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Abstract 
 

Discovering co-operative Transcription Factors (TF's) 
within the genome is a computationally challenging 
problem, tackled through Monte Carlo-like analysis by the 
Co-Bind code, developed at the Department of Genetics of 
the St. Louis Washington University. Due to its statistical 
nature, Co-Bind is characterized by very long execution 
times, order of days on current high-end workstations, and 
could benefit from parallelization and a wise optimization, 
performed at both the algorithmic and coding levels.  

This work presents the results achieved by 
parallelizing Co-Bind and optimising the parallel code 
and shows that, on a 16-processor architecture, a speed-
up greater than two orders of magnitude is achieved with 
respect to the serial version released by the code’s 
authors. 

 
 

1. Introduction 
 
Genes having similar expression profiles are generally 

considered to have transcription mechanisms activated by 
similar transcription factors (TF). The discovery of TF 
sites from a collection of DNA sequences is a major task 
in bioinformatics. TF's are often present in an unknown 

mutated form (typically a string of length 8-12 base pairs 
with 2-3 mutations) and in unknown positions along the 
sequence. There exist several methods to locate TF's, 
usually grouped into two distinct classes: greedy methods 
to enumerate all potential recurrent strings within different 
DNA sequences, and non deterministic methods which 
preferentially sample strings having a high degree of 
recurrence. Both strategies have their pros and cons. Given 
the exceedingly large number of recurrent candidates, 
exact methods are based on the introduction of different 
heuristics to prune the search space, either by searching 
only for a subset of all the possible patterns or by 
imposing restrictions on the locations of mismatches 
[4][6][7]; usually these methods work well for short 
patterns and for a limited number of mismatches.  

On the contrary, statistical methods are based on the 
well known Gibbs sampling strategy [2][3][8], a closely 
related Monte Carlo scheme, well suited to locate states 
bound by conditional probabilities. These methods are 
particularly well suited to identify recurrent patterns which 
are present in the sequence set (the positive set) but not in 
the background (i.e. the negative set, a collection of DNA 
sequences not necessarily containing the binding sites, 
usually constituted by the entire genome). Therefore, one 
can distinguish a "true positive" solution (a TF present 
only in the positive set) from a "false positive" solution, 



the latter class containing the vast majority of recurrent 
candidates. 

TF binding sites are often organized in functional 
groups which can operate in a co-operative fashion by 
simultaneous interaction of two closely situated target 
sites. The main difficulty in detecting pairs of TF's relies 
on the fact that the relative position of co-operative TF's is 
generally unknown. Therefore, the search of potential 
pairs of TF's is an intensive computational task which 
cannot be done by exact enumeration. Furthermore, two 
sites might have individually low signal-to-noise ratio, 
while the simultaneous occurrence of both signals greatly 
enhances their statistical significance. 

A successful method to locate pairs of putative TF's 
has been developed by Stormo and collaborators [1], and 
the software Co-Bind represents a practical 
implementation of the underlying theory. Co-Bind works 
on a statistical basis, relying on an intensive Gibbs 
sampling search starting from different initial guesses.  

As we will show in the following, Co-Bind relies on 
the estimate of the statistical weight of strings on both the 
positive and the negative set, as achieved by a Monte 
Carlo-like algorithm, therefore the software is 
characterized by a very high computing time, requiring up 
to days to perform analysis of biologically relevant data. 
As a consequence, optimization and parallelization of the 
code are mandatory. 

The present work will firstly recall the theory at the 
bases of the Co-Bind code and then present the actions we 
have performed to speed-up the calculation.  

 
2. The Co-Bind method 

 
The essential ingredient of Co-Bind is the definition of 

a weight matrix [5] ωk,b where k=0,...,l-1 (l being the 
length of the pattern) and b ranges over all four DNA 
bases (A,C,G,T). This matrix will contain the consensus of 
each letter as found along the recurrent pattern as the 
calculation proceeds. In total, Co-Bind operates with two 
weight matrices, one for each binding site. Furthermore, it 
is assumed that the binding energy for a TF molecule to a 
particular site is given by the following potential energy: 
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being s(j+k) the nucleotide at position j+k in sequence s 
(s(j) is the starting nucleotide of the DNA pattern at offset 
j along the DNA sequence). In total, the software handles 
p sequences (i=1,…,p) each containing a pair of TF's. 

