
AN EFFICIENT IMPLEMENTATION OF SMITH WATERMAN ALGORITHM ON GPU USING

CUDA, FOR MASSIVELY PARALLEL SCANNING OF SEQUENCE DATABASES

Łukasz Ligowski, Witold Rudnicki

Interdisciplinary Centre for Mathematical and Computational Modelling

University of Warsaw

Warsaw, Poland

e-mail: W.Rudnicki@icm.edu.pl

Abstract— The Smith Waterman algorithm for sequence

alignment is one of the main tools of bioinformatics. It is used

for sequence similarity searches and alignment of similar

sequences. The high end Graphical Processing Unit (GPU),

used for processing graphics on desktop computers, deliver

computational capabilities exceeding those of CPUs by an

order of magnitude. Recently these capabilities became

accessible for general purpose computations thanks to CUDA

programming environment on Nvidia GPUs and ATI Stream

Computing environment on ATI GPUs. Here we present an

efficient implementation of the Smith Waterman algorithm on

the Nvidia GPU. The algorithm achieves more than 3.5 times

higher per core performance than previously published

implementation of the Smith Waterman algorithm on GPU,

reaching more than 70% of theoretical hardware performance.

The differences between current and earlier approaches are

described showing the example for writing efficient code on

GPU.

Keywords- sequence alignment; GPGPU; CUDA; Smith

Waterman;

I. INTRODUCTION

In recent years the traditional method of improving the
performance of CPUs, namely by increasing the clock
frequency has exhausted its potential and performance
growth is achieved by increasing the number of computing
cores and the size of the on-chip cache. Current top of the
line traditional CPUs are built with four cores and eight core
designs are already in development. In the near future one
can expect designs with more than 30 cores. In the seminal
report Berkeley team [1] argues that future computers will be
built around processors with hundreds, or even thousands of
cores.

One should note that chips with comparable number of
computing cores are already present on the market in large
quantities. Current generation of graphic cards, such as
Nvidia GeForce or ATI Radeon contain hundreds of
computing cores. The peak performance of these cards is at
least one order of magnitude higher than that of traditional
CPUs and they and are capable of performing large scale
computations for all problems where data parallel approach
is feasible. Algorithms for several suitable problems have
been already implemented for these platforms; in many cases
showing a very good performance. The examples from
diverse disciplines, such as quantum chemistry [2, 3],

computational fluid dynamics [4-6], astrophysics [7],
computer science [8] as well as search of similar sequences
of biological macromolecules [9, 10] have been recently
reported. All these examples fall into categories, which have
been mentioned in the report of the Berkeley group as most
challenging for the new massively parallel paradigm for
software development. Therefore one may argue, that
General Purpose GPU computing is the first step towards
this new paradigm.

Programs for searching similarity between biological
macromolecules are ubiquitous tools of molecular biology.
The most common approach is based on representing
molecules as strings of symbols and finding statistically
important matches between those strings. The score of the
match is obtained using the so-called amino acid similarity
matrices (AASM) [11, 12]. The program cited most often,
BLAST [13, 14], performs an alignment of a query molecule
against all molecules in a database. It uses an approximate
heuristic algorithm which is about two orders of magnitude
faster than exact Smith and Waterman algorithm (SW) [15,
16]. Nevertheless, SW algorithm is widely used in many
bioinformatical applications, either as the last stage of
sequence similarity search performed with approximate
algorithms [17, 18], or within more advanced algorithms,
such as profile-profile methods [19]. Algorithms for
sequence matching are also used in the so-called next
generation sequencing methods [20, 21], which are used for
rapid sequencing of whole genomes. These methods generate
millions of relatively short sequences, which then need to be
assembled. It has been shown that application of the exact
SW algorithm as a part of the assembly algorithm
significantly improves the quality of assembled sequence
data [22].

Over the years there were several attempts to improve
execution speed of the SW algorithm. In particular vector
instructions of modern scalar processors were used for
improving speed of execution of a single alignment of two
sequences [23-26]. An alternative idea is to execute
alignment of several database sequences with a single query
[27, 28]. In these implementations the speed increase was
achieved for a simplified version of the algorithm, which
does not store information required for alignment
reconstruction, and uses one byte integers for scores. This
algorithm is used to detect scores above certain limit and
reject non-similar sequences. Then the hits are processed

again with a full version of the algorithm which finds correct
alignments. The overall speedup is achieved due to the fact,
that only a very small fraction of sequences in a database is
similar to the query and need to be processed again.

