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Abstract

We consider a hypergraph model for the protein complex
network obtained from a large-scale experimental study to
characterize the proteome of the yeast. Our model views
the yeast proteome as a hypergraph, with the proteins cor-
responding to vertices and the complexes corresponding to
hyperedges. Previous work has modeled the protein com-
plex data as a protein-protein interaction graph or as a com-
plex intersection graph; both models lose information and
require more space. Our results show that the yeast protein
complex hyper-graph is a small-world and power-law hy-
pergraph. We design an algorithm for computing the �-core
of a hypergraph, and use it to identify the core proteome,
the maximum core of the protein complex hypergraph. We
show that the core proteome of the yeast is enriched in es-
sential and homologous proteins. We implement greedy ap-
proximation algorithms for variant minimum weight vertex
covers of a hypergraph; these algorithms can be used to
improve the reliability and efficiency of the experimental
method that identifies the protein complex network.

Keywords: protein complex network, hypergraph,
small-world network, power-law network, graph core, ver-
tex cover

1. Introduction

Proteins accomplish their tasks within a cell by forming
multi-protein complexes, which are assemblies of groups
of proteins. Recently a large-scale experimental study by
Cellzome has attempted a systematic characterization of the
multi-protein complexes in yeast [3]. This study is a part
of a wider effort to characterize the proteome, all the pro-
teins in an organism, with a view to understanding their se-
quence, structure, cellular localization, function, and role
in cellular processes. (Identifying the proteome is a chal-
lenging task since alternate splicing and post-translational
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modifications potentially enable many proteins to be made
from a gene. The proteome is also more dynamic than the
genome, since the set of proteins made by a cell depends
on the phase of the cell cycle and the environmental condi-
tions.)

How should the data from large-scale protein complex
studies be modeled in order to facilitate efficient algorithms
to query the data? The data consists of the protein member-
ship lists of the protein complexes. The authors of the Cel-
lzome study and others have used graph models. However,
graph models that have been proposed to date have repre-
sented the data either as protein-protein interaction graphs,
or as complex intersection graphs, by projecting out either
the complexes or the proteins. Unfortunately some of these
graph models make assumptions about the structure of the
protein complexes, for which there is insufficient data; other
graph models lose some of the information in the data. In a
protein-protein interaction graph, either all the proteins in a
complex are considered to form a clique, or a distinguished
protein (called the bait protein from the nature of the exper-
iments) is considered to be connected to all the others. But
both these assumptions are unphysical; in a large complex
consisting of nearly hundred proteins, say, it would be ster-
ically impossible for all the proteins to bind to each other,
or for one protein to bind to all others. The other model
used, the complex intersection graph, does not represent the
proteins at all.

We propose a hypergraph model for the protein com-
plex data. We characterize the properties of the yeast pro-
tein complex hypergraph from the Cellzome experimental
study. We show that it is both a power-law (scale-free) net-
work and a small world network. Then we discuss the con-
cepts of the �-core of a graph and of a hypergraph, and de-
scribe an algorithm for computing the various cores. Using
this algorithm, we compute the maximum core of the yeast
protein complex hypergraph, and thereby characterize the
core proteome. One of the problems with large-scale pro-
teomic techniques when compared to smaller-scale methods
is the relatively lower reliability of the experimental results.
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Hence we consider the problem of selecting a subset of the
proteins to be bait proteins (that pull other proteins in com-
plexes with them) in the Cellzome experiment. Minimum
weight vertex covers (and multicovers) in hypergraphs are
used to choose a set of candidate bait proteins that (1) are
provably within a small factor of the optimum cover, and (2)
identify the protein complexes with improved reliability.

���� ��� ������	� �
���	���

In the Cellzome approach [3] for identifying multi-
protein complexes, a set of bait proteins in the yeast is se-
lected. The genes corresponding to the bait proteins are
tagged with a tandem-affinity-purification (TAP) tag, and
inserted into dividing yeast cells. In the yeast cells the
tagged gene is expressed into tagged bait protein. The
tagged bait protein and other proteins that are complexed
with it are isolated from the lysed cells as described below.
The TAP tag is used to purify a protein complex through
two affinity column separations before the proteins in it are
identified via mass spectrometry.

