
Parallel RNA Sequence-Structure Alignment

Tong Liu and Bertil Schmidt
School of Computer Engineering, Nanyang Technological University, Singapore 639798,

pg04221219@ntu.edu.sg, asbschmidt@ntu.edu.sg

Abstract

With the growing number of known RNA genes efficient
and accurate computational analysis of RNA sequences is
becoming increasingly important. Stochastic context-free
grammars (SCFGs) are used as a popular tool to model
RNA secondary structures. However, algorithms for align-
ing an RNA sequence to an SCFG are highly compute-
intensive. This has so far limited applications of SCFGs
to relatively small problem sizes. In this paper we present
the design of a parallel RNA sequence-structure alignment
algorithm. Its implementation on a PC cluster leads to sig-
nificant runtime savings. This makes it possible to compute
sequence-structure alignments of even the largest RNAs
such as SSU rRNAs and LSU rRNAs in reasonable time.

1. Introduction

Sequence alignment is the most important basic oper-
ation in computational molecular biology. Several align-
ment tools are well established for DNA and protein se-
quence analysis. These include BLAST [2], FASTA [16],
HMMER [1], and ClustalW [21] to name just a few. Be-
sides DNA and proteins there are also many biologically
important macromolecules that are composed of RNA such
as transfer RNA and ribosomal RNA. Alignment of RNA
sequences is important to identify RNA gene families and
RNA motifs [17]. Since the number of known RNA genes
is expanding rapidly, fast and sensitive RNA sequence anal-
ysis is of high importance to research in this area [20].

Unfortunately, many RNA families only exhibit a rel-
atively low degree of primary sequence similarity but
rather conserve a consensus base-paired secondary struc-
ture. Techniques that generally work well for protein and
DNA sequence analysis are therefore generally not well
suited for studying RNA. Stochastic context-free grammars
(SCFGs) have been introduced in computational biology to
address this problem [9,18]. SCFGs provide a general prob-
abilistic framework for RNA families that models both pri-
mary sequence consensus as well as information present in

the secondary structure. Applications of SCFG-based RNA
models are searching databases for homologous RNA se-
quences with high sensitivity and building multiple RNA
sequence alignments. In the context of biological sequence
analysis, SCFGs can be seen as an extension of profile
Hidden Markov Models (HMMs) to cope with secondary
structures [7]. RFAM [11] is a public available database
of SCFGs representing non-coding RNA families, which is
comparable to the PFAM database of profile HMMs repre-
senting protein families [4].

Applications of SCFG-based RNA models require the
alignment of an RNA sequence to a model. Even though
polynomial-time dynamic programming algorithms exist
for calculating the optimal alignment, the runtime is still
very high. The corresponding computational complexity
for a sequence of length L and a model with K states is
O(K · L2 + B · L3), where B is the number of bifurcation
states in the model. This high computational alignment cost
has limited the use of SCFG-based RNA models to small
structural RNAs, e.g. transfer RNA genes [14]. However,
the alignment runtime on sequential computers is too high
for many larger RNAs of interest such as ribosomal RNA
(rRNA).

One approach to speed up this time consuming proce-
dure is to introduce heuristics in the alignment algorithms
[5,13]. The main drawback of this solution is that the more
efficient the heuristics, the worse is the quality of the result.
Another approach to get high quality results in a reason-
able time is to use parallel processing. In this paper we
present an efficient parallel algorithm for aligning an RNA
sequence to an SCFG model. The algorithm has been im-
plemented on a PC cluster using C and MPI. The imple-
mentation achieves a speedup of 16 using 20 processors.
This makes it possible to align long subunit rRNAs (LSU
rRNAs) using SCFGs in approximately 15 minutes, which
requires 4 hours on a single Pentium 4.

Parallelization of dynamic programming alignment al-
gorithms in computational biology has been done several
times before, e.g. [3,10,19]. Previous approaches focused
on parallelizing two-dimensional dynamic programming al-
gorithms such as the Smith-Waterman and the Viterbi algo-

Table 1. The seven state types for modelling RNA with corresponding production rules. Each overall production
probability is the independent product of an emission probability ev and a transition probability tv. Both are position
dependent parameters that depend on state v. For example, a P -state v generates two characters a and b (one of 16
possible base-pairs) with probability ev(a, b) and transits to one of several possible new states Y with probability
tv(Y). B-states split into two new S-states with probability 1 and E-states terminate derivations.

