
An Automated Data Processing Pipeline for
Virus Structure Determination at High Resolution

Chen Yu1, Dan C. Marinescu1,
John P. Morrison2, Brian C. Clayton2, and David A. Power2

1University of Central Florida 2University College Cork
School of EECS Computer Science Department

Orlando, FL 32816 USA Cork, Ireland
{yuchen, dcm}@cs.ucf.edu {j.morrison, b.clayton, d.power}@cs.ucc.ie

Abstract

The automation of the data processing pipeline for virus
structure determination at high resolution is a very chal-
lenging problem. The interaction between the data col-
lection process and the theoretical modeling and computer
simulation is very complex; routine tasks are mixed with
decision making processes and unforeseen conditions. This
paper dissects some of the most difficult problems posed by
the dynamic coordination of complex computational tasks
in a large scale distributed data acquisition and analy-
sis system. A flexible coordination model should be ca-
pable of accommodating user actions, handling system re-
lated activities such as resource discovery and resource al-
location, permitting dynamic process description modifica-
tion, allowing different level of abstraction, providing some
level of fault tolerance and backtracking capability. The
Condensed Graphs model of computing developed at Uni-
versity College Cork (UCC) which combines availability-,
demand-, and control- driven computation seems to be the
most promising for certain classes of problems and comple-
ments our previous efforts in developing an intelligent en-
vironment for large scale-distributed data acquisition and
analysis workflow applications.

1

1This research was funded by in part by National Science Foundation
grants ACI0296035, EIA0296179 and by I2Lab Graduate Fellowship at
the College of Engineering & Computer Science at University of Central
Florida.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1 Introduction and Motivation

A fair number of data collection and data analysis sys-
tems are in use today in areas such as biological sciences,
high energy and nuclear physics, astrophysics, material sci-
ences, and chemistry. Many of them allow for automatic
data collection and analysis tailored to the specific task of
the system. Yet, it is very unlikely that one could adapt
any of these systems to any other use than the one the sys-
tem has been originally designed for. A major problem is
the inflexibility of the process description and the lack of
generic constructs for dynamic coordination of workflows.
The more complex the original workflow description is, the
more difficult it is to coordinate its execution in a sophisti-
cated computing environment such as a computational Grid.

Virus Structure Determination at High Resolution in
Cryo-Transmission Electron Microscopy (CryoTEM) is no
exception. The 3D reconstruction of viruses may take many
months, or even years, and may involve large group scat-
tered around the globe [6]. There are two major factors
that distinguish the structural studies of large macromolec-
ular structures like viruses from those of small proteins and
make the automation of the data processing pipeline a very
hard task:

• The very large amount of experimental data and the hu-
mongous level of computing resources consumed for
high resolution reconstruction.

• The complexity of the protocols used for data analysis.

To handle the massive amount of data we have developed
parallel algorithms for the main tasks required by the 3D
reconstruction of virus structures, origin and orientation re-
finement and the reconstruction of the 3D electron density
map from 2D particle projections obtained experimentally
in CryoTEM. More recently, we have developed algorithms

which allow us to execute the same program concurrently
on several high performance computing systems, such as
clusters, shared memory systems, or massively parallel sys-
tems. In this case, data partitioning is done at two levels;
first, the data is distributed to a collection of heterogeneous
parallel systems with different resources and startup times,
then, on each system the data is partitioned to the avail-
able nodes using traditional SPMD strategy. Concurrent ex-
ecution on multiple parallel systems complicates an already
complex workflow management problem.

Table 1 summarizes the estimated increases in the
amount of data and the corresponding increase in mem-
ory requirements for high resolution reconstruction for a
medium-size and for a large-size virus. The number of
computing cycles required for the refinement of the elec-
tron density map, thus the execution times, increases faster
than linear with the amount of experimental data.

In a recent paper [6], we discuss an algorithm for origin
and orientation refinement for virus structure determination.
To reconstruct a 3D electron density map of a virus, we use
a number of 2D projections from micrographs obtained ex-
perimentally with a cryo transmission electron microscope.
We do not know the orientation of each 2D projection; find-
ing the origin and orientation of 104 − 106 projections is a
computationally intensive problem.