The TAP tag consists of three components. The first
component is a protein that binds to immunoglobulin G
beads in an affinity column, and the multi-protein complex
is isolated from the rest of the cell lysate through this bind-
ing. The second component is a protease, which is used to
remove the protein complex from the column by cleaving
it from the immunoglobulin beads. The third component is
a calmodulin binding peptide, which is used to purify the
complex a second time by its binding to a second affin-
ity column containing calmodulin beads. The complex is
eluted from this column using a chemical that preferentially
binds to the beads, and the proteins in the complex are iden-
tified through mass spectrometry.

The data from the TAP experiment thus consists of pro-
tein complexes identified from various bait proteins. Each
complex is identified by the proteins that constitute its mem-
bers.

���� ����� ��������������

Gavin et al [3] visualized the data from their experi-
ments as a complex intersection graph. The vertices of this
graph are the complexes, and an edge joins two complexes
if they have one or more proteins in common. Edges in this
network reflect common protein memberships in the com-
plexes, and may represent common regulation, localization,
turnover, or architecture. Each edge of the complex inter-
section graph could be weighted to represent the number of
proteins two complexes have in common. Unfortunately, in-
formation about proteins is not represented in the complex
intersection graph.

Another approach to representing the data from the TAP
experiment is to use a protein-protein interaction graph, as

has been used to represent binary protein interactions from
experiments such as the yeast 2-hybrid system. In a binary
protein interaction graph, the vertices correspond to pro-
teins, and an edge joins two proteins that bind to each other.
Note that the complexes are not represented in the protein
interaction graph, and hence it is not powerful enough to
represent both proteins and complexes.

There is a more serious difficulty with the use of protein
interaction graphs to represent the protein complex data.
Which proteins in a complex bind with each other? A range
of answers to this problem is possible, and has been em-
ployed in graph representations.

All of the proteins in a complex could be considered
to interact with each other, and then each complex is rep-
resented as a clique defined on the proteins in the com-
plex. This approach leads to unusually high clustering coef-
ficients in the protein interaction graphs [8]. Another view-
point is to consider the bait protein as interacting with each
other protein it pulls down in a complex, and thus each com-
plex is represented as a ‘star graph’. Both approaches are
unphysical, as we have pointed out earlier.

Unless we know the set of binary interactions among the
proteins in each complex, the approach of representing the
data by protein-protein interaction graphs is bound to be in-
accurate. It is also expensive in terms of storage, since a
clique on � vertices can be represented in ���� space as a
list of vertices, while representing each edge in the clique
(as is done in protein interaction graphs) requires �����
space. A similar criticism is also true of complex intersec-
tion graphs, since an edge joins two complexes that share
a common protein; a protein that belongs to � complexes
generates ����� edges in the complex intersection graph,
while the complexes can be represented in space propor-
tional to the sum of the numbers of proteins in them.

���� ������ ��	���
 ����������

We propose a hypergraph model for the protein complex
data. A hypergraph� � ��� � � consists of a set of vertices
� and a set of hyperedges � ; each hyperedge is a subset
of vertices. The difference between an edge in a graph and
a hyperedge in a hypergraph is that the former is always a
subset of two vertices (or a subset consisting of one vertex
in the case of a loop), whereas in a hyperedge, the subset
of vertices can be of arbitrary cardinality. In the protein
complex data, we represent each protein by a vertex and
each complex by a hyperedge.

The degree of a vertex is the number of hyperedges it
belongs to, and the degree of a hyperedge is the number of
vertices it contains. We denote the maximum degree of a
vertex by �� and the maximum degree of a hyperedge by
�� .

A path in the hypergraph consists of an alternating se-
quence of vertices and hyperedges ��, ��, ��, ��, 	 	 	, ����,



����, ��, (where the �� are vertices, and the �� are hyper-
edges), with the following properties: each hyperedge � �

contains vertices to its left and right in the listing of the
path, �� and ����; the path begins and ends with vertices,
and no hyperedge or vertex can be repeated. The length of
the path is the number of hyperedges in it. The distance
between two vertices is the length of a shortest path that
joins them. The diameter of a hypergraph is the maximum
distance between any pair of vertices in it.