Recently parallel versions of the simplified SW
algorithms have been implemented on Nvidia GPU, first
using graphic library [29] and, after introduction of CUDA
environment for GPU programming [30], also on this
platform [10]. The CUDA implementation is using two byte
integers, which is sufficient for all practical applications and
its performance does not depend on the similarities between
sequences. Moreover, changing the representation of
numbers to four bytes and including the backtracking
information is possible in CUDA, with much smaller
decrease in performance than in vectorised versions.
Therefore GPU implementation of SW could be used in most
applications of SW algorithm. The comparison of the
theoretical peak performance of Intel CPU, Cell processor
and GPU shows, that the GPU version should be faster than
vectorised implementations on other platforms.
Unfortunately, the implementation of Manavski and Valle,
while delivering good performance, does not fully exploit the
potential of the hardware. The highest up to date
performance of SW algorithm was reported for parallel
implementation on Cell processor [28], with the peak
performance on a single CPU reaching 9 GCUPS (giga cell
updates per second). The result reported for GPU
implementation was 1.7 GCUPS on single GPU.

In the current paper we present a significantly improved
implementation of the SW algorithm on GPU using CUDA
toolkit. The differences between the two implementations are
discussed and suggestions for development of efficient codes
are proposed.

II. METHODS

A. CUDA Programming Model

Implementation of the SW algorithm was performed
using CUDA library on nvidia GPU. CUDA is a
library/extension of C/C++ programming language [30]. It
gives a programmer relatively deep control of hardware
within a familiar environment. Programming for CPU in a
high level language isolates programmer from the hardware
details. Most of the CPU transistors are used for this purpose.
Programming on GPU is more demanding on a programmer.
An efficient implementation of an algorithm on GPU
requires in-depth understanding of the device architecture
and constraints.

Our implementation of the SW algorithm was developed
for and tested on GeForce 9800 GX2 dual core card. A
single core of GeForce 9800 GX2 is almost identical with
the core of the first generation of CUDA enabled cards.
Newer generation of cards share the basic design, with
increased number of processing units. There are 128
processing units in a single core of a G92 processor used in
the card. Eight processor units, along with 2 special function
units are grouped in one Multiprocessor (MP). There is only
one instruction issuing unit in a single multiprocessor,
therefore all processors perform identical operations on

different data. A 16KB on chip cache is dedicated for single
MP. Multiprocessor has hardware support for multiple
threads. It can execute up to 768 threads concurrently (1024
on newer cards). The bandwidth to the main memory is high
(almost 100 GB/s) but the latency is about 500 cycles. High
number of threads is used for hiding the high latency of the
main memory access. Once the thread requests memory
access it can be put to rest waiting for memory, while
another threads are executed. On the other hand using shared
memory is as efficient as using registers, provided that a
right access pattern is employed [30]. Therefore the effective
method for programming is based on the following principle:
copy the required data from global memory to shared
memory, perform as many operations as possible using
shared memory write the results to the global memory.

The threads are organised in a structured hierarchical
way. The main unit is a block of threads, which for
efficiency reasons should be a multiply of and not less than
64. All threads from single block are executed on the same
multiprocessor. It is recommended to use at least 192 or 256
threads in order to hide the latency of the main memory.
Within a block the threads are organised in warps, each
consisting of 32 threads. All threads in the same warp are
executed concurrently.

B. Algorithm

Finding similar sequences in the database is performed
by string matching. Macromolecular sequences are
represented as strings, composed either of 4 or 20 characters
for nucleic acids and proteins, respectively. In both
sequences the algorithm finds a pair of substrings, which
have maximal similarity. The similarity function is given in
the form of similarity matrix, such as BLOSUM62, [12]
PAM250 [11], for proteins or identity matrix for nucleic
acids. Amino acid similarity matrices are based on the
statistics of observed mutations of amino acids in the
biologically related proteins. The score for aligning two
amino acids is highly positive for identical ones. It is
positive if mutations involving exchanging one by another
are observed more often than by pure chance and it is
negative when such mutations are observed less often. The
alignment may contain gaps in both sequences, but the
introduction of a gap to the alignment is penalised. The
penalty is usually a sum of a constant opening penalty and a
gap extension penalty which is proportional to the length of
the gap. The optimal alignment is defined as the alignment
with highest possible score. It cannot be improved neither by
elongation nor by trimming.

