
Computing the Phylogenetic Likelihood Function Out-of-Core

Fernando Izquierdo-Carrasco and Alexandros Stamatakis
The Exelixis Lab, Scientific Computing Group

Heidelberg Institute for Theoretical Studies
D-69118 Heidelberg, Germany

{Fernando.Izquierdo—Alexandros.Stamatakis}@h-its.org

Abstract—The computation of the phylogenetic likelihood
function for reconstructing evolutionary trees from molecular
sequence data is both memory- and compute-intensive. Based
on our experience with the user community of RAxML,
memory-shortages (as opposed to CPU time limitations) are
currently the prevalent problem regarding resource availability,
that is, lack of memory hinders large-scale biological analyses.
To this end, we study the performance of an out-of-core
execution of the phylogenetic likelihood function by means of
a proof-of-concept implementation in RAxML. We find that
RAM miss rates are below 10%, even if only 5% of the
required data structures are held in RAM. Moreover, we show
that our proof-of-concept implementation runs more than 5
times faster than the respective standard implementation when
paging is used. The concepts presented here can be applied to
all programs that rely on the phylogenetic likelihood function
and can contribute significantly to enabling the computation
of whole-genome phylogenies.

Keywords-out-of-core; external memory; phylogenetics; like-
lihood; RAxML;

I. INTRODUCTION

The on-going accumulation of molecular sequence data
that is driven by novel wet-lab techniques poses new chal-
lenges regarding the design of programs for phylogenetic in-
ference that rely on computing the Phylogenetic Likelihood
Function (PLF [1]) for reconstructing evolutionary trees. In
all popular Maximum Likelihood (ML) and Bayesian phy-
logenetic inference programs, the PLF dominates both, the
overall execution time as well as the memory requirements
by typically 85% - 95%.

Based on our interactions with the RAxML [2] user
community, we find that, memory shortages are increasingly
becoming a problem and represent the main limiting fac-
tor for large-scale phylogenetic analyses, especially at the
genome level. At the same time, the amount of available
genomic data is growing at a faster pace than RAM sizes.

While we have already addressed potential solutions to
this problem by using single precision arithmetics [3] that
can reduce memory requirements by 50% as well as by novel
algorithmic solutions [4], those approaches remain dataset-
specific, that is, their efficiency/applicability depends on
the specific properties of the Multiple Sequence Alignment
(MSA) that is used as input. Here, we introduce a generally
applicable method, that does not depend on any MSA-
specific characteristics and which can also be deployed in

conjunction with the aforementioned methods to further re-
duce memory requirements and speed up PLF computations.

In cases where the data structures for computing a func-
tion do not fit into the available Random Access Memory
(RAM), out-of-core execution may be significantly more
efficient than relying on paging by the Operating System
(OS). This is usually the case, because application-specific
knowledge and ’page’ granularity can be deployed to more
efficiently exchange data between RAM and disk. Since the
PLF is characterized by predictable linear data accesses to
vectors, as we show, PLF-based programs are well-suited to
the out-of-core paradigm.

The remainder of this paper is organized as follows: In
Section II we briefly discuss related work in the general area
of out-of-core computing and some applications to phyloge-
netic reconstruction using Neighbor Joining which exhibits
substantially different data access patterns. In Section III
we initially outline the necessary underlying principles of
the PLF that allow for out-of-core execution and describe
the optimization of the proof-of-concept implementation
in RAxML. In the subsequent Section IV we describe
the experimental setup and provide respective performance
results. We conclude and discuss future work in Section V.

II. RELATED WORK

The I/O bandwidth and communication between internal
memory (RAM) and slower external devices (disks) can
represent a bottleneck in large-scale applications. Methods
that are specifically designed to minimize the I/O overhead
via explicit, application-specific, data placement control and
movement (e.g., between disk and RAM) are termed out-
of-core algorithms (frequently also called: External-Memory
(EM) algorithms; we will henceforth use the terms as
synonyms).

EM data structures and algorithms have already been de-
ployed for a wide range of problems in scientific computing
including sorting, matrix multiplication, FFT computation,
computational geometry, text processing, etc. Vitter provides
a detailed review of work on EM algorithms in [5].