For drawing a hypergraph, it is helpful to represent both
the vertices and the edges of the hypergraph as vertices in
a bipartite graph. This graph ���� � ������� has its
vertex set partitioned into two sets � and � , where � cor-
responds to the vertices of the hypergraph, and � to the
hyperedges of the hypergraph; an edge ��� �� � � joins a
vertex � � � to vertex � � � if the vertex � in the hyper-
graph belongs to the hyperedge � . For the protein complex
data, the proteins correspond to one set of vertices, the com-
plexes to the other, and an edge joins a protein to a complex
if and only if the protein is a member of the complex.

Fig. 3 depicts a drawing of the yeast protein complex
hypergraph from the Cellzome experiment as a bipartite
graph. The figure is drawn using the Pajek software (URL:
vlado.fmf.uni-lj.si/pub/networks/pajek).

2. Properties of the protein complex hyper-
graph

The protein complex hypergraph from the Cellzome ex-
periments has �� connected components, the largest of
which consists of �� ��� proteins (vertices) and �� com-
plexes (hyperedges). There are �	� proteins with degree �
(belonging to only one complex), and the maximum degree
of a protein is ��. This highest degree protein is ADH1, an
alcohol dehydrogenase. The diameter of the yeast hyper-
graph is �, and the average path length is ��
��, suggesting
that the yeast protein complex hypergraph is a small world
network.

The frequency of proteins with a given degree plotted
against the degree shows that the yeast hypergraph satisfies
a power law, 	 �
� � �
��, where 
 is the protein degree,
and 	 �
� is the number of proteins with degree 
. From a
log-log plot, shown in Fig. 1, we estimate ����� � �����
and the exponent � � ��
��; we assess the goodness of the
linear fit to be excellent, since the value of � � �����,
where � � � � ��� ��

��� �� , � is the vector of residuals, and �
is the dependent variable measured in deviations from the
mean. Unlike proteins, the frequencies of complexes with
a given degree do not satisfy a power-law or an exponential
distribution.
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Figure 1. The frequency of proteins with
a given degree plotted against the degree
shows that the yeast protein hypergraph sat-
isfies a power law degree distribution for the
proteins.

3. The core of a hypergraph

Tong et al. [9] have considered graph models of bi-
nary protein interactions of a class of peptide-recognizing
proteins. They have studied the �-cores of this pro-
teomic network to identify significant interactions common
to the computational network and an experimentally ob-
served phage display network. Other authors, e.g., [7] have
also studied the cores of protein-protein interaction graphs.
Some of this work is done with an eye towards identifying
biologically significant interactions, but some try to deter-
mine putative protein complexes in this manner. As we have
pointed out earlier, the latter endeavor is error-prone since
the proteins in a complex might have only few interaction
partners. Others have conjectured the existence of a core
proteome, a set of proteins with sequences, structures, and
basic cellular roles that might be common to a set of organ-
isms.

To identify the core proteome from a protein complex
hypergraph, we need an algorithm for computing the max-
imum core of a hypergraph. We begin by considering the
concept of a core in a graph, then extend it to a hypergraph,
and finally design an algorithm for computing a core in a
hypergraph.

The �-core of a graph � is a maximal subgraph of � in
which every vertex has degree at least � in the subgraph.
The �-core has been studied earlier in different contexts by
several authors; e.g., see Sec. 3.7.2 in [6]. The maximum
core of a graph corresponds to the maximum value of � for
which the graph has a non-empty �-core. The maximum



Figure 2. The �-core of a graph.

core in the graph shown in Fig. 2 is a �-core (the subgraph
consisting of vertices colored green and the subset of edges
both of whose endpoints are green). The entire graph forms
the �-core, the �-core is the same as the �-core, and the �-
core is empty. Note that the �-core need not be a connected
subgraph.

There is a linear-time algorithm (in the number of edges)
for computing all the non-empty cores of a graph. The idea
is to repeatedly remove a vertex � of minimum degree in the
graph and all edges incident on it, updating the degrees of
the neighbors of � in the residual graph as edges are deleted.
The algorithm repeats this step until the graph is empty; the
highest value of the minimum degree observed during the
algorithm corresponds to the value of the maximum core.
Note that the minimum degree in the residual graph could
increase or decrease during the algorithm.