In [6, 9] we report that our algorithm for origin and
orientation refinement for virus structure determination in-
cludes several optimizations, but, in spite of these optimiza-
tions, the computing time required to improve the resolu-
tion of a medium-sized virus such as the Mammalian Re-
ovirus (MRV), from about 7.6 Å to better than 7.0 Å on 42
processing nodes of one cluster, is about 14 hours/iteration.
The refinement process in this case required about 100 it-
erations, thus the total time taken to improve the resolution
from 7.6 Å to 7.0 Å was about 1, 400 hours, or nearly
60 days. A single processor system with the same single
processor process rate and with sufficient memory would
need some 2, 500 days to finish this computation. Con-
versely, if we had exclusive use of a 1, 000 node system with
the same processor running in each node, the total comput-
ing time could be reduced to 3 days or less. Our aim regard-
ing parallel computing for virus structure determination is
to reach a resolution of say 5.0 Å or better starting from an
electron density map of say 40.0 Å for a virus of similar
size. Thus, for a typical problem, we probably need one
order of magnitude more iterations; consequently, the to-
tal computing time would be one order of magnitude larger
than the time reported in [6].

The interaction between the data collection process and
the theoretical modeling and computer simulation is very
complex; routine tasks are mixed with decision making
processes and unforeseen conditions which sometimes can
be handled based upon a set of rules and in other cases

require human decisions. Often, experimental data is col-
lected with an instrument which produces a “distorted im-
age” of the experimental sample and some form of correc-
tion is necessary. High level of noise makes some of the
measurement results unusable; such data points have to be
identified and discarded. The desire to “improve the qual-
ity” of results forces us to collect additional data. Often, ex-
perimental data obtained with different settings of the mea-
suring instruments have to be re-calibrated. The instrument
used to collect the experimental evidence may alter or de-
stroy the “sample” and it becomes impossible to repeat the
data collection phase under perfectly identical conditions.

The coordination of a complex data acquisition and
analysis task involving multiple activities poses numerous
challenges even when the activity graph is static and when
the resources necessary for the completion of each activity
are known and can be acquired in advance. Yet, in many
instances, the dynamics of the task is affected by factors
such as: the availability of resources necessary to complete
individual activities; timing constraints; the service model;
changes required by the individual(s) who initiated the ex-
ecution of the task; and possibly by unforeseen events such
as the failure of some of the agents involved.

The execution of a complex computational task involv-
ing multiple programs, in a heterogeneous computing en-
vironment, gives rise to many problems that require dy-
namic coordination. The execution time of individual pro-
grams/activities is both data and target system dependent.
In general, it is hard to predict the precise time when the re-
sults of a computation will be available for its successors in
an activity graph. This problem is further complicated when
the activity graph requires iterative execution of a sub-graph
which includes activities where the number of iterations is
not known in advance.

The next level of complication derives from the best-
effort service model supported by most large-scale distrib-
uted systems such as computational grids. This requirement
means that the coordination model has to continually mon-
itor the execution to detect any lack of progress of an activ-
ity, the forced termination of the activity, or the failure of a
target system, and to take appropriate action. Occasionally,
activity may have to be replaced with a sub-graph involving
several other activities. Thus, this replacement will require
a change in the process description, or switching to a differ-
ent process description.

Probably the most difficult aspect of dynamic coordina-
tion for some classes of problems is user control. User ac-
tions, typically known as computation steering, range from
inspection of partial results to backtracking and restarting
a computation with different model parameters, or even
switching to an alternative process description.

A dynamic coordination model able to address the chal-
lenges discussed in this paper is a significant step towards

Table 1. Data set size for high resolution reconstruction (1 MB=106, 1 GB=109, 1 TB = 1012 bytes) for
Mammalian Reovirus (MRV) and Paramecium Bursaria Chlorella Virus (PBCV-1). We assume 8 bits
per pixel.

Virus MRV PBCV-1

Resolution (Å) 12 6 3 12 6 3
Pixel size (Å) 4 2 1 4 2 1

Particle Image Size (pixels) 2562 5122 10242 5122 10242 20482

Memory /One Particle Image 256 KB 1 MB 4 MB 1 MB 4 MB 16 MB
Number of Particle Images 103 104 106 5 × 103 5 × 104 5 × 106

Image Data Set Size 256 MB 10 GB 4 TB 5 GB 200 GB 80TB
3D Map Size (voxels) 2563 5123 10243 5123 10243 20483

Memory/3D Map 64 MB 0.5 GB 4 GB 0.5 GB 4 GB 32 GB

a more general framework for such systems. A goal of
our work is to fully automate data acquisition and analysis
workflow, while at the same time, incorporating the follow-
ing characteristics:

• Backtracking, the ability to roll back the state and
restart the process from an earlier stage.