With respect to applications in phylogenetics, EM algo-
rithms have so far only been applied to Neighbor-Joining
(NJ) algorithms [6], [7]. NJ is fundamentally different to
PLF-based analysis (see Section III). NJ is a clustering

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.185

443

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.185

439

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.185

439

technique that relies on updating an 𝑂(𝑛2) distance matrix
that comprises the pairwise distances of the 𝑛 organisms
for which an evolutionary tree is reconstructed. The size
of this matrix becomes prohibitive for datasets with several
thousand organisms. The data access pattern is dominated
by searching for the minimum in the 𝑂(𝑛2) distance matrix
at each step of the tree building process. We are currently
not aware of any EM algorithm for PLF computations.

III. COMPUTING THE PLF OUT-OF-CORE

A. PLF Memory Requirements & Data Access Patterns

PLF memory requirements and data access patterns are
radically different from those observed for NJ algorithms
(see Section II). Instead of a distance matrix, memory re-
quirements are dominated by a set of vectors, that are usually
termed ancestral probability vectors. The PLF is defined on
unrooted binary trees. The 𝑛 extant species/organisms of
the MSA under study are located at the tips of the tree,
whereas the 𝑛 − 2 inner nodes represent extinct common
ancestors. The molecular sequence data in the MSA that
has a length of 𝑠 sites (alignment columns) is located at the
tips of the tree. The memory requirements for storing those
𝑛 tip vectors of length 𝑠 is not problematic, because one 32-
bit integer is sufficient to store, for instance, 8 nucleotides
when ambiguous DNA character encoding is used.

The memory requirements are dominated by the ancestral
probability vectors that are located at the ancestral nodes of
the tree. Depending on the PLF implementation, at least one
such vector (a total of 𝑛−2) will need to be stored per ances-
tral node. For each alignment site 𝑖, 𝑖 = 1...𝑠, an ancestral
probability vector needs to hold the data for the probability
of observing an A,C,G or T. Thus, under double precision
arithmetics and for DNA data, a total of (𝑛 − 2) ⋅ 8 ⋅ 4 ⋅ 𝑠
bytes is required for the most simple evolutionary models.
If the standard (and biologically meaningful) Γ model of
rate heterogeneity [8] with 4 discrete rates is deployed, this
number increases by factor of 4 ((𝑛 − 2) ⋅ 8 ⋅ 16 ⋅ 𝑠), since
we need to store 16 probabilities for each alignment site.
Further, if protein data is used that has 20 instead of 4 states,
under a Γ model the memory requirements of ancestral
probability vectors increase to (𝑛− 2) ⋅ 8 ⋅ 80 ⋅ 𝑠 bytes.

The reason why the PLF is particularly well-suited for
out-of-core execution is the regularity and predictability of
data access patterns. The likelihood on the tree is computed
according to the Felsenstein pruning algorithm [1]. Given
an arbitrary rooting of the tree, one conducts a post-order
tree traversal to compute the likelihood. The 𝑠 values in
an ancestral probability vector are computed recursively by
combining the values in the respective left and right child
vectors. Thus, such a tree traversal to compute the likelihood
proceeds from the tips towards the virtual root in the tree.
The ancestral probability vectors are accessed linearly and
the ancestral probability vector access pattern is given by
the tree topology.

In general terms, good I/O performance in EM algorithms
is achieved by modifying an application such as to achieve
a high degree of data locality. For the PLF, the straight-
forward candidate data structure (the ’page’) for transfers
between disk and RAM are the ancestral probability vectors.
In RAxML they are stored linearly in memory. The replace-
ment strategy and potential future pre-fetching procedure
simply needs to exploit the access pattern induced by the
tree. Note that, in current ML search algorithms (finding
the optimal tree is NP-hard [9]) the tree is not entirely re-
traversed for every candidate tree that is analyzed. A large
number of topological changes that are evaluated are local
changes. Thus, only a small fraction of ancestral probability
vectors needs to be accessed and updated for each tree that
is analyzed.

