

Statistical Methods for the Discovery of Co-operative Transcription Factors: the
Co-bind Code Revised

Giovanni Lavorgna

Biotech. Dept.
 Hospital San Raffaele

Milan
lavorgna.giovanni@hsr.it

Alessandro Marongiu
ENEA

Informatic Unit
Portici,

Ylichron s.r.l, Rome
alessandro.marongiu@portici.enea.it

Simone Melchionna
Albatel SpA – Rome

and
INFM University "La Sapienza",

Physics Dept
Rome

simone.melchionna@roma1.infn.it

Paolo Palazzari

ENEA
Computing and Modeling

Unit, Rome,
Ylichron s.r.l., Rome

palazzari@casaccia.enea.it

Vittorio Rosato

ENEA
Computing and Modeling Unit

Rome
Ylichron s.r.l., Rome

rosato@casaccia.enea.it

Paolo Verrecchia

Albatel SpA
Rome

pverrecchia@hotmail.com

Abstract

Discovering co-operative Transcription Factors (TF's)
within the genome is a computationally challenging
problem, tackled through Monte Carlo-like analysis by the
Co-Bind code, developed at the Department of Genetics of
the St. Louis Washington University. Due to its statistical
nature, Co-Bind is characterized by very long execution
times, order of days on current high-end workstations, and
could benefit from parallelization and a wise optimization,
performed at both the algorithmic and coding levels.

This work presents the results achieved by
parallelizing Co-Bind and optimising the parallel code
and shows that, on a 16-processor architecture, a speed-
up greater than two orders of magnitude is achieved with
respect to the serial version released by the code’s
authors.

1. Introduction

Genes having similar expression profiles are generally

considered to have transcription mechanisms activated by
similar transcription factors (TF). The discovery of TF
sites from a collection of DNA sequences is a major task
in bioinformatics. TF's are often present in an unknown

mutated form (typically a string of length 8-12 base pairs
with 2-3 mutations) and in unknown positions along the
sequence. There exist several methods to locate TF's,
usually grouped into two distinct classes: greedy methods
to enumerate all potential recurrent strings within different
DNA sequences, and non deterministic methods which
preferentially sample strings having a high degree of
recurrence. Both strategies have their pros and cons. Given
the exceedingly large number of recurrent candidates,
exact methods are based on the introduction of different
heuristics to prune the search space, either by searching
only for a subset of all the possible patterns or by
imposing restrictions on the locations of mismatches
[4][6][7]; usually these methods work well for short
patterns and for a limited number of mismatches.

On the contrary, statistical methods are based on the
well known Gibbs sampling strategy [2][3][8], a closely
related Monte Carlo scheme, well suited to locate states
bound by conditional probabilities. These methods are
particularly well suited to identify recurrent patterns which
are present in the sequence set (the positive set) but not in
the background (i.e. the negative set, a collection of DNA
sequences not necessarily containing the binding sites,
usually constituted by the entire genome). Therefore, one
can distinguish a "true positive" solution (a TF present
only in the positive set) from a "false positive" solution,

the latter class containing the vast majority of recurrent
candidates.

TF binding sites are often organized in functional
groups which can operate in a co-operative fashion by
simultaneous interaction of two closely situated target
sites. The main difficulty in detecting pairs of TF's relies
on the fact that the relative position of co-operative TF's is
generally unknown. Therefore, the search of potential
pairs of TF's is an intensive computational task which
cannot be done by exact enumeration. Furthermore, two
sites might have individually low signal-to-noise ratio,
while the simultaneous occurrence of both signals greatly
enhances their statistical significance.

A successful method to locate pairs of putative TF's
has been developed by Stormo and collaborators [1], and
the software Co-Bind represents a practical
implementation of the underlying theory. Co-Bind works
on a statistical basis, relying on an intensive Gibbs
sampling search starting from different initial guesses.

As we will show in the following, Co-Bind relies on
the estimate of the statistical weight of strings on both the
positive and the negative set, as achieved by a Monte
Carlo-like algorithm, therefore the software is
characterized by a very high computing time, requiring up
to days to perform analysis of biologically relevant data.
As a consequence, optimization and parallelization of the
code are mandatory.

The present work will firstly recall the theory at the
bases of the Co-Bind code and then present the actions we
have performed to speed-up the calculation.