The Smith Waterman algorithm for finding optimal local
alignment is based on dynamic programming approach. The

M×N matrix A is constructed, where M and N are

lengths of two sequences. A matrix element
,i jA is filled by

a score for aligning i-th amino acid in the first protein with
j-th one in the second protein. Then the problem of finding
optimal local alignment is defined as finding a path

connecting any starting point ()0 0,i j in the matrix with any

point () 0 0, , , ,i j i i j j> > with the highest sum of scores

along this path. The perfect alignment without gaps would be
a path along single diagonal in the matrix. Alignment with
gaps may contain vertical and horizontal segments. To this
end the matrix is processed, starting from the upper left
corner using the following formula

,

,

,

1, 1 ,

0

max
i j

i j

i j

i j i j

E
H

F

H A
− −

 
 
 

=  
 
 + 

 (1)

where
,i jH denotes processed matrix element,

1, 1i jH
− −

 is

the score of the best alignment terminated at ()1, 1i j− − ,

,i jE is a score for an alignment with gap along column

terminated at (),i j and
,i jF is a score for an alignment with

gap along row terminated at (),i j and ,i jE and ,i jF are

computed earlier using the following formulas

, 1

,

, 1

1,

,

1,

max

max

i j ext

i j

i j open

i j ext

i j

i j open

E G
E

H G

F G
F

H G

−

−

−

−

−  
=  

−  

−  
=  

−  

 (2)

where extG and
openG are penalty for extending and

opening gap, respectively.
It is easily seen, that all cells, which are in the left upper

corner with respect to the current cell, must be already
processed. Each cell update requires reading 6 values

(
1, 1i jH

− −
,

, 1i jH
−

,
1,i jH

−
,

, 1i jE
−

,
1,i jF

−
,

,i jA), writing 3 values

(
,i jH ,

,i jE ,
,i jF) and performing five additions and five calls

to function max() (it takes two arguments, hence evaluation

of the formula (1) requires three function calls). One

additional call to max() is required for checking if the

current value of processed matrix is the maximal value. In
practical implementations some additional operations may be
required for indexing. The main loop of the SW algorithm
requires performing 11 arithmetic operations, reading 6
values form the memory and writing 3 values back to the
memory. GPU uses 4 bytes integers, therefore a single step
of the straightforward implementation involves reading and
writing 36 bytes.

Maximal theoretical performance of a single core of the
GeForce 9800 GX2 card is 192 billion integer operations per
second. The memory bandwidth is 64 GB/s. Maximal
theoretical performance of the SW algorithm is therefore
192/11 = 17.3 GCUPS (giga cell updates per second) per
core, if limited by operation count (without bookkeeping
operations). On the other hand the global memory bandwidth
limits performance of the naïve implementation to
64/36 = 1.8 CUPS. It is clearly seen that efficient algorithm
needs to be written in such a way that minimizes
communication with a main memory.

In practice a small number of additional addressing and
bookkeeping operations may be required, decreasing the
maximal performance. Their number depends on the
implementation details.

One should note that backtracking information for
alignment reconstruction is not preserved in this algorithm.
Preserving it significantly increases the number of
arithmetical and memory operations. When the algorithm is
used for scanning database of mostly non-similar sequences,
the hits are found in a small fraction of runs. Therefore, it is
more efficient to discard the backtracking information for all
sequences and repeat the computation with a more costly
version including backtracking information for significant
hits only.

Figure 1. Processing od the dynamic programming matrix. It is processed in horizontal bands. The cells which have been processed are represented

in dark gray, cells which are currently processed are represented in red the cells and remaining cells are light gray.

C. Implementation

The program is executed concurrently on CPU and GPU.
The control loop resides on CPU. Program reads pre-
formatted database to the GPU memory, and waits for
queries. The database is sorted according to size (starting
with the longest sequences) and organized in blocks
consisting of 256 sequences.
Once the query is received it executes the CUDA kernels
which perform database scan with the query. Kernels return
the highest alignment score for each sequence. The main
program selects the sequences with the score above
threshold, which are realigned on the CPU using the
algorithm with enabled backtracking. The result is output in
the standard BLAST format. Program can utilize either one
or both cores.

Each thread performs a complete processing of single
pair of sequences. The query sequence is shared by all
threads. Since all threads are synchronized the length of the
database sequences processed by a single block should be
similar (preferably identical). Otherwise all threads would be

waiting for the one performing alignment of the longest
database sequence.