We now extend the concept of a �-core to a hypergraph.
A reduced hypergraph is one in which every hyperedge is
maximal, i.e., no hyperedge is contained in another. The
�-core of a hypergraph� is a maximal subhypergraph that
is reduced, and in which every vertex belongs to at least
� hyperedges in the subhypergraph. Thus in a �-core, ev-
ery hyperedge is maximal. When we delete a vertex from
the hypergraph, a hyperedge that it belongs to gets deleted
when it is no longer maximal. (This includes the special
case of a hyperedge becoming empty due to vertex dele-
tions.)

An algorithm for computing the �-core of a hypergraph
is shown in Fig. 4. We can detect non-maximal hyperedges
by counting overlaps among hyperedges instead of compar-
ing set memberships, and will be discussed later.

Let �� � denote the number of vertices, �� � the number of
hyperedges, �� the maximum vertex degree, and �� the
maximum degree of a hyperedge. Let

�

���

���� �
�

���

���� � ����

denote the sum of the degrees of the vertices (or equiva-
lently, the sum of the degrees of the hyperedges). Note that

��� is the space needed to represent the hypergraph. Define
the “degree-�” of a hyperedge � , �����, to be the number
of hyperedges with which it has a vertex in common. (This
is the number of hyperedges that � can reach by a path of
length two (edges) in the bipartite graph 	���.) Let ����

denote the maximum value of the degree-� of the hyper-
edges in � .

We now establish the time complexity of the �-core al-
gorithm. Initially we will consider all the steps in the algo-
rithm excluding the maximality computation for the hyper-
edges.

A vertex � can be deleted from a hyperedge in �	��

time, and a hyperedge can be deleted from the adjacency set
of a vertex in �	�� time, by maintaining these sets as bal-
anced trees. The key observation to bounding the total num-
ber vertex deletions in the algorithm is that each vertex can
be deleted from a hyperedge at most once. Hence the num-
ber of vertex deletions in the algorithm is 
�����. Similarly
the number of times hyperedges are deleted from the adja-
cency lists of vertices is also bounded by 
�����. Hence
the time required by vertex and hyperedge deletions in the
algorithm can be bounded by 
������	�� 
 �	�� ��.

Now we show that the maximality computations for the
hyperedges can be performed without explicitly comparing
the vertex lists of the hyperedges during the �- core algo-
rithm. Initially we can compute the nonzero pairwise over-
laps of the hyperedges by processing the adjacency lists of
the vertices in time


�
�

���

����
�
� �	���� � 
��� ���� �	���� �

The logarithmic factor comes from inserting into a balanced
tree representation of the hyperedges that overlap with a
given hyperedge. We need to check for non-maximality
only those hyperedges whose degrees are decremented in
the algorithm due to the deletion of a member vertex. The
key observation is that a hyperedge is contained in another
only when its current degree is equal to its current overlap
with the latter hyperedge. Hence we can check for maxi-
mality without comparing set memberships, but by main-
taining the current degrees and overlaps of the hyperedges.
This cost can be bounded for the algorithm by

�

���

�

���

����� � ���� ����

The time complexity of the �-core algorithm is then
bounded by


��������� 
�� �	���� ���

We have implemented this �-core algorithm for hyper-
graphs. On an Intel Xeon 2 GHz processor with 1GB
memory, the �-core computation of the yeast hypergraph



took ���� seconds. While the Cellzome study is the largest
such current study on protein complexes, it leads to a
small hypergraph from a computational perspective. How-
ever, larger proteomic studies, e.g., ones that scale to the
human proteome, or proteomic studies involving multiple
organisms, will require high performance algorithms and
software. Meanwhile, we have run the hypergraph core
algorithm on larger hypergraphs obtained from scientific
computing applications (from the Matrix Market, URL:
math.nist.gov/MatrixMarket), and the results are
included in Table �. The results show that if the numbers
of vertices and hyperedges in the core are large, then the
run times can be substantial; hence for large hypergraphs, a
parallel algorithm will need to be designed. The maximum
core in the yeast protein complex hypergraph is a �-core
consisting of �� proteins and �� complexes.

It has been conjectured that the core of a protein-protein
interaction network or a protein-complex hypergraph might
represent the core proteome, a set of proteins and complexes
performing essential cellular functions and that they might
be common to many organisms. We tested this conjecture
on the Cellzome yeast protein complex hypergraph.