2. The Co-Bind method

The essential ingredient of Co-Bind is the definition of

a weight matrix [5] ωk,b where k=0,...,l-1 (l being the
length of the pattern) and b ranges over all four DNA
bases (A,C,G,T). This matrix will contain the consensus of
each letter as found along the recurrent pattern as the
calculation proceeds. In total, Co-Bind operates with two
weight matrices, one for each binding site. Furthermore, it
is assumed that the binding energy for a TF molecule to a
particular site is given by the following potential energy:

∑ ∑
−

= =
⋅=

1

0

3

0

l

k b

j
bkbkji xH ,,,

αω (1)

where α =1,2 and j
bkx , is defined as





=+
≠+

=
bkjsif
bkjsif

x j
bk)(

)(
, 1

0

being s(j+k) the nucleotide at position j+k in sequence s
(s(j) is the starting nucleotide of the DNA pattern at offset
j along the DNA sequence). In total, the software handles
p sequences (i=1,…,p) each containing a pair of TF's.

It is further assumed that the binding probability of a

single TF follows the Boltzmann distribution, jH
jeP −

∝ ,
where Pj is the likelihood of binding the pattern in the
background, so that one can write the partition function for
the joint occurrence of the two patterns in both the positive
and negative sets

 ()∑ ∑
=

+−
=

p

i jj

HH
jj

C jijiePPY
1 ',

'
',, (2)

The marginal probability that both factors
simultaneously occupy their respective binding sites in the
positive set, at offsets j and j' of sequence i, can be written
as

()
C

HH
C
i

Y

eb
jiji ',, +−

= (3)

Here the numerator is calculated over the positive set,
while the denominator over the background set. Next, the
method optimizes the marginal probability with respect to
the recurring representative patterns. Therefore, the
objective function, defined as

() ()∑
=

−+−=
p

i

C
jijiC YHH

p
U

1

1 ln',, (4)

is maximized with respect to the weight matrices via a
steepest descent algorithm

[]() []()
()n

bk

Cn
bk

n
bk

U














∂

∂
+=

+

α
αα

ω
ηωω

,
,,

1
 (5)

In essence, Co-Bind estimates separately the partition
function YC for the background and subsequently
optimizes with respect to the weights matrices. Given the
parametric dependence of the partition function on the
weight matrices, this implies the iterative repetition of
these two computational steps.

The pseudo code of the algorithm is the following:

input:
- positive set constituted by p sequences each

containing the two TF's
- background set

output:
- optimized weight matrices, representing the two

TF's

for each initial condition do
{
 for i=0 to Max_i
 {
 estimate the partition function YC from the

background;

 compute the scoring terms
()',, jiji HHe +−

 and

derivatives w.r.t. αω bk , ;
 sample random sites over the positive set

(Gibbs sampling);
 compute object function UC and

gradients
αω bk

CU

,∂

∂

 do steepest descent through the

[]() []()
()n

bk

Cn
bk

n
bk

U














∂

∂
+=

+

α
αα

ω
ηωω

,
,,

1

 depending on the UC value, retain the best
αω bk , values

 }
}

In realistic biological cases, Co-Bind is able to detect

the TF's in around 30% of the cases. This is probably due
to the fact that the steepest descent method optimization
may get trapped in local minima. Therefore, extensive runs
over the initial conditions must be performed in order to
increase the search performances. Typically, a few
hundreds iterations are required to converge with the
steepest descent, whilst a few thousands runs over the
initial conditions are a typical figure.

3. Optimization of Co-Bind

Co-Bind is a C++ code mostly written with an object-

oriented paradigm. Most of the calculation is made on 64-
bit floating point variables. The code does not require a
substantial amount of memory and runs well on
workstations equipped with standard RAM size.

Given the searching procedure, it is clear that Co-Bind
is prone to parallelization via trivial splitting of tasks. In
fact, one can distribute across different CPUs the iterations
of the external for each statement in the pseudo-code
previously described. The initial conditions are randomly
generated for each processor by using different seeds. We
have therefore implemented a parallel version of Co-Bind
based on the MPI message passing library. The
embarrassing parallel scheme allows to practically
achieving the ideal linear speed-up over the conventional
single processor calculations. On our system, constituted
by 8 dual-node Xeon machines clocked at 3.06 GHz and
connected through a Gigabit Ethernet switch, we obtained
a speed-up S=15.1.

Next, we have considered the optimization of Co-Bind
on the single-processor section of the code. The most
significant part of Co-Bind is embodied by the class

perceptron, which estimates the partition function
(denominator of eq. (3)), computes the scoring terms
(numerator of eq. (3)) and subsequently applies the
steepest descent procedure (eq. (5)).