It is further assumed that the binding probability of a 

single TF follows the Boltzmann distribution, jH
jeP −

∝ , 
where Pj is the likelihood of binding the pattern in the 
background, so that one can write the partition function for 
the joint occurrence of the two patterns in both the positive 
and negative sets 
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The marginal probability that both factors 
simultaneously occupy their respective binding sites in the 
positive set, at offsets j and j' of sequence i,  can be written 
as 
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Here the numerator is calculated over the positive set, 
while the denominator over the background set. Next, the 
method optimizes the marginal probability with respect to 
the recurring representative patterns. Therefore, the 
objective function, defined as 
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is maximized with respect to the weight matrices via a 
steepest descent algorithm 
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In essence, Co-Bind estimates separately the partition 
function YC for the background and subsequently 
optimizes with respect to the weights matrices. Given the 
parametric dependence of the partition function on the 
weight matrices, this implies the iterative repetition of 
these two computational steps. 

The pseudo code of the algorithm is the following: 
 
input: 
- positive set constituted by p sequences each 

containing the two TF's 
- background set 
 
output: 
- optimized weight matrices, representing the two 

TF's 
 

for each initial condition do 
{ 
 for i=0 to Max_i 
 { 
 estimate the partition function YC from the 

background; 



 compute the scoring terms 
( )',, jiji HHe +−

 and 

derivatives w.r.t. αω bk , ; 
 sample random sites over the positive set 

(Gibbs sampling); 
 compute object function UC and 

gradients
αω bk

CU

,∂

∂
 

 do steepest descent through the 
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 depending on the UC value,  retain the best 
αω bk ,  values 

 } 
} 

 
In realistic biological cases, Co-Bind is able to detect 

the TF's in around 30% of the cases. This is probably due 
to the fact that the steepest descent method optimization 
may get trapped in local minima. Therefore, extensive runs 
over the initial conditions must be performed in order to 
increase the search performances. Typically, a few 
hundreds iterations are required to converge with the 
steepest descent, whilst a few thousands runs over the 
initial conditions are a typical figure. 

 
3. Optimization of Co-Bind 

 
Co-Bind is a C++ code mostly written with an object-

oriented paradigm. Most of the calculation is made on 64-
bit floating point variables. The code does not require a 
substantial amount of memory and runs well on 
workstations equipped with standard RAM size. 

Given the searching procedure, it is clear that Co-Bind 
is prone to parallelization via trivial splitting of tasks. In 
fact, one can distribute across different CPUs the iterations 
of the external for each statement in the pseudo-code 
previously described. The initial conditions are randomly 
generated for each processor by using different seeds. We 
have therefore implemented a parallel version of Co-Bind 
based on the MPI message passing library. The 
embarrassing parallel scheme allows to practically 
achieving the ideal linear speed-up over the conventional 
single processor calculations. On our system, constituted 
by 8 dual-node Xeon machines clocked at 3.06 GHz and 
connected through a Gigabit Ethernet switch, we obtained 
a speed-up S=15.1. 

Next, we have considered the optimization of Co-Bind 
on the single-processor section of the code. The most 
significant part of Co-Bind is embodied by the class 

perceptron, which estimates the partition function 
(denominator of eq. (3)), computes the scoring terms 
(numerator of eq. (3)) and subsequently applies the 
steepest descent procedure (eq. (5)).  

The estimate of the partition function can be done in 
two different ways, by enumeration of all possible states 
or by sampling a fixed but large number Nsample of random 
sites along the background. We have chosen to consider 
the second route, which is by far the most convenient one, 
and realized that, by profiling the code performances, this 
is a CPU-intensive part of the calculation. In a typical test 
case made of  

 
- 30 sequence sets (10 for the positive and 20 for the 

negative set),  
- the search for a 15-letters long pattern  
- Nsample=104,  
 

the estimate of the partition function can require about 
40 % of the total CPU time. Furthermore, the computation 
of the scoring over the positive set requires another 40% of 
the CPU time. Therefore, we have considered to optimize 
both these sections.  

As previously noticed, the class perceptron has a C++ 
programming style with a deep nesting of functions and 
methods. This is particularly true for computing the 
scoring terms over the background (eq. (3)), which turns 
out to require many clock cycles. Therefore, we have 
added a new class containing a modified version of the 
perceptron class, renamed perceptron_inlined. The idea 
is to rewrite part of the code by major in-lining of its most-
exploited functions and methods. To this aim, we have 
partially sacrificed protection and hiding of variables, 
previously accessed mostly via methods, by duplicating 
part of them in the new class. In this way, it is a 
straightforward task to optimize the code performances via 
a procedural programming style. Besides the use of in-
lined functions, the procedural style allows to re-shape and 
ameliorate the access to memory and avoiding cache miss 
which are the typical bottleneck in Monte Carlo-like 
calculations. The simple optimization of adopting a 
procedural programming style for the computation of the 
scoring and the partition function, while leaving nearly 
unchanged the size of the executable code, allowed us to 
reduce the overall computing time – referred to the typical 
test case reported above – from 16.85 to 11.47 sec/search 
cycle, corresponding to a speed-up S = 1.47.  