We found that of the � of the �� proteins in the �-
core are currently unknown or have unknown function;
�� of the �� proteins that are known or have known
function are essential; i.e., deleting the corresponding
gene is lethal to yeast. Also, �� have reported ho-
mologs in the Saccharomyces Genome Database (URL:
www.yeastgenome.org), three of which belong to the
subset of proteins that are unknown or have unknown func-
tion. The homologous proteins belong to organisms such as
the human, mouse, E.coli, and bacillus. Since the Compre-
hensive Yeast Genome Database reports 	�	 essential and
�� ��	 non-essential genes, essential proteins constitute a
higher fraction of the proteins in the core.

We computed maximum cores in the protein-protein in-
teraction networks for yeast and drosophila obtained from
the Database of Interacting Proteins (DIP) circa. Nov 2003
(URL: dip.doe-mbi.ucla.edu/dip/). The maxi-
mum �-core for the yeast had � 
 �� with �� proteins,
while the drosophila network had � 
 	 with ��� proteins.
The total number of proteins in the yeast network was ����,
while that in the fruitfly was ����.

4. Vertex Covers

We now consider the reliability of the Cellzome exper-
iment. Out of the total �� ��� proteins in the study, �	�
proteins were used as bait proteins. Each bait protein pulls
down one or more complexes it belongs to. The large-
scale identification of complexes from proteins associated
with bait proteins is unfortunately more error-prone than
smaller-scale studies (the Cellzome experiments report a re-
producibility of ���). Hence we consider the question of

choosing the bait proteins from the protein complex hyper-
graph once it is partially known. We believe this could be
useful in two situations: the first is when we wish to repeat
the experiments to improve the reliability of the data; the
second is when we wish to use one organism as a model to
identify the protein complexes in a related organism. The
bait selection problem can be formulated as the problem of
choosing vertex covers in hypergraphs of minimum size or
weight.

���� ������ �	
�� �	� ����������

Given a hypergraph � 
 ��� � , and non-negative
weights on the vertices, the minimum weight vertex cover
problem is to find a subset of vertices � � � such that �
includes at least one vertex from each hyperedge, and the
sum of the weights of the vertices in � is minimum. The
problem is NP-hard, but approximation algorithms for find-
ing near-optimal vertex covers exist.

The vertex cover problem for a hypergraph can be re-
duced to the set cover problem for a collection of subsets
of a ground set �. Given a set � and a collection of sub-
sets of � with weights assigned to each subset, the set cover
problem is to choose some of the subsets from the collec-
tion so that the union of the chosen subsets is � and the sum
of the weights of the subsets chosen is minimum. The ver-
tex cover problem for a hypergraph is equivalent to the set
cover problem by viewing each vertex in the hypergraph in
terms of its adjacency set.

The greedy algorithm for finding an approximate vertex
cover of minimum weight in a hypergraph chooses a vertex
with minimum cost (to be defined) for each vertex. During
the course of the algorithm, the current cost ��	 of a ver-
tex 	 is obtained by distributing its weight equally among
the hyperedges it belongs to that are currently uncovered.
Let �� denote the set of hyperedges not yet covered by a
partial vertex cover at the beginning of the 
th iteration of
the algorithm; then

��	 
 ��	������	 � ����

At each step, the algorithm chooses a vertex with minimum
cost ��	 to include in the partial cover, and deletes all hy-
peredges it covers. The algorithm is described in Fig. 5.

The greedy algorithm for set cover is due to Johnson,
Chvatal and Lovasz [10], and is an �� 
 ����� ap-
proximation algorithm, where � � �� � is the number of
hyperedges, and �� is the �th harmonic number: �� 

������ � � �����. We have implemented this algorithm
in time

�
�

���

���	 � ��� ����

(Here ���	 is the “degree-2” of a vertex 	; i.e., the number
of distinct vertices other than 	 in all the hyperedges that 	



belongs to. It is equal to the number of vertices that can be
reached from � by a path of length two in the bipartite graph
����.)