State type Description Production Emission Transition
P pair emitting P → aY b ev(a, b) tv(Y)

L left emitting L → aY ev(a) tv(Y)

R right emitting R → Y a ev(a) tv(Y)

B bifurcation B → SS 1 1
S start S → Y 1 tv(Y)

D delete D → Y 1 tv(Y)

E end E → ε 1 1

rithm. The solution presented in this paper is more complex
since it involves a three-dimensional dynamic programming
algorithm with different recurrence relations for the individ-
ual states of the grammar.

The rest of this paper is organized as follows. Section
2 provides a description of SCFG models of RNA. The dy-
namic programming algorithm for aligning a sequence to
a model is described in Section 3. The new parallel algo-
rithm is introduced in Section 4. Experimental results are
presented in Section 5. Section 6 concludes the paper.

2. SCFG models of RNA

Context-free grammars (CFGs) are well-known struc-
tures in formal language theory. Mathematically, a CFG
G is described by a 4-tuple (Σ, V, S, P), where

• Σ is a finite set, called the alphabet, e.g. Σ =
{a, c, g, u} for RNA

• V is a set of non-terminals (also called states)

• P is a set of production rules α −→ β , where α is a
non-terminal and β can be any string of non-terminals
and terminals (terminals are characters from the alpha-
bet plus the empty string ε)

• S ∈ V is a special start non-termninal

A string s ∈ Σ∗ can be derived in G from a non-terminal
U , if U can be rewritten to s by a sequence of produc-
tion rules. A CFG G = (Σ, V, S, P) generates a language
over , denoted by L(G) as follows: A string s ∈ Σ∗ is in
L(G) ⇐⇒ s can be derived from S. An SCFG G is a CFG
in which all production rules are assigned probabilities such
that the sum of the probabilities of all possible production
rules from any given non-terminal is one [7].

For modelling RNA secondary structures we are using
a specific SCFG architecture that has only seven different

types of states (non-terminals). The states with associated
production rules are shown in Table 1. Figure 1 illustrates
an example how they can be used to model an RNA se-
quence family with annotated secondary structure multiple
alignment. P-states are used to model base-paired columns,
L-states model single-stranded columns wherever possible,
R-states model bulges on the 3’ side of a stem, and B-states
model splits into multiple stems or multi-branch loops.

The SCFG in Figure 1 is flexible enough to tolerate
mismatches to the consensus sequence by replacing spe-
cific base assignments in the parse tree with symbol emis-
sion probabilities from one of the 16 possible pairwise nu-
cleotide combinations (for P -states) or one of the 4 possible
singlet nucleotides (for L- and R-states). However, it does
not allow for insertions and deletions. In order to account
for insertions and deletions, states are extended to nodes as
follows: P -states to MATP -nodes, L-states to MATL-
nodes, R-states to MATR-nodes, B-states to BIF -nodes,
S-states to ROOT -, BEGL- or BEGR-nodes, and E-
states to END-nodes. Figure 2a shows this expansion for
the model in Figure 1. Each node-type itself consists of
a group of states with particular properties (see Table 2).
Match states (MP , ML, MR) account for the conserved
consensus columns of an alignment. Insert states (IL, IR)
account for insertions relative to the consensus. Delete
states (DEL) emit nothing and allow for the possibility of
deletions relative to the consensus. States are connected
to certain other states by state transitions. All node-types
have fixed state transition structures, which are displayed in
Figure 2b. The resulting SCFG-architecture for modelling
RNAs is called Covariance Model (CM) [9].

3 Alignment Algorithm

An RNA sequence can be aligned to a CM to determine
the probability that the sequence belongs to the modelled
family. The most probable parse tree generating (or emit-

2

C
G

G C
C

U A•

•

A
G A

G

U
C
• •
G C

A

A

C

C

Seq1: C G U A G G G A C C U C G A C C A C G

Seq2: G G U A G A U C A G A C G A C C A U U

Seq3: C A G A G A G A C C U C G A C C A C G

Seq4: C G U A G A G A C C U C G G C U A C G(a) (b)

(c)

S1 L2

L2 cB 3…

B 3 S 4S 13

S 4 P 5

P 5 gR 6c…

R 6 P 7c...