The typical minimum HW block is 512 bytes, although
some operating systems use a larger block size of 8KB [5].
For the PLF this granularity is not an issue, since a repre-
sentative ancestral probability vector is significantly larger
than the block size. For instance, consider a typical, but
still comparatively small, MSA of DNA data with length
𝑠 = 10, 000 and 𝑛 = 10, 000 species. To compute the PLF,
9, 998 ancestral probability vectors need to be stored. Each
of these vectors is stored contiguously in memory and has
a size of 10, 000 ⋅ 8 ⋅ 4 ⋅ 4 = 1, 280, 000 bytes (1.28MB)
under double precision arithmetics for a Γ model of rate
heterogeneity with 4 discrete rates.

Thus, we can simply set the logical block size 𝑏 (i.e., the
’page’ size) to the size of an individual ancestral probability
vector. Therefore, I/O operations can be amortized, that is,
each read or write to disk will access a contiguous number
of bytes on disk that is significantly larger than the minimum
block size.

B. Basic Implementation

We store all ancestral probability vectors (see figure 1)
that do not fit into RAM contiguously in a single binary file.
Although our implementation allows for storing individual
vectors in several files, we focus on single file performance,
because the performance differences for the two alternatives
were minimal (data not shown). We deploy an appropriate
data structure to keep track of which vectors are currently
available in RAM and which vectors are stored on disk.

Let 𝑛 be the number of ancestral probability vectors
and 𝑚 the number of vectors in memory, where 𝑚 < 𝑛
(i.e., 𝑛 − 𝑚 vectors will be stored on disk). Due to the
way the likelihood is computed by combining the values
of two child vectors for obtaining an ancestral probability
vector (see Section III-A), we must ensure that 𝑚 ≥ 3.
In other words, the RAM must be large enough to hold at
least three ancestral probability vectors. To allow for easy
assessment of various values of 𝑚 with respect to 𝑛, we use
a parameter 𝑓 that determines which fraction of required
RAM will be made available, that is, 𝑚 := 𝑓 × 𝑛. Now, let

444440440

𝑤 be the number of bytes required for storing an ancestral
probability vector. This allows for enforcing the desired
memory limitation to systematically analyze miss rates, that
is, our proof-of-concept implementation will only allocate
𝑚 × 𝑤 bytes. We henceforth use the term slot (one may
think of this as a page), to refer to a segment of available
memory (an ancestral probability vector) with a size of 𝑤
bytes.

To orchestrate data transfers and to control the location of
vectors, we use the following C data structure (unnecessary
details omitted).

typedef struct
{

FILE **fs;
unsigned int num_files;
size_t slot_width;
unsigned int num_slots;
unsigned int *item_in_mem;
unsigned int num_items;
unsigned int disk_items;
nodemap *itemVector;
double *tempslot;
boolean skipReads;
replacement_strategy strategy;

}map;

The array itemVector is a list of 𝑛 pointers (see
Figure 1) that is indexed using the (unique) ancestral node
numbers. Each entry of type nodemap keeps track of
whether the respective ancestral vector is stored on disk or
in memory. More specifically, if the ancestral vector resides
in RAM, we maintain its starting address in memory. If the
vector resides on disk, we maintain an offset value for its
starting position in the binary file.

We also maintain an array of 𝑛 integers (item_in_mem)
that keeps track of which vector is currently stored in which
memory slot.

C. Replacement Strategies

In the standard implementation of RAxML, where 𝑛 = 𝑚,
all vectors are stored in RAM. Whenever an ancestral prob-
ability vector is required, we simply start reading data from
the respective starting addresses for node i that is stored
in the address vector xVector[i]. In the out-of-core
version, we use a function getxVector(i), which returns
the memory address of the requested ancestral vector for
node i. The entire out-of-core functionality is transparently
encapsulated in function getxVector(i). The function
will initially check, whether the requested vector is already
mapped to RAM. If not, it will determine an adequate
memory slot (according to some replacement strategy, see
below), and swap the currently stored vector in that slot with
the requested vector in the binary file.