The dynamic programming matrix is processed
horizontally. In each sweep 12 cells high band is processed,
see Figure 1. The main loop is executed for 12 cells columns
of this band. Slow global memory is accessed only at the
initialization and termination of the loop. All operations
within the loop are performed in fast shared memory and
registers. The width of the band is limited by availability of
shared memory.

The pseudocode for the computing loop in the individual
thread is displayed in Figure 2. There are only 2 global

memory transactions per 12 steps. Additionally
,i jH and

,i jF are stored as half-word integers in the single integer

variable. Therefore the total required bandwidth is 8 bytes
per 12 cell updates. A detailed representation of memory
operations is displayed in Figure 3. Therefore, due to
efficient usage of shared memory we managed to raise the
memory constraint of the theoretical performance at

64 GB/s 8 /12 Cell Updates 96 GCUPSB = .

Taking into account that computational capabilities of

the core limit performance at 17 GCUPS we may conclude

that our implementation is not limited by memory

bandwidth.

Each kernel has 16 blocks in each kernel, and a single

block consists of 256 threads – each thread processes a

single sequence. The choice of 4096 threads per kernel is

dictated partially by limitations of architecture and partially

by optimization of performance. There are 16

multiprocessors in each core, each executes a single block

of threads. The number of 256 threads per block is limited

by the number of registers (8192 per multiprocessor). The

SW main routine needs 29 registers, and therefore the

highest multiply of 64 that can be concurrently executed is

256. In the current ‘proof of concept’ version of the code all

threads perform identical operations. It is preferable to

minimize the number of sequences executed by a single

kernel, to minimize length differences within a single

kernel. Altogether a single kernel performs comparison of

the single query with 4096 database sequences. This

configuration gives the optimal results on the 9800 GX2

card.

D. Tests

Tests were performed on the SwissProt sequence
database, release 56.5 of 25-Nov-08 from Swiss Institute of
Bioinformatics. Due to some technical limitations of the
current implementation the practical limit for the database
sequence length is slightly less than 1000 amino acids. This
is a limit of the ‘proof of concept’ version of the code, which
will be removed in further development. The subset of
SwissProt contains 388517 proteins (124041327 residues -
85% of total database length). The database was sorted
according to size. Thirty seven sequences were randomly
chosen from the database and used as a query. The lengths of
the selected queries varied between 10 and 1000 residues,
with coverage density decreasing with the length. Each query

// All matrices are located either in

// global memory (suffix Global) or in

// shared memory (suffix Shared). Other

// variables are located in registers

H_up=GlobalH[j];// read from global memory

F_up=GlobalH[j];//

H_upleft=H_init;// register operation

For (k=0;k<12;k++) do

 // read similarity score from the

 // shared memory

 A = Similarity[query[i],db[j]];

 // read H and E from previous sweep

 H_left=Shared_H[k]; // shared memory

 E_left=Shared_E[k]; // shared memory

 // Compute auxiliary variables

 E=max(E_left-Gext,H_left-Gopen);

 F = max(F_up-Gext,H_up-Gopen);

 // Compute H

 H = max(0,E);

 H = max(H,F);

 H = max(H,H_upleft+A);

 // if this is a first step store H_up

 // in a register for initializing next

 // column

 If (k==0) H_init = H_up;

 // initialize variables for the

 // next step

 Shared_H[k]=H;

 Shared_E[k]=E;

 H_upleft = H_left;

 H_up = H;

 F_up = F;

Done

// Write variables to global memory for

// next sweep

Global_H[j]=H;
Global_F[j]=F;

Figure 2. Pseudocode for the inner loop of the program.

was run both in a single and dual core version. To estimate
the asymptotical performance of the code we ran also two
runs on two synthetic databases. The first database
comprised of 81920 identical sequences, each 1000 residues
long and second one equal number of random sequences of
the same length. The first case is an ideal case for shared
memory access, since all threads read the same location from
the shared memory when accessing similarity score. The
second case represents ideally aligned independent
sequences.

III. RESULTS AND DISCUSSION

The measured performance in GCUPS is displayed in
Figure 4. For a comparison we show the performance of our
code, along with the reported results for earlier
implementation of SW algorithm on GPU.

