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Abstract 
1 
Profile Hidden Markov Models (profile HMMs) are used 
as a popular bioinformatics tool for sensitive database 
searching, e.g. a set of not annotated protein sequences is 
compared to a database of profile HMMs to detect 
functional similarities. HMMer is a commonly used 
package for profile HMM-based methods. However, 
searching large databases with HMMer suffers from long 
runtimes on traditional computer architectures. These 
runtime requirements are likely to become even more 
severe due to the rapid growth in size of both sequence 
and model databases. In this paper, we present a new 
reconfigurable architecture to accelerate HMMer 
database searching. It is described how this leads to 
significant runtime savings on off-the-shelf field-
programmable gate arrays (FPGAs). 
 
 
1. Introduction 
 

These Profile Hidden Markov Models (profile HMMs) 
are frequently used in molecular biology to statistically 
model the primary structure consensus of a family of 
protein sequences [7, 9, 11]. HMMer [8] is an open-
source implementation of profile HMM algorithms, which 
is widely adopted for large-scale database searching. 
There are two important search procedures in HMMer 
called hmmsearch and hmmpfam (see Table 1). Both 
search procedures use the comparison of a sequence to a 
profile HMM as a basic building block. This comparison 
determines the probability that the given sequence is 
generated by the given profile HMM using the Viterbi 
algorithm [15]. Due to the quadratic time complexity of 
the Viterbi algorithm the search procedure can take hours 
or even days depending on database size, query size, and 
hardware used. Examples searches include searching of 
protein sequences against the Pfam database [5] and 
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searching profile HMMs against the Swissprot/TrEMBL 
sequence databases [2].  

Table 1. HMMer programs for database searching 

HMMer 
procedure 

Description Application 

hmmpfam Search a set of 
query sequences 
against an HMM 
database 

Annotate various 
kinds of domains in 
the query sequence 

hmmsearch Search a sequence 
database with a 
query profile HMM 

Find additional 
homologues of a 
modeled family 

Consequently several parallel solutions for HMMer 
database searching have been developed on coarse-
grained architectures, such as clusters [4, 17], as well as 
on fine-grained architectures, such as network processors 
[16] and graphics cards [10]. In this paper we show how 
reconfigurable field-programmable gate array (FPGA)-
based hardware platforms can be used to accelerate 
HMMer database searching by one to two orders of 
magnitude. Since there is a large overall FPGA market, 
this approach has a relatively small price/unit and also 
facilitates regular upgrading to FPGAs based on state-of-
the-art technology. Another FPGA-based solution has 
recently been presented in [12]. Unfortunately, the design 
has only been simulated for hmmsearch, while our design 
can be applied for both hmmsearch and hmmpfam. 
Furthermore, the performance evaluation is only based on 
estimation rather than real implementation. 

This paper is organized as follows. In Section 2, we 
introduce the profile HMM architecture used in HMMer. 
The Viterbi algorithm for comparing a sequence to a 
profile HMM is described in Section 3. Our 
reconfigurable hardware design is presented in Section 4 
and its performance is evaluated in Section 5. Finally, 
Section 6 concludes the paper.  
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Figure 1. The Plan7 architecture for a profile HMM of length 4. 

 
2. Profile HMMs and Plan7 Architecture 
 

Profile HMMs are statistical models of multiple 
sequence alignments. They capture position-specific 
information about how conserved each column of the 
alignment is, and which residues are likely. Profile 
HMMs use position-specific scores for amino acids and 
position-specific penalties for opening and extending an 
insertion or deletion. Traditional pairwise alignment 
techniques such as the Smith-Waterman [14] algorithm 
and BLAST [1] use only position-independent scoring 
parameters; i.e. substitution matrix and gap penalties are 
fixed for all positions. This property of profile HMMs 
captures important information about the degree of 
conservation at various positions in the multiple 
alignments, and the varying degree to which gaps and 
insertions are permitted. As a consequence, databases of 
thousands of profile HMMs have been built and applied 
extensively to whole genome analysis. One such database 
is Pfam [3]. Pfam covers many common protein domains 
and families and currently contains 8296 entries (v.20.0). 
The construction and use of Pfam is tied to the HMMER 
software package [8].  