P 7 uL 8a ...

L8 aL 9…

L9 gL 10…

L10 aL 11…

L11 gE 12…

E 12

Stem 1 Stem 2

S 13 L14

L 14 uP 15…

P 15 cP 16g…

P 16 gL 17c...

L 17 aL 18…

L 18 cL 19…

L 19 cL 20…

L 20 aE 21…

E 21 (d)

S 1

L2

B 3

S 4

P 5

R 6

P 7

L8

L 9

L10

L11

E 12

S 13

L14

P 15

P 16

L 17

L18

L 19

L 20

E 21

C

G

U

C

C

A

A

G

A

G

U

G

G C

A

C

C

A

C

e e

Figure 1. (a) An ungapped multiple alignment of an RNA family with 4 sequences. The annotated secondary structure
of this family is represented by the boxed base-paired positions in the alignment and base-paired partners are connected
by lines. (b) Corresponding consensus secondary structure. (c) Production rules of an SCFG modelling this structure
using the state types from Table 1. For clarity, only one of the possible productions is shown for each state (the
production corresponding to the consensus sequence of the multiple alignment). (d) Parse tree for the consensus
sequence in which RNA nucleotides are assigned to the SCFG-states. Parse trees can be used to display sequences
emitted (or generated) by the SCFG.

Table 2. Basic node-types of a CM with corresponding states.
Node MATP MATL MATR BIFUR ROOT BEGL BEGR END

States MP, ML, MR ML MR, D BIF BEG BEG BEG E

DEL, IL, IR DEL, IL IR IL, IR IL

ting) the sequence determines the similarity score. The
CYK/inside algorithm computes this score by dynamic pro-
gramming (DP) as follows [12]. Given is an input sequence
x = x1 . . . xL of length L and a CM G of length K with
states numbered in preorder traversal. The CYK/inside al-
gorithm iteratively calculates a 3-dimensional DP matrix
M(i, j, k) for all i = 1, . . . , j + 1, j = 0, . . . , L, k =
1, . . . ,K. M(i, j, k) is the log-odds score of the most likely
CM parse tree rooted at state k that generates the subse-
quence xi . . . xj . The matrix is initialized for the small-
est subtrees and subsequences, i.e. subtrees rooted at E-
states and subsequences of length 0. The iteration then
proceeds outwards to progressively longer subsequences
and larger CM subtrees. Computation of M(i, j, k) for

1 ≤ i ≤ j + 1, 0 ≤ j ≤ L, 1 ≤ k ≤ K is given by the
following recurrences, where d = j − i + 1, S(k) is the
type of state k, C(k) is the set of states that k can transit
to, ek(xi) is the log-odds score of the emission probabil-
ity of character xi in state k, tk(γ) is the log-odds score of
the transition probability from state k to state γ. The re-
currences show that calculation of M(i, j, k) is state-type
dependant. For instance, if S(k) = MP , then k emits xi,
xj and transits to one of its children states C(k). How-
ever, the score of the optimal parse tree rooted in that gen-
erates xi+1 . . . xj−1 has already been calculated in the DP-
matrix cell M(i + 1, j − 1, γ). The maximum over all
possible choices of child states is then taken to compute
M(i, j, k) : ek(xi, xj)+ max

γ∈Ck

[M(i+1, j−1, γ)+ tk(γ)].