Secondly, we have noticed that a 64-bit precision is 
not, strictly speaking, needed for the problem at hand. 
Given the non deterministic nature of the calculation, and 
the fact that the final result, represented by the optimized 
weight matrices, is required with a reduced number of 
digits, we have considered to work with 32-bit floating 
point precision in the architectures which do not support in 
HW 64-bit computations. It is worth noticing that this 



intervention does not allow to compare the results of the 
modified code with the unmodified one in a strict sense, 
i.e. by comparing numbers up to the machine round-off 
precision. In fact, the optimization procedure tends to 
diverge, as the iteration proceeds, due to small 
perturbations in the weight matrices. However, we have 
always checked the correctness of results in a statistical 
way, by comparing the patterns extracted by the code, and 
the relative consensus ranking, for a large number of runs 
over different initial conditions. In fact, the number of 
steepest descent searches should be large enough to 
robustly sample the maxima of the object function. In our 
typical test case 200 iterations appear to be sufficient. By 
fixing this number of searches, we have verified that Co-
Bind always provided satisfactory results in its various 
versions where we obtained the same 3 top scoring 
patterns. The usage of 32 bit precision on machines with 
32 bit architectures, given for granted the previous 
optimizations, allowed us to reduce the overall computing 
time from 11.47 to 6.52 sec/search cycle, corresponding to 
a speed-up S = 1.76.  

Thirdly, we intervened at the algorithmic level by 
modifying the way the calculation of the scoring term 

jiHe ,−
 is made. In fact, it is clear from the previous 

section that a large number of CPU cycles is required by 
the recurrent calculation of exponentials. We start noticing 
that 
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where j
bk ,∆  is defined as 
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From (6) it is clear that it is sufficient to store the 

values bke ,ω−
 (computed once) to avoid multiple 

evaluations of the exponential, both in the estimate of the 
partition function and in the scoring of the positive set. In 
the former case such an evaluation is repeated Nsample×l 
times, whilst the latter case requires a substantial number 
of evaluations, depending on the convergence of the Gibbs 
sampling procedure. The described method allows us to 
substitute the expensive computation of exponential 
functions with an access to a small matrix (l × 4 float) held 
in the L1 cache. 

A further advantage of the proposed computation 
scheme concerns the numerical error propagation, due to 
the finite arithmetic precision. Let us analyze the error 

propagation for the computation of jiHe ,−
 through the 

leftmost and rightmost parts of expression (6). This is best 

seen in the following. Let us define jef j
ω−
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numerical representation of α. The propagation of 
statistically independent errors on x and y is given by 
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The adoption of a computation scheme based on the 
rightmost part of expression (6), while maintaining all 
previous optimizations, allowed us to reduce the overall 
computing time from 6.52 to 2.15 sec/search cycle, 
corresponding to a speed-up S = 3.03. 

The performances of the presented optimizations on 
the serial code, for the test case previously described, are 
summarized in Table 1. Computing time refers to the 
addition of new optimizations, starting from top (no 
optimization present) to bottom (all optimizations 
included). Putting together parallelization and the 
described optimizations, we achieved a speed-up, on a 8 



dual-node Xeon system, with respect to the original serial 
code as downloaded from the web site [9], S = 118.  

 
Table.1: performances of Co-Bind in its various versions 

 Computing Time 
[sec/search cycle] 

Cumulative 
Speed-up 

original code 16.85 1.00
 + procedural 
version 11.47 1.47

 + 32 bit  6.52 2.59
 + exp tabled  2.15 7.85

 
4. Implementation of Co-Bind on a special 
hardware platform 
 

In order to investigating the suitability of DSP devices 
to sustain this type of computation, we have implemented  
the Co-Bind code, described in the previous section, on a 
platform constituted by a 4 DSPs co-processing board 
attached – through the PCI bus – to a bi-processor (Xeon) 
computing system..  

The co-processing board is the BittWare Tiger-PCI 
[10], equipped with four Analog Devices TigerSHARC 
ADSP-TS101TS digital signal processors [11]. The 
architecture of the board is shown in Figure 1. 

 
Figure 1. Architecture of the BittWare Tiger-PCI board, 
picture taken on the web site www.bittware.com. 
 