HMMer uses a profile HMM architecture called Plan7 
(see Figure 1). It consists of a linear sequence of nodes. 
Each node k consists of a match (Mk), insert (Ik), and 
delete state (Dk). Between the states are arrows called 
state transitions with associated probabilities. Each M-
state emits a single residue, with a probability score that is 
determined by the frequency that residues have been 
observed in the corresponding column of the multiple 
sequence alignment. Each M-state (and also each I-state) 
therefore carries a vector of 20 probabilities; one for each 
amino acid. Insertions and deletions are modeled using I-
states and D-states. Transitions are arranged so that at 
each node, either the M-state or the D-state is used. I-

states have a self-transition, allowing one or more inserted 
residues between to occur between consensus columns. 

The linear sequence of nodes is flanked by a begin 
state (B) and an end-state (E). Furthermore, there are the 
special states: S, N, C, T, and J. They control alignment 
specific features of the model; e.g. how likely the model 
is to generate various sorts of global, local or even multi-
hit alignments. 
 
3. Viterbi Algorithm 
 

One of the major bioinformatics applications of profile 
HMMs is database searching. The search operation either 
consists of searching a profile HMM database with a 
query protein sequence (hmmpfam) or searching a protein 
sequence database with a query profile HMM 
(hmmsearch). In both cases, the similarity score sim(H,S) 
of a profile HMM H and a protein sequence S is used to 
rank all sequences/HMMs in the queried database. The 
highest ranked sequences/HMMs with corresponding 
alignments are then displayed to the user as top hits 
identified by the database search. The similarity score 
sim(H,S) is usually determined by calculating Viterbi 
score H of and S. The Viterbi score is defined as the most 
probable path through H that generates a sequence equal 
to S. The well-known Viterbi algorithm [15] can compute 
this score by dynamic programming. The Viterbi dynamic 
programming (DP) algorithm for Plan7 profile HMMs is 
given in Algorithm 1. 

In Algorithm 1, there are three two-dimensional 
matrices: M, I, and D. M(i,j) denotes the score of the best 
path emitting the subsequence S[1...i] of S ending with 
S[i] being emitted in state Mj. Similarly, I(i,j) is the score 
of the best path ending with S[i] being emitted in by state 
Ij, and, D(i,j) for the best path ending in state Dj. 
Furthermore, there are five one-dimensional matrices: XN, 
XE, XJ, XB, and XC. XN(i), XJ(i), and XC(i) denotes the 



score of the best path emitting S[1...i] ending with S[i] 
being emitted in special state N, J, and C, respectively. 
XE(i) and XB(i) denotes the score of the best path emitting 
S[1...i] ending in E and B, respectively. Finally, the score 
of the best path emitting the complete sequence S is 
determined by XC(n) + tr(C,T). The actual path leading to 
this score can be calculated by a subsequent traceback 
procedure 

 

Algorithm 1: Viterbi Plan7 DP Algorithm 

Input: A profile HMM H of length k in Plan7 format 
(see Fig. 1) and a protein sequence S of length n. H is 
described in terms of its transitions (tr(State1,State2) 
denotes the transition score from State1 to State2) and 
emissions (e(State1,s) denotes the score of emitting amino 
acid s at State1). 

Output: sim(H,S). 

Initial Conditions:  
M(0,j) = I(0,j) = D(0,j) = −∞ for j = 1…k 
M(i,0) = I(i,0) = D(i,0) = −∞ for i = 1…n 
XN(0) = 0 
XB(0) = tr(N,B) 
XE(0) = XJ(0) = XC(0) = −∞ 

Recurrence Relation:  
for i = 1…n { 
    for j = 1…k { 
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} 

Final score: sim(H,S) = XC(n) + tr(C,T) 

 
4. Mapping onto an FPGA Platform 
 

In order to develop a parallel architecture for 
Algorithm 1, we first analyze to data dependencies in the 
DP matrices. Figure 2 shows the data dependencies for 
computing the cell (i,j) in DP matrices M, I, D. It can be 
seen that the computation of this cell requires the left, 
upper, and upper-left neighbor. Additionally, it depends 
on XB(i−1). This values depends on XJ(i−1), which in 
turn depends on XE(i−1). XE(i−1) then depends on all 
cells in row i−1 in matrix M. Hence, to satisfy all 
dependencies the two-dimensional matrices M, I, and D 
must be filled one cell at a time, in row-major order. 
Hence, computing several DP matrix cells in parallel is 
not possible for a Plan7 Viterbi score calculation due to 
the feedback loop induced by the J-state.   

