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Abstract 
 
Data-driven modeling of biological systems such as protein-
protein interaction networks is data-intensive and 
combinatorially challenging. Backtracking can constrain a 
combinatorial search space. Yet, its recursive nature, 
exacerbated by data-intensity, limits its applicability for 
large-scale systems. Parallel, scalable, and memory-efficient 
backtracking is a promising approach. Parallel backtracking 
suffers from unbalanced loads. Load rebalancing via 
synchronization and data movement is prohibitively 
expensive. Balancing these discrepancies, while minimizing 
end-to-end execution time and memory requirements, is 
desirable. This paper introduces such a framework. Its 
scalability and efficiency, demonstrated on the maximal 
clique enumeration problem, are attributed to the proposed:  
(a) representation of search tree decomposition to enable 
parallelization; (b) depth-first parallel search  to minimize 
memory requirement; (c)  least stringent synchronization to 
minimize data movement; and (d) on-demand work stealing 
with stack splitting to minimize processors’ idle time. The 
applications of this framework to real biological problems 
related to bioethanol production are discussed.  
 
1. Introduction 
 

Biological systems are inherently complex. This 
complexity arises from nonlinear interconnections of 
their functionally diverse components to produce a 
coherent behavior. While analytical tools that derive 
the components from high-throughput experimental 
data significantly reduce the amount of data to be dealt 
with, the challenge still remains of how to “connect the 
dots,” that is, to construct predictive in silico models of 
these biological systems. The combinatorial space of 
feasible models is enormous, and advanced methods 
for constraining such a space and for efficient search of 
optimal solutions are in great demand. 

Data-driven construction of predictive biological 
models is, thus, often considered as a combinatorial 
optimization problem, where a search for a particular 
object or enumeration of all the objects with given 
properties is being sought. The data-intensive nature of 
this problem, however, makes existing methods fail to 
meet the required scale of data size, heterogeneity, and 
dimensionality. High-end computing hardware and 
software have been well configured for running 
simulations. Fundamental differences exist, however, 
between running simulations and building data-driven 
biological models (Figure 1). Such differences 
necessitate novel algorithms with the right mix of 
memory, disk, and communication trade-offs. 
Requirements and trade-off strategies for real 
biological systems are poorly understood. 

Exact combinatorial algorithms for biological 
systems frequently explore the search space 
recursively. Since input is typically huge (thousands or 
millions of nodes), it should not be copied 
indiscriminately in a recursive process. Storage 
demands are often enormous and memory management 

Figure 1.  Data access in running simulations and 
in building biological models.  



is critical. Enumeration problems (such as maximal 
clique enumeration, MCE) can generate output 
exponential with the input, and may reach petabyte 
scale on modest-sized problems. 

Backtracking [1] is a widely used recursive strategy. 
Unlike exhaustive search, backtracking avoids 
exploring unpromising paths by applying the specific 
property of the sought solution. In case of MCE, the 
completeness of the clique is the constraining property. 
All possible paths that backtracking can explore are 
represented as a tree, which we call search tree. A path 
(from the root) in the tree corresponds to a sought 
solution (e.g. clique), and the tree is expanded during 
traversal. Backtracking stops path expansion and 
backtracks to its previous level, if no further expansion 
in the current direction leads to feasible solutions (e.g. 
cliques). A search tree can be split into a number of 
disjoint sub-trees, which can be recursively split and 
independently explored. 

Parallelization of backtracking requires special 
attention to load-balancing. Although some strategies 
(e.g. breadth-first traversal) may seem embarrassingly 
parallelizable, they inherently suffer from extremely 
unbalanced loads. A search tree may grow highly 
irregular and practically impossible to predict a priori. 
This prohibits adapting static allocation strategies with 
which many processors may finish exploring their 
search trees quickly, while very few, “unlucky” ones, 
would still be struggling to expand their search trees. 
Load rebalancing via synchronization and data 
movement sounds promising, but for data-intensive 
applications it is often prohibitively expensive. 
Therefore, a highly tailored strategy that minimizes the 
end-to-end execution time by balancing these 
discrepancies is particularly desirable. 

