

High Performance Database Searching with HMMer on FPGAs

Tim Oliver1, Leow Yuan Yeow1, and Bertil Schmidt2

1Progeniq Pte Ltd.
8 Prince George's Park, Singapore 118407

{tim,yuanyeow}@progeniq.com

2UNSW Asia
1 Kay Siang Road, Singapore 248922

Bertil.Schmidt@unswasia.edu.sg

Abstract
1
Profile Hidden Markov Models (profile HMMs) are used
as a popular bioinformatics tool for sensitive database
searching, e.g. a set of not annotated protein sequences is
compared to a database of profile HMMs to detect
functional similarities. HMMer is a commonly used
package for profile HMM-based methods. However,
searching large databases with HMMer suffers from long
runtimes on traditional computer architectures. These
runtime requirements are likely to become even more
severe due to the rapid growth in size of both sequence
and model databases. In this paper, we present a new
reconfigurable architecture to accelerate HMMer
database searching. It is described how this leads to
significant runtime savings on off-the-shelf field-
programmable gate arrays (FPGAs).

1. Introduction

These Profile Hidden Markov Models (profile HMMs)
are frequently used in molecular biology to statistically
model the primary structure consensus of a family of
protein sequences [7, 9, 11]. HMMer [8] is an open-
source implementation of profile HMM algorithms, which
is widely adopted for large-scale database searching.
There are two important search procedures in HMMer
called hmmsearch and hmmpfam (see Table 1). Both
search procedures use the comparison of a sequence to a
profile HMM as a basic building block. This comparison
determines the probability that the given sequence is
generated by the given profile HMM using the Viterbi
algorithm [15]. Due to the quadratic time complexity of
the Viterbi algorithm the search procedure can take hours
or even days depending on database size, query size, and
hardware used. Examples searches include searching of
protein sequences against the Pfam database [5] and

1-4244-0910-1/07/$20.00 ©2007 IEEE.

searching profile HMMs against the Swissprot/TrEMBL
sequence databases [2].

Table 1. HMMer programs for database searching

HMMer
procedure

Description Application

hmmpfam Search a set of
query sequences
against an HMM
database

Annotate various
kinds of domains in
the query sequence

hmmsearch Search a sequence
database with a
query profile HMM

Find additional
homologues of a
modeled family

Consequently several parallel solutions for HMMer
database searching have been developed on coarse-
grained architectures, such as clusters [4, 17], as well as
on fine-grained architectures, such as network processors
[16] and graphics cards [10]. In this paper we show how
reconfigurable field-programmable gate array (FPGA)-
based hardware platforms can be used to accelerate
HMMer database searching by one to two orders of
magnitude. Since there is a large overall FPGA market,
this approach has a relatively small price/unit and also
facilitates regular upgrading to FPGAs based on state-of-
the-art technology. Another FPGA-based solution has
recently been presented in [12]. Unfortunately, the design
has only been simulated for hmmsearch, while our design
can be applied for both hmmsearch and hmmpfam.
Furthermore, the performance evaluation is only based on
estimation rather than real implementation.

This paper is organized as follows. In Section 2, we
introduce the profile HMM architecture used in HMMer.
The Viterbi algorithm for comparing a sequence to a
profile HMM is described in Section 3. Our
reconfigurable hardware design is presented in Section 4
and its performance is evaluated in Section 5. Finally,
Section 6 concludes the paper.

S N B

E C T

M1 M2 M3 M4

D2 D3

I1 I2 I3

J

Figure 1. The Plan7 architecture for a profile HMM of length 4.