3

M(i, j, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
γ∈Ck

[M(i, j, γ) + logtk(γ)] if S(k) ∈ {DEL,BEG}
ek(xi, xj) + max

γ∈Ck

[M(i + 1, j − 1, γ) + tk(γ)] if S(k) ∈ MP and d ≥ 2

ek(xi) + max
γ∈Ck

[M(i + 1, j, γ) + tk(γ)] if S(k) ∈ {ML, IL} and d ≥ 1

ek(xj) + max
γ∈Ck

[M(i, j − 1, γ) + tk(γ)] if S(k) ∈ {MR, IR} and d ≥ 1

max
i−1≤mid≤j

[M(i,mid, kleft) + M(mid + 1, j, kright)] if S(k) ∈ BIF

0 if S(k) ∈ E
−∞ otherwise

(a) ROOT1

MATL 2

BIF3

BEGL 4

MATP 5

MATR 6

MATP 7

MATL 8

MATL 9

MATL 10

MATL 11

END12

BEGR 13

MATL14

MATP 15

MATP 16

MATL17

MATL 18

MATL 19

MATL 20

END 21

BEG

IL IR

ML DEL

IL

BIF

BEG

ML MP MRDEL

IL IR

(b)
A
C
G
U

A
C
G
U

A
C
G
U

A
C
G
U

A
C
G
U

A
C
G
U

A
C
G
U

A
C
G
U

A
C
G
U

A
C
G
U

MRDEL

IR

A
C
G
U

A
C
G
U

ROOT 1

MATL 2

BIF3

BEGL 4

MATP 5

MATR 6

Figure 2. (a) States of the SCFG in Fig. 1 are expanded to nodes. (b) Corresponding internal state-transition structure
of the first six nodes. Emission of a character is indicated by ACGU left and right of a state. Each transition and
emission has an associated probability (not displayed here).

The recurrence relations for all other state-types can be ex-
plained in a similar way.

At the end of the iteration M(1, L, 1) contains the score
of the best parse of the complete sequence with the com-
plete model, i.e. the global alignment. The optimal parse
tree itself can be reconstructed by a traceback procedure,
that follows the maximum scoring path through the DP ma-
trix at each state. The whole algorithm requires O(L2 · K)
memory and O(K ·L2+B ·L3) time, where B is the number
of BIF-states of G.

In order to compute only the optimal alignment score it is
not necessary to store the complete three-dimensional DP-
matrix and the space-complexity in this case can be easily
reduced to O(L2 · logK). The steep memory requirement
of O(L2 · K) for the traceback procedure is only practi-

cal for relatively small sequences and models. It becomes
prohibitively large for aligning longer RNAs. However, by
using a divide-and-conquer approach the space complexity
can be improved to O(L2 · logK) at the expense of roughly
doubling the computation time [8]. The idea is similar to
the linear space version of the Needleman-Wunsch algo-
rithm for pairwise sequence alignment [15]. The divide-
and-conquer approach identifies DP-matrix cells that must
be part of an optimal alignment. This splits the remaining
problem into smaller subproblems. These subproblems are
then recursively split into even smaller subproblems until
the optimal alignment is determined. This method reduces
the memory requirement significantly. However, the corre-
sponding runtime is still very high. We have therefore de-
veloped an efficient parallel version of this algorithm, which

4

is described in the next section.

4. Parallel Alignment Algorithm

DP algorithms often exhibit the character of a wavefront
computation, that is, each matrix element depends on a set
of previously computed elements. Figure 3 shows an ex-
ample for a triangular two-dimensional matrix. Figure 3b
displays the dependency relationship: each matrix element
(i, j) is computed from the matrix cells (i + 1, j), (i, j −
1), (i + 1, j − 1). The wavefront computation moves along
diagonals as depicted in Figure 3a, that is, the shift direc-
tion is from southwest to northeast. Depending on the de-
pendency relationship different wavefront shift directions
are possible. The dependency relationship for layers of
non-BIF states in the CYK algorithm is similar to Figure 3
with the difference that several layers have to be considers:
M(i, j, k) is computed from the matrix cells M(i + 1, j, γ)
if S(k) ∈ {ML, IL}, M(i, j−1, γ) if S(k) ∈ {MR, IR},
M(i + 1, j − 1, γ) if S(k) = MP or M(i, j, γ) if S(k) ∈
{DEL,BEG} for all C(k).

(a)

(i,j)

(b)

Figure 3. Example of a wavefront computation in
a triangular two-dimensional DP matrix. (a) Data
dependency: cell (i, j) depends on the cells (i +
1, j), (i, j − 1), (i + 1, j − 1). (b) Wavefront shift
direction: cells within a diagonal can be computed in
parallel.

Parallelization of the wavefront computation has been
done in different ways depending on the particular parallel
architecture being used. On fine-grained architectures, the
computation of each cell within a diagonal is parallelized
[19]. However, this technique is only efficient on architec-
tures such as systolic arrays, which have an extremely fast
inter-processor communication.