The GPU implementation of the SW algorithm presented
here is significantly improved over the previous version. The
minimal performance was observed for query sequence only
10 residues long. It was 4.65 and 8.99 GCUPS for single
and dual core configuration, respectively. For more
practically relevant short query lengths (more than 30
residues) performance was higher than 6 and 12 GCUPS for
single and dual core configurations, respectively. The
maximal performance, approaching 7.5 and 14.5 GCUPS for
single and dual core configurations, respectively, was
achieved for longest queries. This performance was close to
the performance obtained for the random synthetic database,
the latter being equal to 7.74 GCUPS. Performance
measured on the ideal case synthetic database was 8.67
GCUPS. Both results were obtained for a single core.

Our implementation is computationally bound.
Additional multiplication (equivalent to four additions) and
one addition are required for address computation, increasing

the total operation count to 16. This leads to the theoretical
estimate of maximal achievable performance at 192 / 16 = 12
GCUPS. The maximal performance observed on the artificial
data, where all database sequences were identical was more
than 72% of that theoretical limit.

One should note that the tests were performed on the
subset of database, with roughly twelve thousand longest
sequences removed. This is because the current
implementation is a proof of concept rather than a production
quality code. The technical constraints will be removed in
further development of the code. Nevertheless, with current
implementation, including these sequences in a
straightforward way would decrease achieved performance.
This is because the number of proteins having the same
length decreases quite rapidly with increasing length. This
leads to a situation when many threads wait idle for the
thread processing the longest sequence. The estimated
decrease of performance on SwissProt database would be at
around 5.5% in comparison with the results reported here.
This reduction can be avoided either by removing the small
fraction (slightly more than 1%) of longest sequences from
the database and scanning them concurrently using CPU
version of SW algorithm. Alternatively one could divide the
longest sequences into overlapping segments, with length of
each segment longer than that of largest known protein
domains.

Our results are not directly comparable to the results of
Manavski and Valle, since they used a different card.
Nevertheless, since the architecture of a single core in 9800
GX2 card is very similar to that of the 8800 GTX card, a fair
comparison can be taken by scaling up their results by a
factor resulting from the main clock frequency difference
(1.5 GHz versus 1.35 GHz). Both original and scaled up
results are presented in Figure 4.

Figure 3. Memory operations in the inner loop of the algorithm at three stages, (a) initialisation, (b) continuation and (c) termination. The global memory,

shared memory and registers are represented by gray, green and red rectangles, respectively. At the start of the loop (a) the Hi-1,j-1 value was already used

in computations of the previous 12-element block and is remembered in a register. The Hi-1,j and Fi-1,j values are read from global memory, using one 32-

bit read operation. The Ei,j-1 and Hi,j-1 values are read from shared memory also using one 32-bit read operation. The Ai,j is also read from shared

memory. Once values of Fi,j, Ei,j and Hi,j are computed, the Hi-1,j is stored in a register for initialisation of next block and values of Ei,j and Hi,j are stored

in the shared memory, using one 32-bit write operation. One may notice, that writing values of Ei,j and Hi,j is performed at all steps of the inner loop. Then

for next ten steps (b) algorithm neither writes or reads from global memory. Each step is similar to the initalisation, but here Hi-1,j-1, Hi-1,j and Fi-1,j values

are already present in the registers from previous iteration, therefore only Ai,j, Ei,j-1 and Hi,j-1 values are read from the shared memory. Finally in the last

step (c) values of Hi,j and Fi,j are written into the global memory using a single 32-bit operation.

The difference of performance between the current and
previous implementation arises due to different usage of
memory. As discussed earlier, in our implementation the
global memory is accessed only at the loop initialization and
for writing the results at the exit. This is quite different from
the implementation of Manavski and Valle. Their
implementation uses global memory intensively. Their
algorithm uses one 128-bit write and one 128-bit read
operation per four cell updates. This is equivalent to 8 bytes
of global memory read/write operations per cell update. The
128-bit operations are the least efficient method of accessing
data [30], two times slower than theoretical limit. Taking that
into account the memory bandwidth limits the theoretical
performance of this implementation to at most 4 GCUPS.
Moreover, the additional operations necessary for the
packing and unpacking take additional registers, lowering the
number of threads that can be executed concurrently on a
single multiprocessor. This in turn may expose the memory
access latencies, limiting effective bandwidth even more.