2. Profile HMMs and Plan7 Architecture

Profile HMMs are statistical models of multiple
sequence alignments. They capture position-specific
information about how conserved each column of the
alignment is, and which residues are likely. Profile
HMMs use position-specific scores for amino acids and
position-specific penalties for opening and extending an
insertion or deletion. Traditional pairwise alignment
techniques such as the Smith-Waterman [14] algorithm
and BLAST [1] use only position-independent scoring
parameters; i.e. substitution matrix and gap penalties are
fixed for all positions. This property of profile HMMs
captures important information about the degree of
conservation at various positions in the multiple
alignments, and the varying degree to which gaps and
insertions are permitted. As a consequence, databases of
thousands of profile HMMs have been built and applied
extensively to whole genome analysis. One such database
is Pfam [3]. Pfam covers many common protein domains
and families and currently contains 8296 entries (v.20.0).
The construction and use of Pfam is tied to the HMMER
software package [8].

HMMer uses a profile HMM architecture called Plan7
(see Figure 1). It consists of a linear sequence of nodes.
Each node k consists of a match (Mk), insert (Ik), and
delete state (Dk). Between the states are arrows called
state transitions with associated probabilities. Each M-
state emits a single residue, with a probability score that is
determined by the frequency that residues have been
observed in the corresponding column of the multiple
sequence alignment. Each M-state (and also each I-state)
therefore carries a vector of 20 probabilities; one for each
amino acid. Insertions and deletions are modeled using I-
states and D-states. Transitions are arranged so that at
each node, either the M-state or the D-state is used. I-

states have a self-transition, allowing one or more inserted
residues between to occur between consensus columns.

The linear sequence of nodes is flanked by a begin
state (B) and an end-state (E). Furthermore, there are the
special states: S, N, C, T, and J. They control alignment
specific features of the model; e.g. how likely the model
is to generate various sorts of global, local or even multi-
hit alignments.

3. Viterbi Algorithm

One of the major bioinformatics applications of profile
HMMs is database searching. The search operation either
consists of searching a profile HMM database with a
query protein sequence (hmmpfam) or searching a protein
sequence database with a query profile HMM
(hmmsearch). In both cases, the similarity score sim(H,S)
of a profile HMM H and a protein sequence S is used to
rank all sequences/HMMs in the queried database. The
highest ranked sequences/HMMs with corresponding
alignments are then displayed to the user as top hits
identified by the database search. The similarity score
sim(H,S) is usually determined by calculating Viterbi
score H of and S. The Viterbi score is defined as the most
probable path through H that generates a sequence equal
to S. The well-known Viterbi algorithm [15] can compute
this score by dynamic programming. The Viterbi dynamic
programming (DP) algorithm for Plan7 profile HMMs is
given in Algorithm 1.

In Algorithm 1, there are three two-dimensional
matrices: M, I, and D. M(i,j) denotes the score of the best
path emitting the subsequence S[1...i] of S ending with
S[i] being emitted in state Mj. Similarly, I(i,j) is the score
of the best path ending with S[i] being emitted in by state
Ij, and, D(i,j) for the best path ending in state Dj.
Furthermore, there are five one-dimensional matrices: XN,
XE, XJ, XB, and XC. XN(i), XJ(i), and XC(i) denotes the

score of the best path emitting S[1...i] ending with S[i]
being emitted in special state N, J, and C, respectively.
XE(i) and XB(i) denotes the score of the best path emitting
S[1...i] ending in E and B, respectively. Finally, the score
of the best path emitting the complete sequence S is
determined by XC(n) + tr(C,T). The actual path leading to
this score can be calculated by a subsequent traceback
procedure

Algorithm 1: Viterbi Plan7 DP Algorithm

Input: A profile HMM H of length k in Plan7 format
(see Fig. 1) and a protein sequence S of length n. H is
described in terms of its transitions (tr(State1,State2)
denotes the transition score from State1 to State2) and
emissions (e(State1,s) denotes the score of emitting amino
acid s at State1).

Output: sim(H,S).