In order to parallelize the wavefront computation on
coarse-grained architectures like PC clusters it is more con-
venient to assign a number of adjacent columns to each pro-
cessor. In order to reduce communication time further, ma-
trix cells can be grouped into blocks. Assuming there are P
processors with id’s ranging from 0 to P − 1, then proces-
sor i can compute all the cells within a block after receiving
the required data from processor i − 1. Figure 4 shows an

1 2 3 4

P0 P1 P2 P3

k

j

i

5
6

4
3

6
7 8

5
4

7
6

5

4
5

3
2

Figure 4. Decomposition of the three-dimensional
DP-matrix using four processors P0, . . . , P3. The
numbers 1−8 represent consecutive wavefront phases
in which cells are computed. In phase j, Pi first re-
ceives the right column from Pi − 1 which has been
computed in phase j−1, computes the cells within its
own block and then sends the right column to Pi + 1.

example of the computation of the CYK algorithm using
P = 4. After finishing the computation for a layer of the
three-dimensional DP-matrix, lower index processors can
start with the calculation of the next layer.

Given is an RNA sequence x of length L and a CM
G with K states. The three-dimensional DP-matrix can
then be partitioned into equal sized areas by assigning the
columns to processor i for i = 0, . . . , P − 1. This approach
is efficient for wavefront computations with an even work-
load across matrix cells, i.e. each matrix cell is computed
from the same number of other matrix cells. We call such
a wavefront computation regular. However, for irregular
wavefront computation problems, partitioning into equal-
sized areas does not work well, since it leads to an uneven
workload.

An irregular dependency pattern occurs in the BIF-
state layers: M(i, j, k) is computed from all matrix cells
M(i,mid, kleft) and M(mid+1, j, kright) for mid = i−1
to j. Thus, the load to compute one element in the ma-
trix increases along the shift direction of the wavefront. We
call this the load computation density. Figure 5 shows the
change of load computation density in a BIF-state layer
along the wavefront shift direction by using increasingly
blacking shades.

Equal-area column-based matrix decomposition will
therefore lead to a poor performance in BIF-state layers,
since the workload of processor Pi is higher than the work-
load of processor Pi−1. In order to achieve columnwise de-
composition with even workload in BIF-layers, processor

5

(a) (b)

(i,j)

BIF -layer k

layer kleft

i

j

layer kright

Figure 5. (a) Data dependency in a BIF -layer: Cell α(i, j, k) depends on the cells α(i,mid, kleft) and α(mid +
1, j, kright) for all i − 1 ≤ mid ≤ j. (b) Load computation density in a BIF-layer increases along the wavefront shift
direction.

i(0 ≤ i ≤ P − 1) needs to process the columns . However,
changing the number of assigned columns to each proces-
sor for BIF-layers and non-BIF-layers during computation
of the three-dimensional CYK DP-matrix would increase
the communication overhead. Our final partitioning scheme
therefore assigns columns

√
i/P · L, . . . ,

√
i + 1/P · L to

processor i, i = 0, . . . , P − 1. The parameter h depends
on the number B of BIF-states in G and is determined by
the formula . The formula assumes that , which is a rea-
sonable assumption for RNA CMs. The following pseu-
docode shows the details of the parallel CYK algorithm
(without traceback) using the described partitioning scheme
with wavefront computation.

The implementation of a parallel space-saving CYK
traceback algorithm requires the CYK/inside algorithm as
well as the CYK/outside algorithm. The CYK/outside algo-
rithm iteravely calculates DP-matrix B[i, j, k]. B[i, j, k] is
the log-odds score of of the most likely CM parse tree for a
CM generating a sequence x1 . . . xL excluding the optimal
parse subtree rooted at state k that accounts for the subse-
quence xi . . . xj . The score of the excluded optimal parse
tree can be calculated by the CYK/inside algorithm and
is stored in M [i, j, k]. Therefore, argmaxi,j(M [i, j, k] +
B[i, j, k]) identifies an index (i, j, k) the optimal parse tree
passes through for any state k, assuming that k is in the
optimal parse. The space-saving CYK traceback algorithm
takes advantage of this fact as follows.