The estimate of the partition function can be done in
two different ways, by enumeration of all possible states
or by sampling a fixed but large number Nsample of random
sites along the background. We have chosen to consider
the second route, which is by far the most convenient one,
and realized that, by profiling the code performances, this
is a CPU-intensive part of the calculation. In a typical test
case made of

- 30 sequence sets (10 for the positive and 20 for the

negative set),
- the search for a 15-letters long pattern
- Nsample=104,

the estimate of the partition function can require about
40 % of the total CPU time. Furthermore, the computation
of the scoring over the positive set requires another 40% of
the CPU time. Therefore, we have considered to optimize
both these sections.

As previously noticed, the class perceptron has a C++
programming style with a deep nesting of functions and
methods. This is particularly true for computing the
scoring terms over the background (eq. (3)), which turns
out to require many clock cycles. Therefore, we have
added a new class containing a modified version of the
perceptron class, renamed perceptron_inlined. The idea
is to rewrite part of the code by major in-lining of its most-
exploited functions and methods. To this aim, we have
partially sacrificed protection and hiding of variables,
previously accessed mostly via methods, by duplicating
part of them in the new class. In this way, it is a
straightforward task to optimize the code performances via
a procedural programming style. Besides the use of in-
lined functions, the procedural style allows to re-shape and
ameliorate the access to memory and avoiding cache miss
which are the typical bottleneck in Monte Carlo-like
calculations. The simple optimization of adopting a
procedural programming style for the computation of the
scoring and the partition function, while leaving nearly
unchanged the size of the executable code, allowed us to
reduce the overall computing time – referred to the typical
test case reported above – from 16.85 to 11.47 sec/search
cycle, corresponding to a speed-up S = 1.47.

Secondly, we have noticed that a 64-bit precision is
not, strictly speaking, needed for the problem at hand.
Given the non deterministic nature of the calculation, and
the fact that the final result, represented by the optimized
weight matrices, is required with a reduced number of
digits, we have considered to work with 32-bit floating
point precision in the architectures which do not support in
HW 64-bit computations. It is worth noticing that this

intervention does not allow to compare the results of the
modified code with the unmodified one in a strict sense,
i.e. by comparing numbers up to the machine round-off
precision. In fact, the optimization procedure tends to
diverge, as the iteration proceeds, due to small
perturbations in the weight matrices. However, we have
always checked the correctness of results in a statistical
way, by comparing the patterns extracted by the code, and
the relative consensus ranking, for a large number of runs
over different initial conditions. In fact, the number of
steepest descent searches should be large enough to
robustly sample the maxima of the object function. In our
typical test case 200 iterations appear to be sufficient. By
fixing this number of searches, we have verified that Co-
Bind always provided satisfactory results in its various
versions where we obtained the same 3 top scoring
patterns. The usage of 32 bit precision on machines with
32 bit architectures, given for granted the previous
optimizations, allowed us to reduce the overall computing
time from 11.47 to 6.52 sec/search cycle, corresponding to
a speed-up S = 1.76.

Thirdly, we intervened at the algorithmic level by
modifying the way the calculation of the scoring term

jiHe ,−
 is made. In fact, it is clear from the previous

section that a large number of CPU cycles is required by
the recurrent calculation of exponentials. We start noticing
that

∏ ∏
−

= =

−

∑ ∑ ⋅−
−

∆=

==

−

= =

1

0

3

0

1

0

3

0

l

k b

j
bk

xH

bk

l

k b

j
bkbkji

e

ee

,
,

,,,

ω

ω

 (6)

where j
bk ,∆ is defined as









=

=
=∆

1

01

j
bk

j
bkj

bk
xife

xif

bk
,

,
,

,ω

From (6) it is clear that it is sufficient to store the

values bke ,ω−
 (computed once) to avoid multiple

evaluations of the exponential, both in the estimate of the
partition function and in the scoring of the positive set. In
the former case such an evaluation is repeated Nsample×l
times, whilst the latter case requires a substantial number
of evaluations, depending on the convergence of the Gibbs
sampling procedure. The described method allows us to
substitute the expensive computation of exponential
functions with an access to a small matrix (l × 4 float) held
in the L1 cache.