This difference in memory usage pattern resulted also in
different organization of the code. The optimal kernel
configuration in our implementation is 4096 threads in 16
blocks (256 threads per block). Thanks to the optimization
of register usage we managed to use 256 threads in a single

block, what allows for efficient hiding of the latency of main
memory access. Nevertheless due to limited number of
available registers we were unable to use full throughput of
the multiprocessor, which is utilized best when the maximal
number of threads is executing.

In the previous implementation the optimal configuration
was 64 threads per block with 450 blocks, what gives the
total number of threads equal to 28 800. One should note,
that this number is higher than a maximal number of threads
which can execute concurrently in hardware, which is 12 288
[31].

IV. CONCLUSIONS

Total performance of the dual core Nvidia 9800 GX2
card is 14.5 GCUPS, which is currently the highest
performance of the SW algorithm on commodity hardware,
roughly twice the estimated performance on quad core
Pentium processors with Farrar implementation [25] and
more than 50% faster than our own implementation on
SonyPlaystation 3 [28]. It is also comparable to the
performance of BLAST heuristic on a single core Pentium
processor. One should note that CPU and PS3
implementations rely on vector instructions and use only one
byte to represent numbers, whereas GPU version uses 2-byte

Figure 4. Performance in GCUPS as a function of query length, measured on SwissProt database, for one (LR1core) and two cores (LR2core). The

representation of integers (full 4-byte representation can be
used with a small performance decrease). Therefore these
vector implementations are suitable only for scanning large
databases of non-similar sequences. Once the hit is found
they have to call the exact version of the algorithm to
generate alignment. On the other hand the GPU
implementation uses full integer representation of numbers
and can be easily extended to return alignment, with small
decrease of performance.

This makes GPU implementation suitable for
applications where many similar sequences should be
aligned – as for example in DNA assembly problems or in
multiple sequence alignment.

The results of this project are useful for bioinformatics,
where one can find several practical applications of the very
efficient implementation of the SW algorithm, but also have
some further reaching implications. The Berkeley team
called in their report [1] for development of tools, which can
simplify design of massively parallel applications. The SW
algorithm is relatively simple and very well known.
Nevertheless, achieving a full potential of massively parallel
solution requires rewriting the algorithm, taking into account
several conflicting architectural constraints. The resulting
codes may differ in performance by almost one order of
magnitude. It is rather unlikely that achieving high
performance level can be achieved by writing the algorithm
in a generic way and then letting the compiler of some high-
level language do the optimization, protecting programmer
from working with the details of the architecture. On the
other hand, once an efficient implementation has been
written on the low level by a skilled programmer, it is
straightforward to use such implementation in any other
algorithm, like a standard library call.

Recently the specification of the OpenCL environment
for performing computations on a range of multicore
computing devices has been published [32]. The overall
design of OpenCL is very similar to CUDA and all CUDA
compliant GPUs will be capable to run OpenCL codes.
Therefore porting of our code to OpenCL should be
straightforward. This extends possible applications to any
hardware platform supporting OpenCL, including for
example GPUs from AMD or Cell processors.

REFERENCES

A. References

1 Asanovic, K., et al., The Landscape of Parallel Computing
Research: A View from Berkeley, in Electrical Engineering
and Computer Sciences, Technical Report No. UCB/EECS-
2006-183. 2006, University of Calafornia at Berkeley:
Berkeley.

2. Vogt, L., et al., Accelerating Resolution-of-the-Identity
Second-Order Møller−Plesset Quantum Chemistry
Calculations with Graphical Processing Units. Journal of
Physical Chemistry A, 2008. 112(10): p. 2049-2057

3. Yasuda, K., Accelerating Density Functional Calculations
with Graphics Processing Unit. Journal of Chemical Theory
and Computation, 2008. 4(8): p. 1230-1236.

4. Molemaker, J., et al. Low Viscosity Flow Simulations for
Animation. in Eurographics/ ACM SIGGRAPH Symposium
on Computer Animation. 2008. Dublin: The Eurographics
Association.

5. Tölke, J., Implementation of a Lattice Boltzmann kernel using
the Compute Unified Device Architecture developed by
nVIDIA. Computing and Visualization in Science, 2008.
online first.

6. Tölke, J. and M. Krafczyk, TeraFLOP computing on a desktop
PC with GPUs for 3D CFD. International Journal of
Computational Fluid Dynamics, 2008. 22(7): p. 443 - 456.

7. Schive, H.-Y., et al., Graphic-card cluster for astrophysics
(GraCCA) Performance tests. New Astronomy, 2008. 13(6): p.
418-435.