Since we are considering global alignment, any
parse tree has to include all BIF- and BEG-states.
Hence, by choosing any BIF-state b1 with child
states b1left and b1right and calculating: (i, j, k) =
argmaxi′,j′,k′(B[i′, j′, b1] + M [i′, k′, b1left] + M [k′ +
1, j′, b1right]), three cells can be identified that must be
used in the optimal alignment: (i, j, b1), (i, k, b1left), and

Algorithm 1 Parallel CYK/Inside without traceback

Input: An RNA sequence x = x1, . . . xL of length L, a CM subgraph
G of length K with states numbered in preorder traversal. S(k) is the
type of state k, C(k) is the set of states that k can transit to , P (k) is
the set of parents of state k. jp, . . . jp+1 − 1 are the columns of matrix
M assigned to processor p ∈ {0, . . . , np − 1} using the described
partitioning scheme. np is the number of processors.

Output: Optimal global alignment score M [1, L, 1] in the matrix M .
FOR all processors p ∈ {0, . . . , np − 1} do in parallel
FOR k := K down to 1 do flag[k] := false; flag[] is local to

each processor
FOR k := K down to 1 do {

IF (p �= 0) then : {
IF (k = left child of a BIF -state) then

recv (M [∗, 0 . . . jp − 1, k] from p − 1);
// blocking receive of columns 0 . . . jp − 1 of layer k, if k is

left child of a BIF -state
IF (S(k) ∈ {MR, IR, MP}) then
for all γ ∈ C(k) do
IF (!flag[γ]) then {

recv (M [∗, jp − 1, γ] from p − 1);
// blocking receive of column jp − 1 from all children

layers of k from proc p − 1; avoid receiving same data twice
flag[γ] := true ; } }

FOR j := jp to jp+1 − 1 do
FOR i := j + 1 down to 1 do

calculate cell M [i, j, k] using the formula of Section 3
IF (p �= np − 1) then {
IF (k = left child of BIF -state) then

Isend (M [∗, 0 . . . jp+1 − 1, k] to p + 1);
// non-blocking send of columns 0 . . . jp+1 − 1 of layer k to

the processor p + 1
IF(MR or IR or MP ∈ P (K)) then

Isend (M [∗, jp+1 − 1, k] to p + 1);
// non-blocking send of column jp+1 − 1 of layer k to the

processor p + 1 } }
IF (p = np − 1) then return α[1, L, 1];

}END

6

(k + 1, j, b1right). This splits the remaining problem into
three smaller subproblems, which are then solved recur-
sively using divide-and-conquer.

The parallel space-saving algorithm implementation
therefore first calculates the layers b1left and b1right of
matrix M by executing the parallel CYK/inside algo-
rithm, where the outer k-loop only has to iterate down
to b1left. Subsequently, a parallel CYK/outside algo-
rithm is performed to calculate layer b1 of matrix B. The
parallel CYK/outside algorithm is similar to the parallel
CYK/inside algorithm with the main difference that outer
k-loop now iterates from 1 up to b1. We are choosing the
splitting-state b1 as the first BIF-state of a CM. This simpli-
fies the computation of the CYK/outside algorithm, since it
does not contain any internal BIF-states.

Both parallel implementations use deallocation of layers
as described in Section 3. After completion of the parallel
inside and outside algorithm, argmaxi′,j′,k′(B[i′, j′, b1] +
M [i′, k′, b1 + left] + M [k′ + 1, j′, b1right]) can be calcu-
lated by a BIF-state type of computation followed by a max-
imum reduction operation in the root processor. The root
processor then initiates the parallel calculation of each of
the three smaller subproblems. If a remaining subproblem
is small enough, the corresponding traceback is computed
sequentially within a single processor.

5. Performance Evaluation

We have implemented the presented parallel alignment
algorithms using C and MPI and experimentally evaluated
its performance on a PC cluster with 10 nodes running
Linux. Each node consists of two Intel-Xeon CPUs with
a clock rate of 2GHz and 1GByte of RAM. The nodes are
connected by a 1GBit/s Myrinet switch. The implementa-
tion has been evaluated for CMs of different sizes and se-
quences of different lengths (see Table 3). Tables 4 and 5
show the corresponding runtimes and speedups on our clus-
ter as the number of processors varies for alignment with
and without traceback.