A further advantage of the proposed computation
scheme concerns the numerical error propagation, due to
the finite arithmetic precision. Let us analyze the error

propagation for the computation of jiHe ,−
 through the

leftmost and rightmost parts of expression (6). This is best

seen in the following. Let us define jef j
ω−

= . The

former computation is
∑
−

=
−

=

1

0

l

j
j

ex
ω

ω)(, the second is

∏
−

=
=

1

0

l

j
jffy)(. Let us indicate with δα the error in the

numerical representation of α. The propagation of
statistically independent errors on x and y is given by

∑

∑

∑

−

=

−

=

−

−

=

−=

=
∂

∂
=

=
∂

∂
=

∑
−

=

1

0

1

0

1

0
1

0

l

i
i

l

i
i

i

l

i
i

i

x

e

x
x

l

j
j

δωω

δω
ω

δω
ω
ω

δ

ω

)(

)(

 (7)

∑

∑
∏

∑

−

=

−

=

−

=

−

=

=

=
∂

∂

=

=
∂

∂
=

1

0

1

0

1

0

1

0

l

i i

i

l

i
i

i

l

j
j

l

i
i

i

f
f

fy

f
f

f

f
f
fy

y

δ

δ

δδ

)(

)(

 (8)

As)()(fyx =ω , they represent the same quantity

jiHe ,− , xy δδ < since i
i

i
f
f

δω
δ

< .

The adoption of a computation scheme based on the
rightmost part of expression (6), while maintaining all
previous optimizations, allowed us to reduce the overall
computing time from 6.52 to 2.15 sec/search cycle,
corresponding to a speed-up S = 3.03.

The performances of the presented optimizations on
the serial code, for the test case previously described, are
summarized in Table 1. Computing time refers to the
addition of new optimizations, starting from top (no
optimization present) to bottom (all optimizations
included). Putting together parallelization and the
described optimizations, we achieved a speed-up, on a 8

dual-node Xeon system, with respect to the original serial
code as downloaded from the web site [9], S = 118.

Table.1: performances of Co-Bind in its various versions

 Computing Time
[sec/search cycle]

Cumulative
Speed-up

original code 16.85 1.00
 + procedural
version 11.47 1.47

 + 32 bit 6.52 2.59
 + exp tabled 2.15 7.85

4. Implementation of Co-Bind on a special
hardware platform

In order to investigating the suitability of DSP devices
to sustain this type of computation, we have implemented
the Co-Bind code, described in the previous section, on a
platform constituted by a 4 DSPs co-processing board
attached – through the PCI bus – to a bi-processor (Xeon)
computing system..

The co-processing board is the BittWare Tiger-PCI
[10], equipped with four Analog Devices TigerSHARC
ADSP-TS101TS digital signal processors [11]. The
architecture of the board is shown in Figure 1.

Figure 1. Architecture of the BittWare Tiger-PCI board,
picture taken on the web site www.bittware.com.

 Each TigerSHARC ADSP-TS101S processor has 6
Mbit of SRAM memory, organized in one 2 Mbit bank of
program memory and two 2 Mbit banks of data memory.
ADSP-TS101S has a Static Superscalar architecture [11]:
in fact, the processor’s core of each ADSP-TS101S can
execute simultaneously from one to four 32-bit
instructions encoded in a Very Long Instruction Word
(VLIW) instruction line controlling the two DSP compute
blocks (Figure 2). Each compute block contains one ALU,
one multiplier, one 64-bit shifter and a 32-word register
file. Three independent 128-bit wide internal data busses,
each connected to one of three 2M bit memory banks,

enable quad word data, instruction and I/O accesses. A
functional block diagram of the TigerSHARC ADSP-
TS101S DSP processor is shown in Figure 2.

Figure 2. Functional block diagram of the TigerSHARC
ADSP-TS101S DSP processor.

We decided to execute on the DSPs the most
demanding section of the code (the estimate of the
partition function). The remaining code runs on the dual-
processor Xeon host machine. Data are transferred from
host to DSP and vice versa through a DMA channel.

As previously described, the code of Co-Bind is
composed by two nested cycles. Each iteration of the
inner loop of Co-Bind, using a single Xeon processor and
a single DSP, can be split in three successive parts: host1,
dsp and host2 respectively (Figure 3). In the host1 part the
host machine reads, from the host memory, the data to be
transferred to the DSP. In the dsp part the DSP enables
the DMA Controller to execute the DMA transfer from the
host to its internal data memory, computes the partition
function and activates the DMA Controller to execute the
DMA transfer from its internal data memory to the host
machine. In the host2 part the host performs the remaining
operations, using the partition function value computed by
the DSP, and updates the results in memory (they will be
used in the next iteration).