Initial Conditions:
M(0,j) = I(0,j) = D(0,j) = −∞ for j = 1…k
M(i,0) = I(i,0) = D(i,0) = −∞ for i = 1…n
XN(0) = 0
XB(0) = tr(N,B)
XE(0) = XJ(0) = XC(0) = −∞

Recurrence Relation:
for i = 1…n {
 for j = 1…k {





+−
+−

=





+−
+−

+=











+−
+−−
+−−
+−−

+=

−

−

−

−

−

),()1,(
),()1,(

max),(

),(),1(
),(),1(

max])[,(),(

),()1(
),()1,1(

),()1,1(
),()1,1(

max])[,(),(

1

1

1

1

1

jj

jj

jj

jj
j

j

jj

jj

jj

j

DDtrjiD
DMtrjiM

jiD

IItrjiI
IMtrjiM

iIejiI

MBtriXB
MDtrjiD

MItrjiI
MMtrjiM

iMejiM

S

S

 }

 

 +−

=





+
+

=





+
+−

=

+=
+−=

≤≤

)(
),()1(

max)(

),()(
),()(

max)(

),()(
),()1(

max)(

)},(),({max)(
),()1()(

1

iXE
CCtriXC

iXC

BJtriXJ
BNtriXN

iXB

JEtriXE
JJtriXJ

iXJ

EMtrjiMiXE
NNtriXNiXN

jkj

}

Final score: sim(H,S) = XC(n) + tr(C,T)

4. Mapping onto an FPGA Platform

In order to develop a parallel architecture for
Algorithm 1, we first analyze to data dependencies in the
DP matrices. Figure 2 shows the data dependencies for
computing the cell (i,j) in DP matrices M, I, D. It can be
seen that the computation of this cell requires the left,
upper, and upper-left neighbor. Additionally, it depends
on XB(i−1). This values depends on XJ(i−1), which in
turn depends on XE(i−1). XE(i−1) then depends on all
cells in row i−1 in matrix M. Hence, to satisfy all
dependencies the two-dimensional matrices M, I, and D
must be filled one cell at a time, in row-major order.
Hence, computing several DP matrix cells in parallel is
not possible for a Plan7 Viterbi score calculation due to
the feedback loop induced by the J-state.

Previous solutions to parallelize the Plan7 Viterbi
algorithm on FPGAs therefore eliminate the J-state ([12,
13]). This allows the calculations of the values of
diagonally arranged cells parallel to the minor diagonal
simultaneously; leading to an efficient fine-grained
parallel architecture. However, the drawback of this
solution is that it cannot find multi-hit alignments; i.e.
repeat matches of subsequences of S to subsections of H.
This can in turn result in a severe loss of sensitivity for
database searching with HMMer. In this paper we present
an FPGA solution that uses a full Plan7 model.

Figure 3 shows our design for each individual PE. It
contains registers to store the following temporary DP
matrix values: M(i−1,j−1), I(i−1,j−1), D(i−1,j−1),
M(i,j−1), I(i,j−1), and D(i,j−1). The DP matrix values
M(i,j), I(i,j), and D(i,j) are not stored explicitly, instead
they are the inputs to the M(i,j−1), I(i,j−1), and D(i,j−1)
registers respectively. The PE gets the emission (e(Mj,si)
and e(Ij,si)) and transition probabilities tr(Mj-1,Mj), tr(Ij-

1,Mj), tr(Dj-1,Mj), tr(Ij,Mj), tr(Ij,Mj), tr(Mj-1,Dj), tr(Dj-1,Mj),
and tr(Mj,E) from the internal FPGA RAM (Block RAM).
The transition probabilities tr(B,Mj), tr(N,N), tr(E,J),
tr(J,J), tr(J,B), tr(N,B), tr(C,C), and tr(C,T) are stored in
registers in the PE. The PE has a four stage pipeline:
Fetch, Compute1, Compute2, and Store. In the Fetch
stage transition, emissions and intermediate DP matrix
values are read from the Block RAM. All necessary
computations are performed in the two compute stages.
Finally, results are written to the Block RAM in the store
stage. The computation of the special state matrices uses
intermediate values for XE(i) which are computes as

 XE(i,j) = max{XE(i,j−1), M(i,j) + tr(Mj,E))}.