Table 3. The five CMs and RNA sequences used for the
runtime evaluation of our algorithm. Models and sequences
are chosen from four structural RNA types: SRP (signal
recognition particle) RNA, RNase P, SSU rRNA, and LSU
rRNA. The CMs have been constructed from annotated sec-
ondary structure multiple alignments from RDP [6].

Structural SRP RNase SSU SSU LSU
RNA type RNA rRNA1 rRNA2 rRNA

Sequence Length 301 596 1190 1545 2904
CM Length (K) 927 1725 4122 4789 9023

BIF-states 4 7 13 30 65

Table 4. Runtimes in seconds of the parallel CYK inside
algorithm without traceback for the five CM-sequence pairs
of Table 3. The speedup compared to a single processor is
also reported.

#Processors 1 2 4 8 16 20
SRP RNA 3.1 1.9 1.2 1.1 - -

(1.6) (2.6) (2.9) - -
RNase P 7.0 3.8 1.9 1.4 - -

(1.8) (3.6) (5.1) - -
SSU rRNA1 516 303 138 68 39 32

(1.7) (3.8) (7.6) (13.2) (16.1)
SSU rRNA2 747 411 195 103 55 46

(1.8) (3.8) (7.2) (13.6) (16.2)
LSU rRNA 9936 5363 2620 1410 730 602

(1.8) (3.8) (7.0) (13.6) (16.5)

Table 5. Runtimes in seconds of the parallel space-saving
CYK algorithm with traceback for the five CM-sequence
pairs of Table 3. The speedup compared to a single proces-
sor is also reported.

#Processors 1 2 4 8 16 20
SRP RNA 10.1 7.3 3.4 1.94 - -

(1.4) (2.9) (5.2) - -
RNase P 12.5 7.85 4.2 2.4 - -

(1.6) (2.9) (5.2) - -
SSU rRNA1 783 505 243 125 63 54

(1.5) (3.2) (6.2) (12.4) (14.2)
SSU rRNA2 1119 746 352 182 95 79

(1.5) (3.17) (6.14) (11.8) (14.1)
LSU rRNA 15768 9793 4778 2530 1457 1058

(1.6) (3.3) (6.2) (12.6) (14.9)

A multiple sequence alignment (MSA) can be con-
structed by iteratively aligning each sequence to a trained
CM. This technique has been previously applied to build
MSAs of relatively short tRNA sequences with high accu-
racy [9]. Parallelism makes it possible to extend this method
to longer sequences. We have used our parallel program
with traceback to construct an MSA of 60 Ecoli SSU rRNA
sequences and one of 8 Ecoli LSU rRNA sequences. The
procedure takes around 1.5 hours on our PC cluster inclu-
sive model training, which would have taken almost one day
on a single Pentium 4. The quality of the produced align-
ments is assessed by comparing it to a trusted alignment
from the Ribosomal database (RDB) [6] (see Table 6). Ta-
ble 6 also shows a comparison to the accuracy of alignments
produced by HMMER [1] and ClustalW [21].

7

Table 6. Comparison of the accuracy of MSAs of 60 Ecoli
SSU rRNA sequences and 6 Ecoli LSU rRNA sequences
produced by three different programs. Parallel CYK and
HMMER start by training a CM and a Hidden Markov
Model from a set of 30 SSU rRNA test sequences and 20
LSU rRNA test sequences with a known secondary struc-
ture. ClustalW is a progressive mutltiple alignment method
and does not require any training. The accuracy is then ob-
tained by comparing the computed MSAs to trusted MSAs
of the correspending sequences from RDB [6].

Program ClustalW HMMER Parallel CYK
SSU rRNA 23.9 % 66.8 % 76.0 %
LSU rRNA 26.8% 65.5% 77.8%

6. Conclusions and Future Work

In this paper, we have presented a parallel algorithm
for aligning an RNA sequence to an SCFG using a wave-
front parallelization technique. Its implementation on a PC
cluster using MPI achieves linear speedup. The proposed
method allows the construction of MSAs of long RNA se-
quences such as SSU rRNA and LSU rRNA in reasonable
time and with high accuracy. The current implementation
only considers global alignment. Our future work will in-
clude extending our parallel algorithm to local and semi-
global alignments. Its implementation can then be used for
SCFG-based RNA sequence database scanning.