A constraint for the replacement strategy is that, we
must ensure that the 3 vectors required to compute the
values at the current ancestral node i (vector i and the
two child nodes j and k) reside in memory. Using the

example in Figure 1, let us assume that we are traversing
the tree and that the virtual root is located in the direction
of the dotted line. When we need to compute the values
for vector 3 (i), vectors 1 (j) and 2 (k) need to reside in
memory. Calling getxVector(1) will return the address
of memory slot#1 (where the vector for node 1 is already
available). However, vector 2 may be located on disk. A call
to getxVector(2) will thus require a swap of vectors,
but slots #1 and #3 must be excluded (pinned to memory)
from the possible swap candidates, since the values of vec-
tors 1 and 3 are required for the immediate computation. For
this reason, getxVector() has two additional parameters
that specify which inner nodes must be pinned to memory
and can not be swapped out.

Even if we optimize data transfer performance between
disk and RAM at a technical level, accessing data on disk has
a significantly higher latency than accessing data in RAM.
Therefore, it is important to minimize the number of I/O
accesses (number of ancestral probability vector swaps).

As already mentioned, a vector is always either stored
on disk or in RAM. Whenever RAxML tries to access a
vector that resides on disk via getxVector(), we need
to chose a vector that resides in RAM, and then swap the
vectors. Therefore, we require a replacement strategy, that is
conceptually similar to cache line replacement or page swap
strategies.

To conduct a thorough assessment, we have implemented
and tested the following four replacement strategies:

Random The vector to be replaced is chosen at ran-
dom with minimum overhead (one call to a
random number generator).

LRU Least Recently Used. The vector to be re-
placed is the one that has been accessed the
furthest back in time. This requires a list of 𝑛
time-stamps as well as an 𝑂(𝑙𝑜𝑔(𝑛)) binary
search for the oldest time-stamp. Note the
use of 𝑛 rather than 𝑚, because we only
search among time stamps of vectors that are
currently in RAM.

LFU Least Frequently Used. The vector to be
replaced is the one which has been accessed
the least number of times. This requires
maintaining a list of 𝑚 entries containing the
access frequency and an 𝑂(𝑙𝑜𝑔(𝑛)) binary
search for the smallest value.

Topological The vector to be replaced is the most distant
node (in terms of number of nodes along
the path in the tree) from the node/vector
currently being requested. The node distance
between a pair of nodes in a binary tree is
defined as the number of nodes along the
unique path that connects them.

The rationale for the topological replacement strategy
is that, due to the locality of the tree search and the

445441441

3 4

1

2

5

Node 1
Mem slot #1

Figure 1. Each numbered ancestral node in the tree (left part of figure) needs to hold a vector of doubles. These vectors are either stored on
disk or in memory. A node array (middle part of figure) maintains information on the current location (right part of figure) of each ancestral
vector. The data structure also has an integer value for each node. When the ancestral probability vector corresponding to the node is available
in RAM, this integer is used to index the corresponding RAM starting address. If the vector is on disk, the integer defines the offset of the
ancestral probability vector in the binary file.

computations, we expect the most distant node/vector to be
accessed again the furthest ahead in the future.

D. Reducing the Number of Swaps

So far, our EM algorithm has been integrated into RAxML
in a fully transparent way. We have shown that it is possible
to modify the program and any PLF-based program for that
matter, such that the complexity is entirely encapsulated by a
function call that returns the address of an ancestral probabil-
ity vector. However, it is possible to further reduce the num-
ber of I/O operations by exploring some implementation-
specific characteristics of RAxML, that can also be deployed
analogously in other PLF-based implementations.

For each global or local traversal (re-computation of a
part or of all ancestral probability vectors) of the tree, we
know, a priori (based on the tree structure), that some of the
vectors that will be be swapped into RAM will be completely
overwritten, that is, they will be used in write-only mode
during the first access. Thus, whenever we swap in a vector
from file, of which we know that it will initially be used for
writing, we can omit reading its current contents from file.
We denote this technique as read skipping and implement it
as follows: We introduce a flag in our EM bookkeeping data
structure that indicates whether read skipping can be applied
or not, that is whether a vector will be written during the
first access. We instrument the search algorithm such that,
when the global or local tree traversal order is determined
(this is done prior to the actual likelihood computations), the
flag is set appropriately.