The updating of XN, XJ, XB, and XC is only performed
at the end of the DP matrix row; i.e. if j=k.

(i,j)

(i−1,j)

(i,j −1)

(i−1,
j−1) i−1i−1

i−1

j

i

M, I, D

XB XE

XJ

Figure 2: Data dependencies for computing the values M(i,j), I(i,j), and D(i,j) in Algorithm 1. Solid lines are used for
direct dependencies and dashed lines for indirect dependencies.

All numbers are represented in 2-complement form.
Furthermore, the adders in our PE design use saturation
arithmetic. In order to achieve high clock frequencies fast
saturation arithmetic is crucial to our design. Therefore,
we have added two tag bits to our number representation.
These two tags encode the following cases: number (00),
+max (01), −max (10), and not-a-number (NaN) (11). The
tags of the result of an addition and maximum operation
are calculated according to Table 2 and 3. Our
representation has the advantage that result tags can be
computed in a very simple and efficient way: if any of the
operand’s tags is set in an addition, a simple bit-wise OR
operation suffices. Otherwise, the tags will be set
according to the overflow bit of the performed addition.

As mentioned above, the Plan7 Viterbi algorithm does
not allow computing several cells in parallel. Instead of
computing the Viterbi algorithm on one database subject
at a time, we align different query/subject pairs
independently in separate PEs. Our system design with 4
PEs is shown in Figure 4. Each PE has its own
intermediate value storage (IVS). The IVS needs to store
one row of previously computed results of the matrices M,
I, and D. The PEs are connected to an emission and
transition storage. Our design assumes that the same
profile HMM has to be aligned to different sequences. All
PEs are synchronized to process the same HMM state in
every clock cycle. Therefore, the bandwidth requirement
to access the transition storage is reduced to a single state.
Score collect and score buffer are designed to handle
cases where PEs produce results in the same clock cycle.
The HMM loader transfers emission and transition values
into their respective storage. The sequence loader fetches
sequence elements from external memory and forwards

them to the emission selection multiplexers. The system is
connected to the HMMer software running on the host
system via the host interface.

Table 2: Computation of result tags in the case of an
addition

add number
(00)

+max
(01)

−max
(10)

NaN
(11)

number
(00) 00(a) 01 10 11

+max
(01) 01 01 11 11

−max
(10) 10 11 10 11

NaN
(11) 11 11 11 11

(a) Except the case that the result produces an overflow, then the
result tag is 01 (if MSB is set) or 10 (if MSB is not set)

Table 3: Computation of result tags in the case of a
maximum operation

 max number
(00)

+max
(01)

−max
(10)

NaN
(11)

number
(00) 00 01 00 11

+max
(01) 01 01 01 11

−max
(10) 00 01 10 11

NaN
(11) 11 11 11 11

+ M(i-1, j-1)
M(i-1, j)

tr(M
j-1

,M
j
)

+ I(i-1, j-1)
I(i-1, j)

tr(I
j-1

,M
j
)

+ D(i-1, j-1)
D(i-1, j)

tr(D
j-1

,M
j
)

+

M
A

Xtr(M
j
,I

j
)

+
tr(I

j
,I

j
)

M
A

X

+

M
A

X
M

A
X

M(i, j-1)

e(M
j
, S[i])

+ I(i, j-1)
e(I

j
, S[i])

XB(i-1)

+

tr(B,M
j
)

+

tr(D
j-1

,D
j
)

+

tr(M
j-1

,D
j
)

D(i, j-1)

M
A

X

+

tr(M
j
,E) XE(i-1,j-1)

M
A

X

+

tr(E,J)

+ tr(J,J)
XJ(i-1)

M
A

X

+

tr(J,B)

tr(N,N)
XN(i-1)

+

+

tr(N,B)