Parallel backtracking can expand paths in search 
tree by either Breadth First Search (BFS) or Depth 
First Search (DFS). With BFS, coordinating the overall 
computation across the processors is straightforward, if 
each processor is enforced to expand all paths to the 
same level of the search tree. However, this requires 
storing all the search nodes at a given level in core 
memory. Memory requirements depend on the width of 
the search tree. In contrast, with DFS only information 
about search nodes along the path from the current 
search node to the root of the search tree should be 
stored (Figure 2).  Memory requirements depend on the 
height of the search tree. For problems, like MCE, 
there is a large degree of branching in the search tree 
(i.e. huge width), yet the height is bounded by the size 
of the maximum clique. Since input can be huge, fast 
and memory efficient parallel backtracking is needed.  

An elegant data structure that represents a 
decomposable task is crucial in parallel backtracking. 
For MCE, such a structure corresponds to an 

expandable node in a search tree. Such a structure 
needs to be stored in memory for continuation of the 
search, and exchanged between processors for load 
balancing. Hence, to minimize memory and to ensure a 
self-guided node expansion when migrated to a 
different processor, a compact and self-subsistent 
representation of decomposition at any level of the 
search tree should be devised. 

Based on these observations, this paper introduces a 
framework for parallelizing a backtracking strategy. It 
applies this strategy to the maximal clique enumeration 
(MCE) problem. The framework proposes the 
independent (from other search steps) and self-
sufficient (for further search tree expansion) 
representation of search tree decomposition called 
candidate path to distribute the work of the 
backtracking search among the processors. It adopts 
Depth First Search (DFS) strategy to minimize 
memory requirements. It also utilizes the least stringent 
synchronization scheme; each processor continues to 
explore its regions in the search tree without 
intervention. For load balancing, the framework 
exploits random work stealing and stack splitting; 
when a processor becomes idle, it fetches an 
unexpanded (unexplored) node from a randomly 
selected processor. The parallelization framework is 
scalable for random and real-world biological graphs. 

 

2. Background 
 

The rest of the paper is largely focused on a 
representative combinatorial enumeration problem, 
called maximal clique enumeration (MCE) in graphs, 
which is quite ubiquitous in biological applications. 
NP-hard nature of MCE limits the applicability of 
existing MCE algorithms to large-scale biological 
problems. High-performance parallel MCE algorithms 
that scale to real biological problems are the focus of 
this study. While specific to MCE, the results of this 
paper can be adopted to other combinatorial 
enumeration problems on graphs.  
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Figure 2. An input graph (Left) and corresponding 
search tree (Right) produced by BK-Base. Dotted 
lines in the search tree represent unexpanded paths 
due to the backtracking criterion of BK-Base. 
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A quick overview of the backtracking MCE by 
Bron and Kerbosh [2] (thus dubbed as BK) is presented 
here to highlight the properties that need to be 
incorporated into our parallelization framework. BK is 
the most efficient and widely accepted MCE algorithm 
among many others; it is used as the core in our 
parallelization framework. BK effectively avoids 
redundant branching by keeping an order among 
“eligible” vertices when expanding a path in a search 
tree.   

A maximal clique in a graph can be found by 
visiting and marking a set of vertices that are all pair-
wise connected. Since a vertex in a graph can be 
visited via different search paths, it can appear as 
different nodes in the search tree. A path is expanded 
to include a vertex that is connected to all vertices in 
the path (i.e., a common neighbor) to maintain the 
property of a clique. A path to a leaf node is potentially 
a maximal clique. It is important to identify leaf nodes 
as early as possible so that unnecessary expansion can 
be avoided. Backtracking expands a search tree (or 
branched) with some extra constraints (or bounded) in 
addition to the common neighbor criterion.  