Figure 3. Block diagram of a single iteration of the inner
loop of Co-Bind, running on the host-DSP platform.

In previous example we used only two resources, one
Xeon processor and one DSP, while 2 Xeon and 4 DSPs
are available in the considered platform.

In order to use all the available computational
resources, we implemented a multi-DSP version of the
Co-Bind code. We divided the entire workload of a single

host 1 dsp

TIME

host 2

node in more concurrent processes, for instance 10. In this
case, two processes will work exclusively on the Xeon
processors, while the remaining eight processes will
execute their workload on a single processor of the host
machine and on the available DSPs of the board. A
typical Gantt chart representing such a parallel execution
is shown in Fig. 4.

Figure 4. Gantt diagram of the execution of 20 iterations
of the inner loop of Co-Bind in ten concurrent processes

The performances of the presented implementation of
the code on hybrid Xeon-DSP platform, for the test case
previously described, are summarized in Table 2. Each
row of the table corresponds to a different number of
processes. Computing time refers to different numbers of
concurrent processes running on the Xeon processors and
on the DSPs. In all the tests the workload is the same,
being the constant number of Co-Bind inner iterations
divided among a different number of processes (ranging
such a number from 1, running in the Xeon processor, up
to 18, in the case of 10 processes running on the 2 Xeon
processors and 8 on the 4 DSPs).

5. Conclusions

We have investigated the possibility of optimising a

software which is a popular tool to discover co-operative
Transcription Factors in multiple DNA sequences. This
type of task is rather common in bioinformatics and, given
the extensive CPU-time required for such calculations, the
optimisation of a workhorse such as Co-Bind represents a
fruitful advance for the interested community.

We have considered three levels of optimisation via: 1)
parallelization over the search procedure, 2) rewriting of

the most CPU-intensive parts in terms of a procedural
scheme, and 3) ameliorating the numerical way to
compute some core quantities. The undertaken routes
proved very successful and a considerable speed-up of the
code, larger than two orders of magnitude, was achieved
on a standard 16-node Xeon cluster.

A parallel version of Co-Bind has also been
implemented on a hybrid Xeon/DSP parallel system.

Table.2: performances of Co-Bind
Number of
processes on
the host

Number of
processes
on the DSP

Computing Time
[sec/search cycle]

Cumulative
Speed-up

1 0 2.15 1.00
1 1 3.52 0.61
2 0 1.14 1.89
8 8 1.83 1.17
6 4 1.12 1.92
10 8 0.85 2.52

6. Acknowledgments

The described activities have been performed within

the project "GeneFun", funded by Italian Ministry of
Education, University and Research, under the framework
of D.M. 20/10/2000, Progetti Strategici, Legge 449/97.

7. References

[1] Guhathakurta D. and Stormo G.D., "Identifying target sites

for cooperatively binding factors", Bioinformatics, vol. 17,
n. 7, 608 (2001)

[2] Lawrence CE et Al. "Detecting subtle sequence signals: a
Gibbs sampling strategy for multiple alignment", Science,
vol. 262, 208. Oct 8, 1993

[3] Liu J.S., "Monte Carlo strategies in scientific computing",
Springer Verlag NY, 2001

[4] Pavesi G., Mauri G., Pesole G., "An algorithm for finding
signals of unknown length in DNA sequences",
Bioinformatics, vol. 17, suppl. 1, S207, 2001

[5] Stormo G.D., "DNA binding sites: representation and
discovery", Bioinformatics, vol. 16, 16, 2000

[6] Tompa M., "An exact method for finding short motifs in
sequences, with applications to the ribosome binding site
problem", Proc. 7th Intl. Conf. on Intelligent Systems for
Molecular Biology, 1999

[7] Wolferstetter F.et Al. "Identification of functional elements
in unaligned nucleic acids sequences by a novel tuple search
algorithm", Computer applications in biosciences, vol. 12,
71, 1996

[8] Workman C.T., Stormo G.D., "ANN-Spec: a method for
discovering transcription factor binding sites with improved
specificity", Pac. Symp. Biocomput. vol. 5, 464, 2000

[9] http://ural.wustl.edu/~dg/co-bind.html
[10] http://www.bittware.com
[11] Data Sheets of Analog Devices TigerSHARC ADSP-

TS101S

: section of code host1 which runs on the Xeon proc.
: section of code host2 which runs on the Xeon proc.

: process to run

TIME

: section of code dsp which runs in one of the DSPs

P#

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

: section computing the partition func. on the Xeon

: stall of the system