M
A

X

S
E

L

tr(N,B)

+

tr(E,C)

+

tr(C,C)
XC(i-1)

tr(C,T)

+M
A

X

SIM(H,S)

Figure 3: HMM Processing Element (PE) design

5. Performance Evaluation

We have described our PE design in Verilog and
targeted it to the low-cost Xilinx Spartan-3 XC3S1500
architecture. We have used Xilinx ISE 8.2i for synthesis,
mapping, placement, and routing. The size of one PE is
451 logic slices. The amount of memory required is 50
RAM entries per HMM state, comprising 42 emissions
and 8 transitions. Furthermore, there are 3 entries per
HMM state for each PE’s IVS. Thus, both the size of the
HMM and the number of PEs that we are able to support
is limited by the number of Block RAM in the target
FPGA. Using all 32 Block RAMs on the XC3S1500 we
are able to fit 10 PEs and support a profile HMM of up to
256 states.

A performance measure commonly used in
computational biology is cell updates per second (CUPS).
A CUPS represents the time for a complete computation
of one entry of each of the matrices M, D, and I. The
theoretical peak CUPS performance of our

implementations can be measured by multiplying number
of PEs times the clock frequency: 70 MHz × 10 PEs =
700 Mega CUPS.

HMMer [8] is a widely used open source
implementation of profile HMM algorithms with protein
databases written in the C programming language. We
have measured the performance of the hmmsearch
algorithm, which is part of the HMMer 2.3.2 package.
hmmsearch also aligns a query profile HMM to all protein
sequences of a given database using the Viterbi algorithm
as described in Sections 2 and 3. We have developed a
version of hmmsearch that replaces the Viterbi algorithm
with our FPGA accelerator. Since the software still
performs the traceback for the identified top hits, the
overall speedup is reduced from the theoretical peak
performance.

FPGA System

IVS

Score
Collect

IVS

IVS

IVS

Transition
Storage

Emission
Storage

Host
Interface

Sequence
Loader

Score
Buffer

HMM
Loader

Host System

IVS: Intermediate Value Storage

PE

PE

PE

PE

Figure 4: Architecture of the HMM system
implemented on FPGA.

For measuring the performance of hmmsearch a
database of 65535 amino-acid sequences was searched
using a profile HMM with 236 states. The total number of
cells processed in this problem is 5,471,693,984. We used
a Pentium 4 3GHz with 1GB RAM running Linux 2.6.11
and a single processor on the Power Mac Dual G5
2.5GHz with 512MB of RAM running Mac OS 10.4
(Tiger). The results of the performance comparison are
shown in Table 4. The HMMer 2.3.4 package is able to
take advantage of the Altivec extensions available in the
G5 processor, for a fair comparison we have included this
optimization in Table 4.

The difference between these previous SIMD
approaches (such Kestrel [6]) and ours is that FPGAs
allow easy upgrading. This, and our previous work, shows
the portability inherent in FPGA technology. Our
previous HMM accelerator [13] was targeted at the
Virtex-II architecture but did not support the full Plan-7
Viterbi algorithm. Our new architecture to support the full
Plan-7 Viterbi algorithm could easily be ported to the
higher performance Virtex-4 architecture or the newer
Virtex-5 architecture (65nm) for a higher computing
performance (due to larger number of logic slices and
more Block RAM). However, we have opted for the

Spartan-3 architecture due to its better price/performance
ratio. In addition, available Spartan-3 boards have small
form factors and low power consumption, making our
design applicable to mobile applications. Furthermore, the
low cost of the Spartan-3 devices makes it possible to put
an FPGA accelerator in several nodes within a cluster for
an even more performance.