Let us assume that a search node has k children 
representing the eligible (common neighbors) vertices 
v1, v2, v3, …, vk from which to expand the path P 
leading to the search node. Then P can be expanded 
into k paths, P1,…, Pk so that each path includes the 
corresponding vi.  BK prevents appearances of vi in any 
of Pj (i<j) and its future expanded paths. BK 
backtracks after expanding Pi, if vi is a common 
neighbor to all subsequent vj-s (i<j). In other words, 
expansions to the rest Pi-s are not necessary. Not only 
redundant branching is avoided, but also a sorted 
output is produced. Figure 2 pictorially illustrates this 
backtracking behavior of BK. An improved version of 
BK, called BK-Improved, improves the performance of 
the base BK (BK-Base) by dynamically identifying the 
most suitable ordering in expanding each path. It first 
expands the child that is connected to the largest 
number of other children and then expands each of the 
children that are not adjacent to this child.  This insures 
that the condition to stop expanding children nodes is 
reached by expanding the fewest children possible. 
 

3. Related Work 
 

Our previously developed pClique [12], the first 
(and only so-far existing) parallel MCE algorithm, 
extends the algorithm of Kose et al [13] (dubbed as 
KOSE). In principle, KOSE is identical in spirit to BK-
Base; it branches with the alphanumerically ordering. 
However, whereas BK is recursive with DFS 

branching, KOSE is serial BFS branching. This 
property allows cliques of size k to be generated from 
cliques of size k-1, similar to an association rule 
mining algorithm a priori [14]. All maximal cliques 
are produced in non-decreasing order, an invaluable 
asset to certain applications. BFS branching inevitably 
makes KOSE memory-intensive. Although pClique 
improves KOSE by bit-vector manipulation of 
common neighbors, huge memory requirements 
remain. This limits its applicability to small size graphs 
(~5,000 vertices, <10,000 edges). 
 

4. Method 
 

Most backtracking enumeration algorithms are 
recursive, thus are not readily suitable for 
parallelization. Their parallelization requires 
converting a recursive step into a sequential version 
such that each recursion step becomes independent on 
previous steps. Such a “sequentialization” should result 
in memory manipulation that will substitute system 
stack operations. What is needed is a self-sufficient 
decomposition of the search tree that makes each 
expansion (or backtracking) of the search tree 
independent of information about previous searches. 
We first propose a sequentialization of recursive 
backtracking that leads to an independent 
decomposition of the backtracking search tree, and 
illustrate its BFS- and DFS-based implementations in 
the context of the MCE problem. We then devise a 
parallel framework based on this decomposition. 

 

4.1. Independent Search Tree Decomposition  
 

When recursive backtracking expands a search path 
at a certain node, all information needed for expansion 
(or backtracking) is stored in the system stack. It is 
stored and retrieved following the Last In First Out 
(LIFO) order. Since a sequential algorithm does not 
operate on such a system stack, all information should 
be supplied during the expansion regardless of the 
order of expansion steps. This necessitates a 
representation of such information for expansion.  

For MCE, our devised representation embeds: 
• The clique represented by the path from the root 

to the current node in the search tree. 
• All eligible vertices for the path (i.e. common 

neighbors for all the nodes in the above clique). 
• Vertices covered earlier in expanding the parent 

path (to avoid redundant coverage). 
We dub a data structure that includes all these 

information as a candidate path. It is of order k if the 
clique represented by the path is of size k. 



Parallel-Backtracking-Clique-Enumeration
 1. Each processor starts with a set of order one candidate 

paths that are stored in the queue. 
 2. Retrieve a candidate path Ci from the queue. 
 3. If queue is empty 
 4.  Receive a candidate path from an arbitrarily chosen 

processor and put it into the queue. 
 5.  If no path is received after some trials 
 6.   Go to Step 16 
 8.   Go to Step 2. 
10. Expand Ci to generate candidate paths Cj-s at the next 

level. 
11. For each Cj 
12. Print out Cj if it is maximal. 
13. Otherwise, put Cj at the tail of the queue. 
15. Go to Step 2. 
16. Halt. 