• Human control should be able to override the auto-
matic control at any stage.

• A hierarchical control structure. For example, the lo-
cal control of a computation may be overridden by a
higher level authority.

• Collaborative activities. Multiple versions of data
analysis may be running concurrently, and the princi-
pals of each process may be allowed to share a subset
of partial results.

• Different level of abstraction. Details should be trans-
parent to those who are not concerned with them.

• Allow activities which are not fully specified at the
time when the workflow is defined, but known at the
instance when they should be activated.

• Capability to define complex preconditions to trigger
the execution of activities.

Many computational problems in neuroscience, physics,
astrophysics, chemistry, and biology are based upon com-
plex protocols similar to the ones described in this paper.
Some of these problems are data intensive and require com-
puting resources, primarily CPU cycles and main memory,
well beyond those available on a single system, thus, re-
quire the coordination of computations carried out at mul-
tiple sites concurrently. The approach we consider in this
paper has the potential to be useful for a large class of ap-
plications.

In this paper, we first discuss briefly the Condensed
Graphs model in Section 2. Then in Section 3, a nontrivial
3D Virus Reconstruction workflow example is introduced
to show the capability of the Condensed Graphs model in

dealing with dynamic coordination concerns we mentioned
above. An experimental environment is also reported in
Section 4.

2 Condensed Graphs Model

Dynamic coordination can be greatly facilitated by hav-
ing the flexibility to alter the sequencing constraints associ-
ated with activities execution. While being conceptually as
simple as classical dataflow schemes [2, 4], the Condensed
Graphs (CGS) model [7] is far more general and powerful.
Like classical dataflow, the CGS model is graph-based and
uses the flow of entities on arcs to trigger execution. In con-
trast, CGS are directed acyclic graphs in which every node
contains not only operand ports, but also an operator and
a destination port. Arcs incident on these respective ports
carry other CGS representing operands, operator and desti-
nation, called as computation triple. Condensed Graphs are
so called because their nodes may be condensations, or ab-
stractions, of other CGS . (Condensation is a concept used
by graph theoreticians for exposing meta-level information
from a graph by partitioning its vertex set, defining each
subset of the partition to be a node in the condensation, and
by connecting those nodes according to a well-defined rule
[5]). Condensed Graphs can thus be represented by a sin-
gle node (called a condensed node) in a graph at a higher
level of abstraction. It is possible to navigate between these
abstraction levels, moving from the specific to the abstract
through condensation, and from the abstract to the specific
through a complementary process called evaporation.

The basis of the CGS node firing rule is the presence
of a condensed graph (CG) in every port of a node. That
is, CGS representing operands are associated with every
operand port, an operator CG with the operator port and a
destination CG with the destination port. A condensed node,
a node representing a datum, and a multi-node CG can all
be operand. The present representation of a destination in

Figure 1. CGS congregating at a node to form
an instruction.

the CGS model is as a node whose own destination port is
associated with one or more port identifications. Figure 1
illustrates the congregation of computation triple at a node
and the resultant rewriting that takes place.

Operator strictness can be used to determine the strict-
ness of operand ports: a strict port must contain a datum CG
before execution can proceed, a non-strict port may contain
any CG . If, by computation, a condensed or multi-node CG
attempts to flow to a strict operand port, the grafting process
intervenes to construct a destination CG representing that
strict port and sends it to the operand. The grafting process,
in conjunction with port strictness, ensures that operands
are only evaluated when needed.

By statically constructing a CG to contain operators and
destinations, the flow of operand CGS sequences the com-
putation in a dataflow manner. Similarly, constructing a CG
to statically contain operands and operators, the flow of des-
tination CGS will drive the computation in a demand-driven
manner. Finally, by constructing CGS to statically contain
operands and destinations, the flow of operators will result
in a control-driven evaluation. This latter evaluation order,
in conjunction with side-effects, is used to implement im-
perative semantics. The power of the CGS model results
from being able to exploit all of these evaluation strategies
in the same computation, and dynamically move between
them, using a single, uniform formalism.