Previous solutions to parallelize the Plan7 Viterbi 
algorithm on FPGAs therefore eliminate the J-state ([12, 
13]). This allows the calculations of the values of 
diagonally arranged cells parallel to the minor diagonal 
simultaneously; leading to an efficient fine-grained 
parallel architecture. However, the drawback of this 
solution is that it cannot find multi-hit alignments; i.e. 
repeat matches of subsequences of S to subsections of H. 
This can in turn result in a severe loss of sensitivity for 
database searching with HMMer. In this paper we present 
an FPGA solution that uses a full Plan7 model. 

Figure 3 shows our design for each individual PE. It 
contains registers to store the following temporary DP 
matrix values: M(i−1,j−1), I(i−1,j−1), D(i−1,j−1), 
M(i,j−1), I(i,j−1), and D(i,j−1).  The DP matrix values 
M(i,j), I(i,j), and D(i,j) are not stored explicitly, instead 
they are the inputs to the M(i,j−1), I(i,j−1), and D(i,j−1) 
registers respectively. The PE gets the emission (e(Mj,si) 
and e(Ij,si)) and transition probabilities tr(Mj-1,Mj), tr(Ij-

1,Mj), tr(Dj-1,Mj), tr(Ij,Mj), tr(Ij,Mj), tr(Mj-1,Dj), tr(Dj-1,Mj), 
and tr(Mj,E) from the internal FPGA RAM (Block RAM). 
The transition probabilities tr(B,Mj), tr(N,N), tr(E,J), 
tr(J,J), tr(J,B), tr(N,B), tr(C,C), and tr(C,T) are stored in 
registers in the PE. The PE has a four stage pipeline: 
Fetch, Compute1, Compute2, and Store. In the Fetch 
stage transition, emissions and intermediate DP matrix 
values are read from the Block RAM. All necessary 
computations are performed in the two compute stages. 
Finally, results are written to the Block RAM in the store 
stage. The computation of the special state matrices uses 
intermediate values for XE(i) which are computes as 

 XE(i,j) = max{XE(i,j−1), M(i,j) + tr(Mj,E))}.  

The updating of XN, XJ, XB, and XC is only performed 
at the end of the DP matrix row; i.e. if j=k.  
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Figure 2: Data dependencies for computing the values M(i,j), I(i,j), and D(i,j)  in Algorithm 1. Solid lines are used for 
direct dependencies and dashed lines for indirect dependencies.  

All numbers are represented in 2-complement form. 
Furthermore, the adders in our PE design use saturation 
arithmetic. In order to achieve high clock frequencies fast 
saturation arithmetic is crucial to our design. Therefore, 
we have added two tag bits to our number representation. 
These two tags encode the following cases: number (00), 
+max (01), −max (10), and not-a-number (NaN) (11). The 
tags of the result of an addition and maximum operation 
are calculated according to Table 2 and 3. Our 
representation has the advantage that result tags can be 
computed in a very simple and efficient way: if any of the 
operand’s tags is set in an addition, a simple bit-wise OR 
operation suffices. Otherwise, the tags will be set 
according to the overflow bit of the performed addition. 

As mentioned above, the Plan7 Viterbi algorithm does 
not allow computing several cells in parallel. Instead of 
computing the Viterbi algorithm on one database subject 
at a time, we align different query/subject pairs 
independently in separate PEs. Our system design with 4 
PEs is shown in Figure 4. Each PE has its own 
intermediate value storage (IVS). The IVS needs to store 
one row of previously computed results of the matrices M, 
I, and D. The PEs are connected to an emission and 
transition storage. Our design assumes that the same 
profile HMM has to be aligned to different sequences. All 
PEs are synchronized to process the same HMM state in 
every clock cycle. Therefore, the bandwidth requirement 
to access the transition storage is reduced to a single state. 
Score collect and score buffer are designed to handle 
cases where PEs produce results in the same clock cycle. 
The HMM loader transfers emission and transition values 
into their respective storage. The sequence loader fetches 
sequence elements from external memory and forwards 

them to the emission selection multiplexers. The system is 
connected to the HMMer software running on the host 
system via the host interface. 