Figure 4. Parallel branch and bound MCE. 
Parallel CBF (pCBF) and CDF (pCDF) are 
different in retrieving a candidate path from the 
queue (Step 2).  

 
 

4.2. BFS- and DFS-based Sequentialization of 
Recursive Backtracking MCE 

 

Since a candidate path is sufficient for further 
expanding the path, the sequential enumeration is not 
affected by the order these candidate paths are stored 
and retrieved. Breadth-first or depth-first based 
sequential versions can be implemented by employing 
different strategies in storing and retrieving candidate 
paths in a given memory queue – First In First Out 
(FIFO) for BFS and Last In First Out (LIFO) for DFS.  

We call the BFS-based BK-Improved as Breadth 
First Clique (BFC) and the DFS-based BK-Improved 
as Depth First Clique (DFC). An algorithmic 
description is shown in Figure 3.  

 

4.3. Parallelization of BFC and DFC with 
Dynamic Load Balancing 

 

Parallelization of a backtracking MCE is based on 
the idea of “dynamic search tree decomposition.” Each 
search tree region is assigned to a processor for further 
expansion. The region is the candidate list structure 
corresponding to the node at the root of the sub-tree 
being assigned. Various assignments are possible 
depending on the priority of parallelization schemes. If 
fully balanced loads amongst the processors are 
desired, a random allocation strategy where every 
newly expanded node is assigned to a randomly chosen 
processor could be explored. The communication cost 
for such a strategy may be overwhelming for large 
graphs, considering the possibly enormous number of 
candidate paths generated during enumeration. 

On the other hand, if only an initial decomposition 
of the search tree is done, a processor is responsible for 
searching the entire search space of all the sub-trees it 
was initially assigned.  Because the search tree for BK 
is highly irregular, this leads to an extremely 
unbalanced load among the processors. It is practically 

impossible to predict a priori the size of each sub-tree 
and the time required to expand it.  

Based on these observations, we choose to adopt a 
dynamic load balancing scheme based on the random 
stealing [3, 4] with a simplified stack splitting [5]. 
Since the final size of a sub-tree is difficult to predict, 
an initial random assignment of sub-trees to the 
processors is deployed. Each processor then continues 
on independently until it finishes enumerating all 
maximal cliques derived from its assigned sub-trees by 
fully expanding its initially assigned candidate paths. 
When no more candidate paths exist in the processor's 
stack, a processor sends a request to a randomly chosen 
processor for a candidate path. If no candidate path is 
received after trying all the other processors, the 
processor halts.  In spite of its simplicity, random 
stealing was shown to provide a more scalable solution 
to a dynamic load balancing when compared with other 
strategies across different hardware architectures [5]. 

Upon receiving a request, the processor sends a 
candidate path of the lowest order from the queue. 
Since a candidate path is not yet fully explored, one of 
lower order tends to spawn a larger number of higher 
order candidate paths. For BFC and DFC, this scheme 
is realized by exchanging a candidate path that is 
retrieved from the queue head. We implement a 
parallel framework for both BFC and DFC by adapting 
this simple stack splitting paradigm. Parallel BFC 
(pBFC) and DFC (pDFC) are illustrated in Figure 4.  

 
 

Sequential-Backtracking-Clique-Enumeration
 1. Insert all order one candidate paths in the queue. 
 2. While queue is not empty   
 3.  Retrieve a candidate path Ci from the queue. 
 4.  Expand Cj to paths Cj -s at the next level. 
 5.  For each Cj 
 6.   Print out Cj if it is maximal. 
 7.   Otherwise, put Cj at the tail of the queue. 

Figure 3. A framework of sequential backtracking 
MCE. Breadth First Clique (BFC) and Depth First 
Clique (DFC) are differ in retrieving a candidate 
path from the queue (Step 3). BFC(DFC) retrieves 
a candidate path from the queue head(tail). 