3 Dynamic Coordination under Condensed
Graphs Model

The capability of combining availability-, demand-, and
control-driven computation of Condensed Graphs model is
well suited for dynamic coordination. A 3D Virus Recon-
struction workflow [6] is presented here to show the CGS
modeling process and its capability of dealing with the chal-
lenges of dynamic coordination concerns for data acquisi-
tion and analysis systems.
3D Virus Reconstruction (3DR) is an iterative process

described by a worflow consisting of several activities:
“Origin and Orientation Refinement” (OOR), followed by
“3D Reconstruction” (3DR), followed by branch selection
of whether to continue with additional iterations at the same

Figure 2. Workflow describing the electron
density map refinement.

resolution. Figure 2 illustrates the 3DR workflow and Fig-
ure 3 shows the corresponding CG graphical expression.

Note that the CGS model allows different level of ab-
straction. The topmost level CG expression of a complex
task could consist of one or more nodes providing a very
high level description of the task. In the example, level(a)
in Figure 3 only has one node: 3D Reconstruction. This
models, at the highest level, only domain specific computa-
tional activities, the ones a user typically understands, and
hides the detailed steps of the task. At level(b), the detailed
steps involved in 3D Reconstruction are outlined. System
related or data-related auxiliary activities such as resource
discovery, or data staging, which may distract and confuse
a nonexpert user, are hidden in level(c).

This hierarchical decomposition and aggregation is an
inherent feature of CGS model and the evaporation function
establishes the link to the detailed subgraph definition for a
given node. It makes it possible to associate one CG node
with multiple subgraph definitions and makes switching be-
tween alternative process descriptions more manageable. In
Figure 3, node OOR at level(b) has four possible expansions
with different physical execution options. The selection of a
subgraph definition can be done statically as well as dynam-
ically. Before the execution of graph, the evaporation func-
tion return of one node can be set to one specific subgraph
definition statically. When the execution of graph begins,
the node can also choose one subgraph definition dynami-
cally based on a predefined mechanism, a user’s hint or a
user intervention.

Backtracking is easy to handle under the CGS model.
The nodes that have fired are stored into a V-graph mem-
ory, the graph stores all fired nodes in the sequence of their
activation with the relevant data, control, and state infor-

Figure 3. CG expression of 3D Virus Reconstruction Workflow. The topmost CG describes the core
of the 3D reconstruction process; level(a) can be expanded as the CG at level(b) which illustrates
iterations consisting of Origin and Orientation Refinement (OOR), carried out by a program called
PO2R, followed by 3D Reconstruction (3DR), carried out by a program called P3DR, followed by a
branch selection node. This selection node determines whether to continue with additional iterations
at the same resolution, or to move to the next resolution. The OOR node can be expanded differently
at level(c); we may run the program PO2R with local data as in (c1); we may run PO2R remotely after
a Resource Discovery (RD) stage, followed by Resource Allocation (RA) stage, followed by a Data
Staging (DS) stage as in (c2); we may run PO2R with local data after some Input Data Noise Filtering
(IDF) stage as in (c3); or run it remotely after an input data filtering stage as in (c4). At level(b),
node P3DR grafts on branch selection node and may be executed repeatedly based on the choice
of iteration decision node. The E and X nodes of a condensed graph correspond to the start and
respectively termination of the activity.

mation used during their activation. To rollback and restart
the process, the rollback point information in the V-graph is
compared with the nodes initial static definition, the node’s
computation triple is reset and the computation is restarted.

Most of the workflow coordination systems nowadays
deal with human control at the execution level instead of the
modelling level. That is, user control or interruption opera-
tions are not expressed explicitly in the process description.
This contrasts with the CGS model approach. Here, human
interruption can be explicitly modelled in the graph defini-
tion by adding one non-strict operand port to the node. The
non-strict firing rule triggers execution of a node as soon as
a specific proper subset of its operand set (not including the
operand reserved for human control) is formed. Take node
3DR in Figure 3 for example. By adding a new non-strict
operand port to it, see Figure 4, and applying the non-strict
firing rule, 3DR will be fired as soon as its predecessor OOR
finishes, even though it does not get input from the non-

strict operand port for human control. A user can provide
commands through this operand port at run-time and so di-
rect execution of node 3DR. Combined with the features of
the evaporation function and the backtracking capability of
the CGS model, great flexibility in the process control is
obtained.

Figure 4. Computation steering using non-
strict operand port.

Figure 5. CG expression for an activity with multiple output data.

Figure 6. CG expression for the data partition process.