Table 2: Computation of result tags in the case of an 
addition 

add number 
(00) 

+max 
(01) 

−max 
(10) 

NaN  
(11) 

number 
(00) 00(a) 01 10 11 

+max 
(01) 01 01 11 11 

−max 
(10) 10 11 10 11 

NaN 
(11) 11 11 11 11 

(a) Except the case that the result produces an overflow, then the 
result tag is 01 (if MSB is set) or 10 (if MSB is not set) 

Table 3: Computation of result tags in the case of a 
maximum operation 

 max number 
(00) 

+max 
(01) 

−max 
(10) 

NaN  
(11) 

number 
(00) 00 01 00 11 

+max 
(01) 01 01 01 11 

−max 
(10) 00 01 10 11 

NaN 
(11) 11 11 11 11 
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Figure 3: HMM Processing Element (PE) design 

 
5. Performance Evaluation 
 

We have described our PE design in Verilog and 
targeted it to the low-cost Xilinx Spartan-3 XC3S1500 
architecture. We have used Xilinx ISE 8.2i for synthesis, 
mapping, placement, and routing. The size of one PE is 
451 logic slices. The amount of memory required is 50 
RAM entries per HMM state, comprising 42 emissions 
and 8 transitions. Furthermore, there are 3 entries per 
HMM state for each PE’s IVS. Thus, both the size of the 
HMM and the number of PEs that we are able to support 
is limited by the number of Block RAM in the target 
FPGA. Using all 32 Block RAMs on the XC3S1500 we 
are able to fit 10 PEs and support a profile HMM of up to 
256 states.  

A performance measure commonly used in 
computational biology is cell updates per second (CUPS). 
A CUPS represents the time for a complete computation 
of one entry of each of the matrices M, D, and I. The 
theoretical peak CUPS performance of our 

implementations can be measured by multiplying number 
of PEs times the clock frequency: 70 MHz × 10 PEs = 
700 Mega CUPS. 

HMMer [8] is a widely used open source 
implementation of profile HMM algorithms with protein 
databases written in the C programming language. We 
have measured the performance of the hmmsearch 
algorithm, which is part of the HMMer 2.3.2 package. 
hmmsearch also aligns a query profile HMM to all protein 
sequences of a given database using the Viterbi algorithm 
as described in Sections 2 and 3. We have developed a 
version of hmmsearch that replaces the Viterbi algorithm 
with our FPGA accelerator. Since the software still 
performs the traceback for the identified top hits, the 
overall speedup is reduced from the theoretical peak 
performance. 
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Figure 4: Architecture of the HMM system 
implemented on FPGA. 

For measuring the performance of hmmsearch a 
database of 65535 amino-acid sequences was searched 
using a profile HMM with 236 states. The total number of 
cells processed in this problem is 5,471,693,984. We used 
a Pentium 4 3GHz with 1GB RAM running Linux 2.6.11 
and a single processor on the Power Mac Dual G5 
2.5GHz with 512MB of RAM running Mac OS 10.4 
(Tiger). The results of the performance comparison are 
shown in Table 4. The HMMer 2.3.4 package is able to 
take advantage of the Altivec extensions available in the 
G5 processor, for a fair comparison we have included this 
optimization in Table 4. 

The difference between these previous SIMD 
approaches (such Kestrel [6]) and ours is that FPGAs 
allow easy upgrading. This, and our previous work, shows 
the portability inherent in FPGA technology. Our 
previous HMM accelerator [13] was targeted at the 
Virtex-II architecture but did not support the full Plan-7 
Viterbi algorithm. Our new architecture to support the full 
Plan-7 Viterbi algorithm could easily be ported to the 
higher performance Virtex-4 architecture or the newer 
Virtex-5 architecture (65nm) for a higher computing 
performance (due to larger number of logic slices and 
more Block RAM). However, we have opted for the 

Spartan-3 architecture due to its better price/performance 
ratio. In addition, available Spartan-3 boards have small 
form factors and low power consumption, making our 
design applicable to mobile applications. Furthermore, the 
low cost of the Spartan-3 devices makes it possible to put 
an FPGA accelerator in several nodes within a cluster for 
an even more performance. 

Table 4: Performance comparison of different 
hmmsearch implementations 

Machine Optimiz
ation 

Time 
taken (s) 

Processing 
rate 

(MCUPS) 

Speedup 

Pentium4 None 246.62 22.19 1 
Apple G5 None 220.55 24.91 1.1 
Apple G5 Altivec 61.79 88.54 4.0 
Pentium4 FPGA 9.558 572.35 25.8 
 
 
6. Conclusion 
 

In this paper we have demonstrated that re-
configurable hardware platforms provide a cost-effective 
solution to high performance biological sequence 
database searching with HMMer. We have described a PE 
design to implement database scanning using the full 
Plan-7 Viterbi algorithm. Our strategy outperforms 
available sequential desktop implementations for 
hmmsearch by one order of magnitude. Our design can 
also be applied to hmmpfam using a set of protein 
sequences as queries to an HMM database. The 
corresponding performance evaluation is currently 
ongoing. Our future work also includes making our 
implementation available to biologists as a web server. 
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