IV. EXPERIMENTAL SETUP & RESULTS

A. Evaluation of replacement strategies

Assessing the correctness of our implementation is
straight-forward since this only requires comparing the log
likelihood scores obtained from tree searches using the stan-
dard RAxML version and the out-of-core version. Hence, we
initially focus on analyzing the performance (vector miss
rate) of our replacement strategies and the impact of the
read skipping technique as a function of 𝑓 (proportion of
vectors residing in RAM).

To evaluate the replacement strategies, we used 2 real-
world biological datasets with 1288 species (DNA data,
MSA length 𝑠 := 1200 sites/columns), and 1908 species
(DNA data, MSA length: 𝑠 := 1424 sites/columns) respec-
tively. Tree searches were executed under the Γ model of rate
heterogeneity with four discrete rates. We used the SSE3-
based [3] sequential version of RAxML v7.2.8. The out-of-
core version of RAxML and all test datasets are available for
download at http://wwwkramer.in.tum.de/exelixis/src and
datasets.tar.gz.

For each of the four replacement strategies, we performed
three different runs for the out-of-core version with 𝑓 :=
0.25 (25% of vectors memory-mapped), 𝑓 := 0.50 (50% of
vectors memory-mapped), and 𝑓 := 0.75 (75% of vectors
memory-mapped).

Given a fixed starting tree, RAxML is deterministic, that
is, regardless of 𝑓 and the selected replacement strategy,
the resulting tree (and log likelihood score) must always
be identical to the tree returned by the standard RAxML
implementation. For each run, we verified that the standard
version and the out-of-core version produced exactly the
same results.

This part of our computational experiments was conducted
on a single core of an unloaded multi-core system (Intel
Xeon E5540 CPU running at 2.53GHz with 36 GB of RAM).
On this system, the amount of available RAM was sufficient
to hold all vectors in memory for the two test-datasets,
both for the standard implementation or by using memory-
mapped I/O for the out-of-core version.

We found that, with the exception of the LFU strategy,
even mapping only 25% of the probability vectors to mem-
ory results in miss rates under 10%. As expected, miss
rates converge to zero as the fraction of available RAM
is increased (see Figure 2). In the trivial case (𝑓 := 1.0),
the miss rate is zero, since all vectors reside in RAM. The
Random, LRU, and Topological strategies perform almost
equally well. Thus, one would prefer the random or LRU
strategy over the topological strategy because it requires a
larger computational overhead for determining the replace-
ment candidate.

446442442

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
is

s
ra

te
 (

%
 o

f t
ot

al
 v

ec
to

r
re

qu
es

ts
)

Fraction of RAM allocated

Miss rate for dataset with 1288 species

Topological
LFU

RAND
LRU

Figure 2. Vector miss rates for different replacement strategies using a dataset with 1,288 species. We allocated 25%, 50% and 75% of the
required memory for storing ancestral probability vectors in RAM. Every time a vector is not available in RAM, we count a miss.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ea

d
ra

te
 (

%
 o

f t
ot

al
 v

ec
to

r
re

qu
es

ts
)

Fraction of RAM allocated

Read rate for dataset with 1288 species

Topological
LFU

RAND
LRU

Figure 3. Effect of Read skipping: We count the fraction of vector accesses for which a vector needs to be actually read from file using the
same parameters as in Figure 2. Without the read skipping strategy the read rate is equivalent to the miss rate.

In Figure 3, we show the positive effect of the read
skipping technique for analogous runs on the same dataset
with 1288 species. Here, we quantify the fraction of ances-
tral vector reads from disk that are actually carried out per
ancestral vector access. Note that, without the read skipping
technique this fraction would be identical to the miss rate
in Figure 2. Thus, by deploying this technique, we can omit
more than 50% of all vector read operations and hence more
than 25% of all I/O operations.

The plots for the dataset with 1908 species are analogous
(with slightly better miss rates) to those presented in Figures
2 and 3 and are available as on-line supplement at http:
//wwwkramer.in.tum.de/exelixis/supplementOOC.pdf.

