiple data in one row or 
a data in one column. 

 
1) Impact of the new data layout: As the new data 

layout can improve the data reuse, it significantly 
reduces the data transfer between the processor and 
main memory, as shown in Figure 9(a). Besides, it 
improves the efficiency of DMA transfers. As a result, 
it significantly improves the performance, as shown in 
Figure 10(a). On average, there is a 31.6-fold speedup. 

2) Impact of the SPE procedure: As shown in 
Figure 10(a), the SPE procedure further provides a 28-
fold speedup on average. Although one SIMD 
instruction can only execute 4 SPFP operations, the 
speedup achieved is much higher. This is because the 

SPE procedure not only efficiently utilizes the SIMD 
instructions but also significantly improves the ILP. 
Moreover, the use of the computing blocks also 
reduces the number of loop iterations and 
consequently reduces the overhead of branch 
instructions.  

3) Impact of the parallel procedure: As shown in 
Figure 10(a), the parallel procedure achieves a good 
scaling performance with the number of SPEs. When 
using 16 SPEs, there is a 15.7-fold speedup on 
average. This result demonstrates the high efficiency 
of our task queue model.  

4) Processor utilization: Next we evaluate the 
processor utilization of CellNPDP. When using 16 
SPEs, CellNPDP can execute 80 scalar instructions 
per cycle (A useful 32-bit operation is counted as a 
scalar instruction. The redundant operations for 
padding are neglected). As the Cell blade can execute 
128 scalar instructions per cycle, the processor 
utilization is up to 62.5%. 

 
9(a):  Data transfer amount on the IBM QS20 Cell blade 

 
9(b):  Data transfer amount on 8-core CPU platform 

Figure 9.  The amount of data transfer between processors and main memory. The data type is single-precision floating-point 
 

 
10(a): Speedup on the IBM QS20 Cell blade 

 
10(b):  Speedup on the 8-core CPU platform 

Figure 10.  Performance speedup with the single-precision floating-point data 

467463463



5) Performance with double-precision floating-
point data: Now we evaluate the performance with the 
double-precision floating-point (DPFP) data. As 
shown in Figure 11(a), CellNPDP also significantly 
improves the performance of NPDP. We note that the 
performance of CellNPDP in Figure 11(a) is much 
worse than that in Figure 10(a). This is because of 
three facts. First, one SIMD instruction can execute 
only two DPFP operations simultaneously. Second, the 
latency of the DPFP instructions is 13 cycles, which is 
much bigger than the latency of the SPFP instructions. 
Third, the DPFP instructions have 6 cycles of stall, 
which means there are at least 6 cycles between a 
DPFP instruction and the successive instruction on the 
same pipeline. We also note that CellNPDP achieves 
lower speedup when the problem size is 16K. This is 
because the 1GB main memory on the Cell blade 
cannot hold the operating system and the 1GB data at 
the same time. 

B. Performance Anatomy on the CPU Platform 
On the CPU, we also set the memory block size to 

32KB because the results in Section VI-A show that 
this size can achieve good enough performance. In the 
SPE procedure, there are also 80 SIMD instructions to 
compute a computing block with two computing 
blocks. We do not implement the software pipelining 
approach in the SPE procedure because the Nehalem 
processor does not have the pipeline type restriction. 
In the parallel procedure, all cores cooperatively 
manage the task queue. 

1) Impact of the new data layout: As shown in 
Figures 9(b) and 10(b), the new data layout also 
significantly reduces the data transfer between the 
CPU and main memory and consequently significantly 
improves the performance. On average, there is a 7.14-
fold performance speedup. Comparing Figures 9(a) 
and 9(b), we can see that the amount of original data 
transfer is higher on the CPU platform. This is because 
the size of each data transfer on the CPU platform is 
larger (64 bytes, a cache line). In contrast, the original 
algorithm can achieve much higher memory 
bandwidth on the CPU platform. As a result, the 
original performance is better and the speedup of the 
new data layout is lower on the CPU platform, as 
shown in Tables 2 and 3 and Figure 10. 