Table 4: Performance comparison of different
hmmsearch implementations

Machine Optimiz
ation

Time
taken (s)

Processing
rate

(MCUPS)

Speedup

Pentium4 None 246.62 22.19 1
Apple G5 None 220.55 24.91 1.1
Apple G5 Altivec 61.79 88.54 4.0
Pentium4 FPGA 9.558 572.35 25.8

6. Conclusion

In this paper we have demonstrated that re-
configurable hardware platforms provide a cost-effective
solution to high performance biological sequence
database searching with HMMer. We have described a PE
design to implement database scanning using the full
Plan-7 Viterbi algorithm. Our strategy outperforms
available sequential desktop implementations for
hmmsearch by one order of magnitude. Our design can
also be applied to hmmpfam using a set of protein
sequences as queries to an HMM database. The
corresponding performance evaluation is currently
ongoing. Our future work also includes making our
implementation available to biologists as a web server.

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W, Lipman,

D.J.: Basic local alignment search tool, J. Mol. Biol., 215
(1990) 403-410.

[2] Anand, B., Verma, S.K., Prakash, B.: Structural
stabilization of GTP-binding domains in circularly
permuted GTPases: Implications for RNA binding, Nucleic
Acids Research 34 (8) 2196–2205 (2006)

[3] Bateman, A., et al: The PFAM Protein Families Database,
Nucleic Acid Research, 32: 138-141 (2004)

[4] Chukkapalli, G., Guda, C., Subramaniam, S.:
SledgeHMMER: a web server for batch searching the pfam
database, Nucleic Acid Research 32 (July), W542-544
(2004)

[5] Guda, C., Fahy, E., Subramaniam, S.: MITOPRED: A
genome-scale method for prediction of nucleus-encoded
mitochondial proteins, Bioinformatics 20 (11) 1785-94
(2004)

[6] Di Blas, A. et al: The UCSC Kestrel Parallel Processor,
IEEE Transactions on Parallel and Distributed Systems 16
(1) 80-92 (2005)

[7] Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biologcial
Sequence Analysis, Probabilistic models of proteins and
nucleic acids, Cambridge University Press (1998)

[8] Eddy, S.R.: HMMER: Profile HMMs for protein sequence
analysis, http://hmmer.wustl.edu (2004)

[9] Eddy, S.R.: Profile Hidden Markov Models, Bioinformatics
14, 755-763 (1998)

[10] Horn, D.R., Houston, M., Hanrahan, P.: ClawHMMER: A
Streaming HMMer-Search Implementation, ACM/IEEE
Conference on Supercomputing (2005)

[11] Krogh A., Brown, M., Mian, S., Sjolander, K., Hausler, D.:
Hidden Markov Models in computational biology:
Applications to protein modeling, Journal of Molecular
Biology 235, 1501-1531 (1994)

[12] Maddimsetty, R.P., Buhler, J., Chamberlain, R., Franklin,
M., Harris, B.: Accelerator design for protein sequence
HMM search, Proc. 20th ACM International Conference on
Supercomputing (ICS06) 288-296, 2006

[13] Oliver, T.F., Schmidt, B., Yanto, J. and Maskell, D.L.,
“Accelerating the Viterbi Algorithm for Profile Hidden
Markov Models using Reconfigurable Hardware”, Lecture
Notes in Computer Science, Springer, Vol. 3991, 522-529
(2006)

[14] Smith, T.F., Waterman, M.S.: Identification of common
molecular subsequences, J. Mol. Biol. 147 (1981) 195-197.

[15] Viterbi, A.J.: Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm, IEEE
Transactions on Information Theory 13, 2, 260-269 (1967)

[16] Wun, B., Buhler, J., Crowley, P.: Exploiting coarse-grained
parallelism to accelerate protein motif finding with a
network processor" Proc. 14th Int. Conf. on Parallel
Architectures and Compilation Techniques (PACT 2005),
173-184 (2005)

[17] Zhu, W., Niu, Y., Lu, J., Gao, G.R.: Implementing Parallel
Hmm-Pfam on the EARTH Multithreaded Architecture, 2nd
IEEE Computer Society Bioinformatics Conference, 549-
550 (2003)