 Each TigerSHARC ADSP-TS101S processor has 6 
Mbit of SRAM memory, organized in one 2 Mbit bank of 
program memory and two 2 Mbit banks of data memory. 
ADSP-TS101S has a Static Superscalar architecture [11]: 
in fact, the processor’s core of each ADSP-TS101S can 
execute simultaneously from one to four 32-bit 
instructions encoded in a Very Long Instruction Word 
(VLIW) instruction line controlling the two DSP compute 
blocks (Figure 2). Each compute block contains one ALU, 
one multiplier, one 64-bit shifter and a 32-word register 
file. Three independent 128-bit wide internal data busses, 
each connected to one of three 2M bit memory banks, 

enable quad word data, instruction and I/O accesses. A 
functional block diagram of the TigerSHARC ADSP-
TS101S DSP processor is shown in Figure 2. 
 

 
Figure 2. Functional block diagram of the TigerSHARC 
ADSP-TS101S DSP processor. 
 

We decided to execute on the DSPs the most 
demanding section of the code (the estimate of the 
partition function). The remaining code runs on the dual-
processor Xeon host machine. Data are transferred from 
host to DSP and vice versa through a DMA channel. 

As previously described, the code of Co-Bind is 
composed by  two nested cycles. Each iteration of the 
inner loop of Co-Bind, using a single Xeon processor and 
a single DSP, can be split in three successive parts: host1, 
dsp and host2 respectively (Figure 3). In the host1 part the 
host machine reads, from the host memory, the data to be 
transferred to the DSP. In  the dsp part the DSP enables 
the DMA Controller to execute the DMA transfer from the 
host to its internal data memory, computes the partition 
function and activates the DMA Controller to execute the 
DMA transfer from its internal data memory to the host 
machine. In the host2 part the host performs the remaining 
operations, using the partition function value computed by 
the DSP, and updates the results in memory (they will be 
used in the next iteration). 
 
 
 

 
Figure 3.  Block diagram of  a single iteration of the inner 
loop of Co-Bind, running on the host-DSP platform. 
 

In previous example we used only two resources, one 
Xeon processor and one DSP, while 2 Xeon and 4 DSPs 
are available in the considered platform. 

In order to use all the available computational 
resources, we implemented a  multi-DSP version of the 
Co-Bind code.  We divided the entire workload of a single 

host 1 dsp

TIME

host 2



node in more concurrent processes, for instance 10. In this 
case, two processes will work exclusively on the Xeon 
processors, while the remaining eight processes will 
execute their workload on a single processor of the host 
machine and on the available DSPs of the board.  A 
typical Gantt chart representing such a parallel execution 
is shown in Fig. 4. 

Figure 4. Gantt diagram of the execution of 20 iterations 
of the inner loop of Co-Bind  in ten concurrent processes  
 

The performances of the presented implementation of 
the code on hybrid Xeon-DSP platform, for the test case 
previously described, are summarized in Table 2. Each 
row of the table corresponds to a different number of 
processes. Computing time refers to different numbers of 
concurrent processes running on the Xeon processors and 
on the DSPs. In all the tests the workload is the same, 
being the constant number of Co-Bind inner iterations 
divided among a different number of processes (ranging 
such a number from 1, running in the Xeon processor, up 
to 18, in the case of 10 processes running on the 2 Xeon 
processors and 8 on the 4 DSPs). 
 
5. Conclusions 

 
We have investigated the possibility of optimising a 

software which is a popular tool to discover co-operative 
Transcription Factors in multiple DNA sequences. This 
type of task is rather common in bioinformatics and, given 
the extensive CPU-time required for such calculations, the 
optimisation of a workhorse such as Co-Bind represents a 
fruitful advance for the interested community.   

We have considered three levels of optimisation via: 1) 
parallelization over the search procedure, 2) rewriting of 

the most CPU-intensive parts in terms of a procedural 
scheme, and 3) ameliorating the numerical way to 
compute some core quantities. The undertaken routes 
proved very successful and a considerable speed-up of the 
code, larger than two orders of magnitude, was achieved 
on a standard 16-node Xeon cluster. 

A parallel version of Co-Bind has also been 
implemented on a hybrid Xeon/DSP parallel system. 
 

Table.2: performances of Co-Bind  
Number  of 
processes on 
the host 

Number of 
processes 
on the DSP 

Computing Time 
[sec/search cycle] 

Cumulative 
Speed-up 

1 0 2.15 1.00
1 1 3.52 0.61
2 0 1.14 1.89
8 8 1.83 1.17
6 4 1.12 1.92
10 8 0.85 2.52
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