2) Impact of the SPE procedure: As shown in 
Figure 10(b), the SPE procedure further provides a 
5.28-fold speedup on average. This speedup is much 
smaller than the speedup on the Cell processor because 
the Nehalem processor does not have pipeline type 
restriction and the out-of-order superscalar architecture 

can dynamically hide the latency of the SPFP 
instructions. 

3) Impact of the parallel procedure: As shown in 
Figure 10(b), the parallel procedure also achieves a 
good parallel performance on the CPU. When using 8 
cores, there is a 7.22-fold speedup on average.  

4) Processor utilization: Different from SPEs, 
Nehalem is not a SIMD processor. Each core on 
Nehalem is a 4-issue out-of-order superscalar core 
which can execute four 128-bit operations each cycle 
in the ideal case. In other word, the CPU platform can 
execute 128 32-bit operations per cycle.  

Each instruction on Nehalem consists of several 
operations. For example, when computing a 
computing block with two computing blocks, the 80 
SIMD instructions will be translated into 160 
operations, where 64 operations compute the addresses 
of memory operations and the remaining are 128-bit 
operations. When using 8 cores, CellNPDP can 
execute 78.8 32-bit operations per cycle. As a result, 
the processor utilization is up to 61.6%. This result 
demonstrates that CellNPDP is also highly efficient on 
the homogeneous multi-core CPU architecture.  

5) Performance with double-precision floating-
point data: Figure 11(b) shows that CellNPDP also 
significantly improves the performance of NPDP when 
the data are DPFP. We note that this performance is 
much better than the corresponding performance on 
the Cell blade because the double-precision 
instructions on Nehalem do not have the cycles of 
stall. 

C. Comparison with the State-of-the-art fully 
Optimized Algorithm 

Figure 12 shows the performance of CellNPDP and 
TanNPDP on the CPU platform when 8 cores are 
used. On average, CellNPDP is 44-fold faster for 
single-precision and 28-fold faster for double-
precision. This result also indicates that the processor 
utilization of TanNPDP is less than 4%, which largely 
underutilizes modern multi-core processors. Although 
TanNPDP is an implementation optimized with tiling, 
helper threading and parallelization, CellNPDP still 
significantly outperforms it. This is because CellNPDP 
fully exploits ILP, DLP and TLP (thread-level 
parallelism) at the same time. 

D. Performance with Smaller Local Store 
In the end, we’d like to evaluate the impact of the 

local store size on the performance of CellNPDP. As 
the maximum size of memory blocks is linear to the 
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local store size, we evaluate this impact through 
varying the memory block size. From Figure 13, we 
can find that the performance of CellNPDP gets 
poorer when the memory block size gets smaller. This 
is because the smaller size leads to lower efficiency of 
DMA transfers and more data transferred. Besides, the 
smaller size leads to lower efficiency of the software 
pipelining approach implemented in the SPE 
procedure, which results in poorer ILP. 

VII. CONCLUSION 
In this paper, we study the NPDP problem on 

modern multi-core processors. Although the previous 
works have achieved a significant performance 
improvement, they still largely underutilize modern 
processors. To make NPDP really efficient on modern 
processors, we design the new data layout and devise 

the two-tiered CellNPDP algorithm. The experimental 
results show that CellNPDP significantly improves the 
performance of NPDP and can achieve the processor 
utilization larger than 60%. The experiences of this 
paper demonstrate that, through carefully designing 
the data layout and the algorithm implementation, 
NPDP can efficiently utilize the instruction pipelines, 
SIMD capability and multiple cores on modern 
processors. 
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11(a): Speedup on the IBM QS20 Cell blade 

 
11(b):  Speedup on the 8-core CPU platform 

Figure 11.   Performance speedup with the double-precision floating-point data 
 

 

 
12(a):  Execution time with single-precision floating-point data 

 
12(b):  Execution time with double-precision floating-point data 

Figure 12.   Performance of CellNPDP and TanNPDP (the state-of-the-art fully optimized  algorithm) on the 8-core CPU platform. 8 cores are 
used. 
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Figure 13.  Performance of CellNPDP on the IBM QS20 Cell blade 

with different sizes of memory blocks and different numbers of 
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size and one SPE. The problem size is 4K. The data are single-

precision floating-point.  
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