Figure 5. BFS and DFS MCE memory usage 
measured every time 200 new cliques are found. 
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Figure 6b. Average, minimum, and maximum 
memory per processor to finish DFS clique 
enumeration (over 10 different runs). 

5. Results 
 

This section reports on the scalability of pDFC over 
multiple processors using empirical results.  Scalability 
in terms of both memory requirements and runtime are 
discussed.  We compare memory requirements of BK-
Improved on a small graph of ~1000 vertices 
implemented as a BFS (BFC) and as a DFS (DFC).  
We also look at memory distribution in multiple 
processors for parallel implementations of these 
algorithms (pBFC and pDFC, resp.).  Runtime of 
pDFC is examined for medium sized dense and large 
sized sparse graphs. Runtime of pBFC cannot be 
measured due to large memory demands.  Both pBFC 
and pDFC are shared memory, multithreaded. All 
measurements were on an SGI Altix 3700.  

 

5.1. Memory Requirements 
 

Memory requirements of both BFC and DFC 
depend on the size of candidate paths that should reside 
in memory for the search to continue on. For BFC, all 
candidate paths of order k should be accessible to 
produce candidate paths of order k+1, and an order k 
path can be safely removed once it is expanded. The 
BFC memory requirement is bounded by the largest 
candidate path set of order k and k+1. For DFC, only 
candidate paths generated along the current path need 
to be stored in memory. The deepest path of the search 
tree bounds the DFC memory requirement. 

To empirically verify the observation, we measure 
the memory usage of both BFC and DFC clique 
enumeration algorithms on a graph that has 858 
vertices and 10,823 edges. The graph has a total of 
12,631 cliques that contain at least 3 vertices. The 
largest clique size is 21. Figure 5 shows the memory 
usages of both algorithms that are measured after every 
200 new cliques are found during their runs. As 

anticipated, the DFC memory usage is high in the 
beginning and decreases with some fluctuations as 
more cliques are found. In contrast, the BFC memory 
usage gradually increases and then decreases forming a 
bell shaped curve. In summary, the overall memory 
requirement of BFC is much larger than that of DFC. 

A memory-efficient parallel algorithm should 
distribute memory requirement as evenly as possible 
across the participating processors. As shown in Figure 
6, for both pBFC and pDFC, average memory 
requirement per processor is decreased as more 
processors are used. However, unlike in pDFC, 
variance in memory requirement per processor is very 
wide in pBFC. Typically memory needed to expand 
such a large order candidate path is substantially 
smaller than that to expand lower order ones. Since 
candidate paths of larger order are likely exchanged 
with pBFC, Figure 6.a-b empirically verifies this 
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Figure 6a. Average, minimum, and maximum 
memory per processor to finish BFS clique 
enumeration (over 10 different runs). 



Figure 7a. pDFC runtimes for a DIMACS 
random graph of 5,000 nodes and 2,496,740 edges. 
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Figure 7b. pDFC average, maximum, and 
minimum memory requirements across processors. 
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observation. Thus memory requirement balancing will 
be better achieved with pDFC. 

 

5.2. Scalability  
 

Since pDFC is more memory efficient than pBFC, 
pDFC is a better candidate to produce an efficient 
scalable parallel algorithm.  To test this we study the 
scaling of pDFC’s runtime and memory requirements 
as the number of processors increases.  The results 
shown in Figure 7.a-b are produced from pDFC runs 
on a dense graph with 5,000 vertices and 2,496,740 
edges. The graph is randomly generated according to a 
given edge probability (to control graph density) and 
maximum clique size. The graph has 1,074,127,772 
maximal cliques with the largest clique size of 70.  