References

[1] http://hmmer.wustl.edu

[2] Altschul, S.F., Gish, W., Miller, W, Myers, E.W., Lipman,
D.J. Basic Local Alignment Search Tool, Journal of Molecu-
lar Biology 215, 403-410 (1990)

[3] Aluru, S., Fuamura, N., Mehrotra, K. Parallel Biological Se-
quence Comparison using Prefix Computations, Journal of
Parallel and Distributed Computing, 63, 264-272 (2003)

[4] Bateman, A., Birney, E., Cerutti, L., Durbin, R., Etwiller,
L., Eddy, S.R., Griffith-Jones, S., Howe, K.L. Marshall, M.,
Sonnhammer, E. The PFAM Protein Families Database, Nu-
cleic Acids Research 30, 276-280 (2002)

[5] Brown, M.P. Small Subunit Ribosomal RNA Modeling using
Stochastic Context-Free Grammars, Proceedings ISMB’00,
57-66 (2000)

[6] Cole, J.R., Chai, B, Marsh, T.L., Farris, R.J., Wang, Q., Ku-
lam, S.A., Chandra, S., McGarrell, D.M., Schmidt, T.M.,
Garrity, G.M., Tiedje, J.M.. The Ribosomal Database Project
(RDP-II): previewing a new autoaligner that allows regular
updates and the new prokaryotic taxonomy, Nucleic Acids
Research 31, 442-443 (2003)

[7] Durbin, R., Eddy., S.R., Krogh, A., Mitchison, G. Biologi-
cal Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids, Cambridge University Press (1998)

[8] Eddy, S.R. A Memory-Efficient Dynamic Programming Al-
gorithm for Optimal Alignment of a Sequence to an RNA
Secondary Structure, BMC Bioinformatics 3:18 (2002)

[9] Eddy, S.R., Durbin, R. RNA Sequence Analysis using Covari-
ance Models Nucleic Acids Research 22, 2079-2088 (1994)

[10] Edmiston, E.W., Core, N.G., Saltz, J.H., Smith, R.M. Par-
allel Processing of Biological Sequence Comparison Algo-
rithms, Journal of Parallel Programming 17 259-275 (1988)

[11] Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna A.,
Eddy S.R. RFAM: an RNA family database, Nucleic Acids
Research 31, 439-441 (2003)

[12] Lari, K., Young, S.J. Applications of Stochastic Context-
Free Grammars using the Inside-Outside Algorithm, Com-
puter Speech and Languages 5, 237-257 (1991)

[13] Lenhof, H.P., Reinert, K., Vingron, M. A polyhedral ap-
proach to RNA sequence structure alignment, Journal of
Computational Biology 5, 517-530 (1998)

[14] Lowe, T., Eddy, S.R. tRNAscan-SE: a Program for Improved
Detection of Transfer RNA genes in Genomic Sequences, Nu-
cleic Acids Research 25, 955-964 (1997)

[15] Myers, E.W., Miller, W. Optimal Alignments in Linear
Space, Computer Applications in the Biosciences 4, 11-17
(1988)

[16] Pearson, W.R., Lipman, D.J. Improved Tools for Biological
Sequence Comparison, Proc. Natl. Acad. Sci. 4, 2444-2448
(1988)

[17] Rivas, E., Eddy S.R. Noncoding RNA gene detection using
comparative sequence analysis, BMC Bioinformatics 2(1), 8-
27 (2001)

[18] Sakakibara, Y., Brown, M., Hughey, R., Mian, I.S., Sjolan-
der, K., Underwood, R.C., Haussler, D. Stochastic Context-
Free Grammars for tRNA modeling, Nucleic Acids Research
22, 5112-5120 (1994)

[19] Schmidt, B., Schroder, H., Schimmler, M. Massively Parallel
Solutions for Molecular Sequence Analysis, 1st International
Workshop on High Performance Computational Biology, in
Proc. IPDPS’02 (2002)

[20] Storz, G. An expanding universe of noncoding RNAs, Sci-
ence 296, 1260-1263 (2002)

[21] Thompson, J.D., Higgins, Gibson, T.J. ClustalW: Improv-
ing the sensitivity of progressive multiple sequence alignment
through sequence weighting, position specific gap penalties,
and weight matrix choice, Nucleic Acids Research 22, 4673-
4680 (1994)

8