B. Miss Rates as a Function of 𝑓

To more thoroughly assess the impact of 𝑓 on the miss
rate, we conducted additional experiments for different val-
ues of 𝑓 using a random replacement strategy on the test
dataset with 1288 taxa. The fraction 𝑓 was subsequently
divided by two. The smallest 𝑓 value we tested corresponds
to only five ancestral probability vector slots in RAM.

Figure 4 depicts the increase in miss rates for decreasing
𝑓 . The most extreme case with only five RAM slots, still
exhibits a comparatively low miss rate of 20%. This is due
to the good locality regarding vector usage in the RAxML
algorithm. One reason for this behavior, that is inherent to

447443443

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

M
is

s
ra

te
 (

%
 o

f t
ot

al
 v

ec
to

r
re

qu
es

ts
)

Fraction f of RAM allocated

Miss rate for dataset with 1288 species

RAND

Figure 4. Miss rates for several runs using the random replacement strategy on the dataset with 1288 species. The fraction 𝑓 of memory-
mapped ancestral probability vectors was divided by two for each run.

ML programs, are branch length optimization procedures.
Branch length optimization is typically implemented via
a Newton-Raphson procedure, that iterates over a single
branch of the tree. Thus, only memory accesses to the same
two vectors (located at either end of the branch) are required
in this phase which accounts for approximately 20-30% of
overall execution time. In RAxML, access locality is also
achieved by —in most cases— only re-optimizing three
branch lengths after a change of the tree topology during
the tree search (Lazy SPR technique; see [2]).

C. Real Test Case

Finally, we conducted realistic tests by analyzing large
data sets on a system with only 2GB of RAM. Here, we
compare execution times of the standard algorithm (poten-
tially using paging) with the out-of-core performance.

For these tests, we generated large simulated DNA
datasets using INDELible [10]. We intentionally generated
datasets, whose memory requirements for ancestral probabil-
ity vectors (see Figure 5) exceed the main memory available
on the test system (Intel i5 running at 2.53 GHz with 2GB
RAM configured with 36 GB of swap space). To achieve
this, we deployed INDELible to simulate DNA data on a
tree with 8192 species and varying alignment lengths 𝑠. We
chose values of 𝑠 such that, the simulated datasets had (an-
cestral probability) memory requirements ranging between
1GB and 32GB. Because of the prohibitive execution times
for full tree searches on such large datasets, we did not exe-
cute the standard RAxML search algorithm. Instead, we exe-

cuted a subset of the PLF as implemented in RAxML (-f z
option in the modified code available at: http://wwwkramer.
in.tum.de/exelixis/src and datasets.tar.gz) by simply reading
in a given, fixed, tree topology and computing five full tree
traversals (recomputing all ancestral probability vectors in
the tree five times) according to the Felsenstein pruning
algorithm. This represents a worst-case analysis, since full
tree traversals exhibit the smallest degree of vector locality.
Full tree traversals are required to optimize likelihood model
parameters such as the 𝛼 shape parameter of the Γ model
of rate heterogeneity.

The out-of-core runs were invoked with the
-L 1,000,000,000 flag to force the program to
use less than 1GB of RAM for ancestral probability
vectors.

Figure 5 demonstrates that the execution times of the
out-of-core implementation scale well with dataset size
(ancestral probability vector space requirements). As ex-
pected, the standard approach is faster for datasets that
still fit into RAM, while it is more than five times slower
for the largest dataset with 32GB. For ancestral vector
memory footprints between 2GB and 32GB, the run-time
performance gap between the out-of-core implementation
and the standard version is increasing, since the standard
algorithm starts using virtual memory (e.g., then number of
page faults increases from 346,861 for 2GB to 902,489 for
5GB). Note that, for the out-of-core runs, we only use 1GB
of RAM, that is, better performance can be achieved by

448444444

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

E
la

ps
ed

 e
xe

cu
tio

n
tim

e
(s

)

RAM required for inner nodes (GB)

Running time for simulated datasets of variable width (8192 species)