The runtimes of pDFC on the generated graph for 
up-to 128 processors are shown in Figure 7.a.  The 
runtimes measured did not include the time spent to 
read in the input graph and to save the maximal cliques 
to secondary devices.  As shown in the Figure 7.a, a 
near linear speedup is observed for up to 8 processors.  
Different initialization schemes and parallel I/O 
methods could be used to ensure that this linear 

scalability is maintained for large numbers of 
processors over the total time of the algorithm, but 
those methods are beyond the scope of this paper. 

Figure 7.b delineates pDFC’s memory requirement 
spread over multiple processors. It shows the 
maximum, the average, and the minimum memory 
requirement of a processor in each case that involves 1, 
2, 4, 8, 16, 32, 64, and 128 processors, respectively.  
The memory distribution remains nearly even as up-to 
32 processors are used.  The memory size for each 
processor decreases linearly for up-to 32 processors.   

Since many of the graphs derived from real-world 
biological problems exhibit a scale-free nature, we 
adopted GTgraph (http://www-static.cc.gatech.edu/ 
~kamesh/GTgraph/) to generate a scale free real-world 
type graph of 100,000 vertices, 2,000,000 edges, and 
504,976 maximal cliques.  The generation of the graph 
is based on R-MAT [6].  In addition, we considered a 
real-world phenotypic gene network derived for 80 
genomes as described in Section 5.3. The edge degree 
distribution of vertices for this phenotypic graph 
exhibits a scale-free property (i.e., embeds a power law 
distribution). The graph had 193,568 vertices, 
2,260,872 edges, and 395,306 maximal cliques. 

As can be seen from Figure 9, the speedup for the 
pDFC algorithm when run on these scale-free graphs 
was nearly linear for 2, 4, and 8 processors.  Also, the 
memory requirements per processor were found to be 
highly scalable and relatively balanced (Figure 8). 

 

5.3 Application of pDFC to Bioethanol-Related 
Biological Problems  

 

5.3.1 Identifying Key Genes for Efficient Bioethanol 
Production.  Efficient production of ethanol from 
biomass using a bacterial consortium requires certain 
phenotypic traits be present in the microorganisms. 
The beneficial traits include the ability to metabolize 
different sugars found in biomass, resistance to ethanol 
in the environment, and facultative anaerobic 
respiration. It is thus important to link desirable 
microbial traits with specific genes that are likely to be 
important for these traits. To predict such bioethanol-
related genes, we divide the organisms according to the 
presence or absence of a trait and to search for genes 
that are dominant on one side of the divide but not the 
other. The underlying intuition is that if a gene were 
critical to a trait, then it would be conserved by 
evolution. Hence, genes that are crucial to the trait will 
cluster, or form a clique, on one side of the divide. The 
problem can then be formulated as the one of finding 
maximal cliques of genes conserved throughout 
evolution among the organisms possessing a trait. 

Due to a limited availability of sequenced genomes 
with characterized phenotypic traits, we initially 



Figure 8a. Minimum, maximum, and average 
memory requirements per processor with respect 
to a total number processors involved. Run for 
phenotypic network of 80 genomes 
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Figure 8b. Minimum, maximum, and average 
memory requirements per processor with respect 
to a total number processors involved. Run for 
synthetic graph by GTgraph. 

focused on aerobic (growing with oxygen) versus 
anaerobic (growing without oxygen) comparison to 
reveal this phenotype specific orthologous genes. The 
details of this study and biological findings are 
presented elsewhere. Here, we used the phenotypic 
gene graphs derived from various genomes used in that 
study to understand computational resource 
requirements for enumeration of all maximal cliques in 
such graphs. The size of a graph will grow 
substantially as more genomes are added (each 
microbial genome has about 4,000 genes). To estimate 
the requirements to finish the job within the allowable 
time, we first selected 10 genomes from each 
phenotypic group (i.e. 20 in total) and constructed a 
graph. Subsequently, we repeatedly selected 10 
additional genomes from each group, creating the 
graphs of 40, 60, and 80 genomes. From the four 
graphs thus created, we measured the growths of (1) 
the number of genes, (2) the number of edges, (3) the 
number of cliques, and (4) memory requirement. For 
these cases, the number of genes, the number of edges, 
and the memory requirement grow linearly, whereas 
the number of cliques grows quadratically with the 
number of genomes.  