Often an activity can produce multiple results which
should be dispatched to different successors activities.
Some successor activities may only be concerned with a
segment of the result. Moreover, security and privacy con-
siderations may require that some successor activities do
not have access to the entire result. The CGS model only
allows one output destination port. This implies that when
one node produces multiple results, all of them have to be in
one output package. Consider the workflow in Figure 5(a).
Activity A generates two output data packages marked as
O1 and O2. O1 is targeted to successor activity B and O2
is dispatched to activity C. Figure 5(b) illustrates the equiv-
alent representation using CG . The node, Data Filler, is
introduced, which has two operands ports, One for a data
package that will be analyzed and one for getting the data
sub-package identifier. For simplicity, the identifiers “O1”
and “O2” are used to identify the sub-packages O1 and O2
respectively. The task of Data Filler is to separate input
data package based on the specified identifier and to output
the corresponding sub-package to its successors. Node A
generates the output data package and after the Data Filler
nodes, O1 goes to node B and O2 goes to node C. Note that
condensed node G is required in order to guarantee the syn-

chronization of the node B and node C. It is easy to see in
Figure 5(a), Activities B and C receive the data from A and
are activated at the same time logically. Consider the coun-
terpart in Figure 5(b), data package O1 and O2 can reach
node G at different time due to possible different process
latency of two Data Filler nodes. However, node G will
be fired only when both O1 and O2 reach its strict operand
ports. This guarantees the synchronized firing of nodes B
and C and the equivalence of two representations.

Data partitioning is another concern for data acquisition
and analysis applications. Input data is partitioned and dis-
patched to multiple parallel computing systems. The pool of
available computing resources for one application is highly
dynamic and the output of the data partitioning algorithm
may be different during each run. This leads to the require-
ment of dynamic process description modification. Recall
the feature of evaporation function: the return of evapora-
tion function of one condensed node can be set dynamically.
This provides the support for dynamic process description
modification on the model level. Consider the node OOR in
Figure 3 whose input data partitioning procedure is shown
in Figure 6. Node “Decision Maker” runs the partitioning
algorithm and generates the mapping between data blocks

and computation resources. The Coordination Engine gen-
erates the subgraph definition for node OOR dynamically
based on the output of “Decision Maker” and sets the evap-
oration function return of OOR point to this subgraph defi-
nition. There are n parallel paths in OOR’s subgraph defini-
tion where n equals to the number of computation resources
selected by “Decision Maker”. Each path has one “Data
Filter” which retrieves a data block from OOR’s input data
set according to the data block identifier. The data block
is transmitted to an appropriate computation resource by
node “Data Staging” (DS). Data processing is done by the
node “Parallel Origin and Orientation Refinement” (PO2R)
on each resource. Node “Result Assembler” gathers and as-
sembles partial results and returns the outcome to OOR’s
successors.

4 An Experimental Testbed

The technologies presented in this paper are currently
implemented as part of a joint project with University Col-
lege Cork (UCC). In this project, we develop a dynamic
coordination environment for virus structure determination
at high resolution [6].

There are three components in this dynamic coordination
environment: the Workflow Coordination Engine running
on coordination server, the Application Container running
on each computing engine, and the Knowledge Base which
includes an Ontology. The Ontology describes all classes
of objects, the relationships among classes of objects, as
well as the instances of each class. Figure 7 illustrates the
interaction between the three components.

Figure 7. The components of the dynamic co-
ordination environment.

The functions of Workflow Coordination Engine in-
clude:

• receive and process workflow definition;
• coordinate workflow execution;
• dispatch job to execution machine (Application Con-

tainer);
• monitor and update workflow execution status;
• interact with human control on the fly;
• failure detect and recovery;
• resource recovery and resource allocation;
• user authorization and security management.

In our implementation, we use WebCom [8], a distrib-
uted computing engine developed at University College
Cork. Webcom implements the Condensed Graphs compu-
tation model and provides load-balancing, fault-tolerance,
resource-discovery management and security. In our case
Webcom acts as the Workflow Coordination Engine.

Although the workflow is coordinated by the Workflow
Coordination Engine, the actual job execution is carried out
by the Application Container located at each computing re-
source or execution machine. The functions of the Applica-
tion Container are:

• allocate and manage local resource;
• authorize users
• process the jobs submitted by the Workflow Coordina-

tion Engine;
• manage data and program staging;
• monitor job execution;
• report the status of job execution to the Coordination

Engine;
• update the Knowledge Base upon job termination;
• detect hardware malfunction, system failure, or pro-

gram malfunction and attempt recovery.