8. Lieberman, M.D., J. Sankaranarayanan, and H. Samet. A Fast
Similarity Join Algorithm Using Graphics Processing Units. in
24th IEEE International Conference on Data Engineering.
2008. Cancun, Mexico: IEEE.

9. Schatz, M., et al., High-throughput sequence alignment using
Graphics Processing Units. BMC Bioinformatics, 2007. 8(1):
p. 474.

10. Manavski, S. and G. Valle, CUDA compatible GPU cards as
efficient hardware accelerators for Smith-Waterman sequence
alignment. BMC Bioinformatics, 2008. 9(Suppl 2): p. S10.

11. Dayhoff, M.O., R.M. Schwartz, and B.C. Orcutt, A model of
evolutionary change in proteins., in Atlas of Protein Sequence
and Structure, M.O. Dayhoff, Editor. 1978, National
Biomedical Research Foundation.

12. Henikoff, S. and J.G. Henikoff, Amino acid substitution
matrices from protein blocks. Proc Natl Acad Sci U S A, 1992.
89: p. 10915 - 10919.

13. Altschul, S.F., et al., Basic Local Alignment Search Tool.
Journal of Molecular Biology, 1990. 215: p. 403-410.

14. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids
Res, 1997. 25(17): p. 3389-402.

15. Smith, T.F. and M.S. Waterman, Identification of common
molecular subsequences. J Mol Biol, 1981. 147(1): p. 195-7.

16. Pearson, W., Searching protein sequence libraries: comparison
of the sensitivity and selectivity of the Smith-Waterman and
FASTA algorithms. Genomics, 1991. 11: p. 635 - 650.

17. Pearson, W. and D. Lipman, Improved tools for biological
sequence comparison. Proc Natl Acad Sci USA, 1988. 85: p.
2444 - 2448.

18. Rognes, T., PARALIGN: rapid and sensitive sequence
similarity searches powered by parallel computing technology.
Nucleic Acids Research, 2001. 29: p. 1647-1652.

19. Rychlewski, L., et al., Comparison of sequence profiles.
Strategies for structural predictions using sequence
information. Protein Science, 2000. 9: p. 232–241.

20. Margulies, M., et al., Genome sequencing in microfabricated
high-density picolitre reactors. Nature, 2005. 437(7057): p.
376-380.

21. Mardis, E.R., The impact of next-generation sequencing
technology on genetics. Trends in Genetics, 2008. 24: p. 133-
141.

22. Blazewicz, J., et al., A new algorithm for genome assembly
from short reads in 1st-International-Conference-on-
Information-Technology-IT-2008. 2008, IEEE: Gdańsk,
Poland.

23. Wozniak, A., Using video-oriented instructions to speed up
sequence comparison. Comput Appl Biosci, 1997. 13(2): p.
145-50.

24. Rognes, T. and E. Seeberg, Six-fold speed-up of Smith-
Waterman sequence database searches using parallel

processing on common microprocessors. Bioinformatics,
2000. 16(8): p. 699-706.

25. Farrar, M., Striped Smith-Waterman speeds database searches
six times over other SIMD implementations. Bioinformatics,
2007. 23(2): p. 156-61.

26. Wirawan, A., et al., CBESW: Sequence Alignment on the
Playstation 3. BMC Bioinformatics, 2008. 9(1): p. 377.

27. Alpern, B., L. Carter, and K.S. Gatlin. Microparallelism and
High-Performance Protein Matching. in ACM/IEEE
Supercomputing Conference. 1995. San Diego, California.

28. Rudnicki, W.R., et al., The new SIMD implementation of the
Smith-Waterman algorithm on Cell microprocessor.
Fundamenta Informaticae, in press.

29. Liu, W., et al., Bio-Sequence Database Scanning On GPU.
Proceeding of the 20th IEEE International Parallel &
Distributed Processing Symposium: 2006(IPDSP 2006)
(HICOMB Workshop, 2006.

30. NVIDIA, NVIDIA CUDA Compute Unified Device
Architecture, Programming Guide version 1.0. 2007: Nvidia.

31. NVIDIA, Technical Brief NVIDIA GeForce® GTX 200 GPU
Architectural Overview Second-Generation Unified GPU
Architecture for Visual Computing. 2008.

32. Khronos OpenCL Working Group. Munshi, A., Editor, The
OpenCL Specification Version: 1.0.