 
5.3.2. Characterizing a Stress Related Gene 
Network of Ethanol Producing Yeast.  Ethanol is 
produced from the fermentation of sugar by yeast. In 
general, to enhance the productivity of bioethanol by 
yeast, thermochemical pretreatment of plant material is 
applied, which results in high concentration of toxic 
non-sugar constituents. Such changes in the 
hydrolysate make yeast exposed to a mixed and 
interrelated group of different stresses such as osmotic, 
oxidative, and thermic [7]. These stressful conditions, 
in combination, significantly impair the fermentative 
process and make yeast less tolerant to ethanol. 
Currently, factors that may enhance stress resistance of 

the yeast cells without affecting their growth are poorly 
understood [8]. 

Objectives of our study were (1) to identify cellular 
processes in yeast that are consistently co-regulated in 
response to different stresses and (2) to sift specific 
genes that might increase the tolerance level of yeast to 
ethanol under stressful conditions. For this, we first 
construct a gene network induced by the stresses and 
infer related cellular processes. More specifically, we 
use the gene expression profiles of the S. cerecisae in 
173 conditions that represent response of the yeast 
cells to environmental changes (heat and osmotic 
stress, nutrient and carbon starvation, stationary state). 
For more details of the data, refer to [9]. The stress-
induced gene network was built by selecting gene pairs 
with similar expression patterns across the conditions. 
Nodes in the network are genes and edges are drawn 
between genes with similar expression profiles. We 
then apply pDFC to find all maximal cliques in the 
network. To infer meaningful clusters of co-regulated 
genes, we applied a stringent post-processing step that 
iteratively merges highly overlapping cliques, and 
produces a reduced number of clusters. 

We have analyzed the biological processes 
represented by the gene clusters using the KEGG 
pathway information on S. cerecisae and GO 
information downloaded from the Saccharomyces 
Genome Database (SGD) (http://www.yeastgenome 
.org). Here we report 7 confirmed clusters: chaperone 
related genes, ribosome and translation, L-asparaginase 
II, oxidative phosphorylation enzymes, retrotransposon 
TYA Gag and TYB Pol genes, stress-induced 
enzymes, TCA cycle enzymes and transporters. All 
other genes are up-regulated. The largest cluster 
(ribosome and translation), which is suppressed by all 
stresses, represents cellular processes of the ribosome 
biogenesis, tRNA processing and protein translation. 
The rest clusters represent specific cellular processes 



generally activated by the studied stressful 
environments [10]. We then compared the set of 
ethanol-tolerance genes identified in a previous study 
[11], with genes in the clusters revealed by our study. 
We find that the first cluster referred to as “Ribosome 
and translation” includes two genes FEN1 (fatty acid 
elongase required for sphingolipid formation) and 
SUR4 (sterol isomerase, fatty acid elongase) that are 
essential for growth of S. cerevisiae under high ethanol 
concentration. Average down-regulation of these genes 
among 173 stressful conditions was 77% for SUR4 and 
51% for FEN1. This decrease in the expression is the 
greatest if compared with 1 - 29% decrease among the 
rest down-regulated genes required for ethanol 
tolerance. This indicates that a shortage of these 
enzymes may have a crucial effect on sensitivity of 
yeast to ethanol. Clustering SUR4 and FEN1 with the 
ribosome biogenesis and translation related genes 
shows that down-regulation of both enzymes and the 
resulting ethanol sensitivity may be a part of the 
general stress response program in yeast. Both 
processes are co-regulating; therefore a decreased 
production of the enzymes, important for ethanol 
tolerance, may inevitably follow any stressful 
conditions in the yeast environment. 
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Figure 9. Run times with respect to a total 
number of processors. 