Standard
ooc-1GB-LRU

ooc-1GB-RAND

Figure 5. Execution times for 5 full tree traversals on a tree with 8192 sequences and variable dataset width 𝑠 for the standard RAxML
version (using paging) and the out-of-core version.

slightly increasing the value for -L. Thus, under memory
limitations and given the runtimes in Figure 5 using the
out-of-core approach is significantly faster than the standard
approach for computing the likelihood on large datasets.
Thus, given enough execution time and disk space, the out-
of-core version can be deployed to essentially infer trees on
datasets of arbitrary size. While the increase in execution
times in the out-of-core implementation is still large, we are
confident that the miss rate and miss penalty can be further
improved by low-level I/O performance optimization and
developing further techniques similar to read skipping by
using topological information.

V. CONCLUSION & FUTURE WORK

We have presented the first implementation of the PLF
that relies on out-of-core execution for accommodating the
large memory requirements of ancestral probability vectors.
Accommodating such huge memory requirements is neces-
sary for analyzing emerging phylogenomic datasets.

We find that, given the locality of ancestral probability
vector access patterns, miss rates are very low, even if the
amount of available RAM is limited to a small fraction of the
actually required memory. We demonstrate that our out-of-
core implementation, performs substantially better than the
standard implementation that relies on paging. The concepts
developed here can be applied to all PLF-based programs
(ML and Bayesian) and are not limited to interactions
between RAM and the disk. They can also be deployed
for exchanging vectors between the relatively small memory

of an accelerator card, a GPU or FPGA for instance, and
the main memory of a general-purpose CPU. One may
also envision a three-layer architecture, where ancestral
probability vectors partially reside on disk, in RAM, or the
memory of an accelerator card.

Future work will address these issues, but we will also
explore two additional directions: We will assess if pre-
fetching can be deployed by means of a prefetch thread
and we will explore the behavior of dedicated parallel file-
systems in combination with a fine-grain MPI version of
RAxML.

ACKNOWLEDGMENT

Fernando Izquierdo-Carrasco is funded by the German
Science Foundation (DFG). The authors wish to thank Julian
Kunkel for discussions on optimizing I/O performance.

REFERENCES

[1] J. Felsenstein, “Evolutionary trees from DNA sequences: a
maximum likelihood approach,” J. Mol. Evol., vol. 17, pp.
368–376, 1981.

[2] A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and mixed
models,” Bioinformatics, vol. 22, no. 21, pp. 2688–2690,
2006.

[3] S. Berger and A. Stamatakis, “Accuracy and performance of
single versus double precision arithmetics for Maximum Like-
lihood Phylogeny Reconstruction,” Springer Lecture Notes in
Computer Science, vol. 6068, pp. 270–279, 2010.

449445445

[4] A. Stamatakis and N. Alachiotis, “Time and memory efficient
likelihood-based tree searches on phylogenomic alignments
with missing data,” Bioinformatics, vol. 26, no. 12, p. i132,
2010.

[5] J. S. Vitter, “Algorithms and data structures for external
memory,” Found. Trends Theor. Comput. Sci., vol. 2, no. 4,
pp. 305–474, January 2008.

[6] T. Wheeler, “Large-scale neighbor-joining with ninja,” in
Algorithms in Bioinformatics, ser. Lecture Notes in Computer
Science, S. Salzberg and T. Warnow, Eds. Springer Berlin /
Heidelberg, 2009, vol. 5724, pp. 375–389.

[7] T. M. Martin Simonsen and C. N. S. Pedersen, “Building very
large neighbour-joining trees,” proceedings of Bioinformatics
2010, to appear in Springer bioinformatics lecture notes.

[8] Z. Yang, “Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites,” J. Mol. Evol.,
vol. 39, pp. 306–314, 1994.

[9] S. Roch, “A Short Proof that Phylogenetic Tree Reconstruc-
tion by Maximum Likelihood Is Hard,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, pp.
92–94, 2006.

[10] W. Fletcher and Z. Yang, “INDELible: a flexible simulator
of biological sequence evolution.” Molecular biology and
evolution, vol. 26, no. 8, pp. 1879–1888, August 2009.

450446446