The data and program staging function of the Applica-
tion Container running on a target system is implemented
by the gridftp service [1] provided by Globus Toolkit [3].
Remote access through Globus is available on all resources
for data and program staging implementation.

Knowledge Base is used to store:

• the Condensed Graph description of all the workflows
involved;

• the instances of the workflows;
• the state information;
• the pool of available computing resources;
• the status of computing resources;
• the list of authorized users.

The Workflow Coordination Engine and the Application
Container interact with the Knowledge Base. The Work-
flow Coordination Engine stores process definition into the
Knowledge Base, updates and retrieves workflow state in-
formation, verifies user identity, and accesses the Knowl-
edge Base to determine what computing resources are avail-
able before making scheduling decisions. The Application
Container may register itself with the Ontology, update lo-
cal resource state, retrieve job execution parameters, update
job execution state, and obtain user information.

Coordination is carried out by a hierarchy of Webcom
engines which make scheduling decisions at different lev-
els. Once a scheduling decision is made, an instance of a
condensed graph is partitioned accordingly and it is trans-
ferred to the next level. A coordination engine may run

on the same system where an Application Container is in-
stalled. The Knowledge Base is visited for available com-
puting resources or execution machines information when
coordination engine decides to execute the job physically.
Job execution state is returned to Coordination Engine as
well as stored into the Knowledge Base by Application
Container.

5 Summary

Automating the data acquisition and data analysis
pipeline for virus structure determination at high reso-
lution poses serious challenges. In this paper we out-
line these challenges and propose a dynamic coordination
environment based upon Condensed Graphs. The Con-
densed Graphs model combines availability-, demand-, and
control-driven computation and it is extremely well suited
for dynamic coordination of complex computational tasks
in large-scale distributed systems such as computational
Grids.

We present some of the workflows involved in virus
structure determination at high resolution, show the cor-
responding Condensed Graphs and discuss specific advan-
tages of the CGS model. We focus on the ability of the
model to abstract complex activities, to allow late binding
of actions and support computation steering, to enable con-
current execution and support data partitioning, and last but
not least deal with dynamic resource management.

The model is supported by Webcom, a distributed com-
puting environment based upon an abstract Condensed
Graphs engine which facilitates the development of the au-
tomated data processing pipeline for virus structure deter-
mination at high resolution. The dynamic coordination
model discussed in this paper provides a rather general
framework and we hope that other applications could bene-
fit from it.

References

[1] W. Allcock. GridFTP: Protocol Extensions to FTP for the
Grid. Global Grid Forum GFD-R-P.020, 2003.

[2] Arvind and K.P. Gostelow. A Computer Capable of Ex-
changing Processors for Time. In Proc. IFIP Congress 77,
Toronto, Canada, pp. 849–853, 1977.

[3] I. Foster. Globus Toolkit Version 4: Software for Service-
Oriented Systems. Int. Conf. on Network and Parallel Com-
puting, LNCS 3779, Springer-Verlag, pp. 2–13, 2005.

[4] J.R. Gurd, C.C. Kirkham, and I. Watson. The Manchester
Prototype Dataflow Computer. CACM, vol.28(1), pp. 34–52,
1985.

[5] F. Harary, R. Norman, and D. Cartwright. Structural Models:
An Introduction to the Theory of Directed. John Wiley and
Sons, 1969.

[6] Y. Ji, D.C. Marinescu, W. Zhang, X. Zhang, X. Yan, and
T.S. Baker. A Model-based Parallel Origin and Orientation
Refinement Algorithm for CryoTEM and its Application to
the Study of Virus Structures. Journal of Structural Biology,
vol. 154(1), pp.1–19, 2006.

[7] J.P. Morrison. Condensed Graphs: Unifying Availability-
Driven, Coercion-Driven and Control-Driven Computing.
PhD thesis, Eindhoven, 1996.

[8] J.P. Morrison, D.A. Power, and J.J Kennedy. An Evolution
of the WebCom Metacomputer. Journal of Mathematical
Modelling and Algorithms, Special Issue on Computational
Science and Applications, vol. 2003(2), pp. 263–276, 2003.

[9] X. Zhang, Y. Ji, L. Zhang, M.A. Agosto, S.C. Harrison, M.L.
Niebert, D.C. Marinescu, and T.S. Baker. Features of Re-
ovirus Outer-Capsid Protein µ1 Revealed at 7.0-Å or Better
by Electron Cryomicroscopy and Image Reconstruction of
the Virion. Structure, vol. 13, pp. 1–13, 2005.