A variation on the minimum weight vertex cover prob-
lem is the minimum weight multicover problem, where we
wish to cover each hyperedge � with �� � � vertices, where
�� is a given positive integer that depends on � . A simple
modification to the algorithm given above solves this lat-
ter problem with the same approximation ratio. The change
is that now when a vertex �� is included in the cover, only
those hyperedges � � ������� whose multicover require-
ments have been met are deleted.

Dual and primal-dual algorithms with approximation ra-
tios that depend on the maximum degree of a vertex can
also be designed for the weighted vertex cover problem in
hypergraphs. For the yeast protein complex hypergraph,
the greedy algorithm yields a better approximation bound
than these algorithms. However, it is not clear if these al-
gorithms will be practically inferior or superior in quality to
the greedy algorithm discussed here. This is the subject of
current work.

���� �������

For the yeast protein complex hypergraph, the greedy al-
gorithm finds an approximate minimum cardinality vertex
cover consisting of ��� proteins, with the average degree of
a protein in the cover being approximately ��	. However, a
protein belonging to many complexes might not unambigu-
ously pull down all the complexes it belongs to; hence it
is preferable to choose as bait proteins those of low degree.
We accomplish this by weighting each protein by the square
of their degrees. The greedy algorithm now finds an approx-
imate minimum weight vertex cover with 
�� proteins, with
the average degree of a protein in the cover reduced to ap-
proximately ����. In comparison, the Cellzome experiment
reports complexes pulled down from ��� bait proteins, with
the average degree of a bait protein approximately ���.

Since the reproducibility of the Cellzome experiment is
low, it would be more reliable to cover each complex more
than once. We have also run a multicover algorithm to cover
each hyperedge twice, excluding three complexes that con-
sist of a single protein. The remaining 

� complexes are
covered twice each by �� proteins, with the average degree
of a protein in the cover approximately ��	�.

The majority of the bait proteins of the Cellzome study
(�
�) pull down only one complex, with 
� pulling down
two complexes, and the remaining � pulling down � com-
plexes. Of course, factors other than the degree influence
the suitability of a bait protein in the TAP experiment. A
proteomics expert could set preferences for each protein to
be used as a bait, and our algorithms could work with those
weights to make a meaningful choice of a candidate set of
bait proteins for large-scale proteomics experiments.

5. Conclusions

We have defined the concept of a �-core of a hypergraph,
designed an algorithm to compute it, and used it to identify
the core proteome of a yeast protein complex hypergraph.
The yeast core proteome is rich in both essential and ho-
mologous proteins. We have also implemented a greedy
approximation algorithm for computing variations of mini-
mum weighted vertex covers in a hypergraph, and used it to
suggest candidate bait proteins in the Cellzome experimen-
tal methodology for obtaining the protein complex data. We
believe this algorithm could be useful for proteomics ex-
perts to choose bait proteins to improve the reliability of the
large-scale proteomics experiment, and to scale up to exper-
imentation on proteomes of other organisms.
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while there are vertices with degree � � do
for each such vertex � �

for each hyperedge � � ��
delete � from ������;
decrement ���� by one;
if � is non-maximal then

for each vertex � � � �
delete � from ������;
decrement ���� by one;
if ���� � � then

include � in list of
vertices with degree � �;

Figure 4. An algorithm for computing the �-core of
a hypergraph. The variable ���� denotes the degree
of a vertex or a hyperedge.

Initialize:
� �� �; (iteration number)
� �� �; (cover)
	� �� 	 ;
(hyperedges yet to be covered)
while 	� �� � do

for � � 
 � � �
Choose a vertex ��
with min cost ����;
Add �� to the cover �;
	��� �� 	� � �������;
� �� �� �;

Figure 5. The greedy algorithm for computing an
approximate minimum weight vertex cover of a hy-
pergraph.

hypergraph �
 � �	 � ��� 	� 	� 	��� max core
core �
 � �	 � time

Cellzome 1361 232 2678 21 88 84 6 41 54 0.47s

bfw 62 62 450 21 17 47 4 31 23 0.06 s
fdp1 656 656 10038 62 62 191 3 276 28 0.5 s
stk13 2003 2003 42943 82 64 287 7 1159 659 35.7 s
utm 3060 3060 42211 29 20 129 12 160 220 4.5 m
fdp11 22294 22294 623554 43 43 256 13 20719 18578 6.8 h

Table 1. Statistics on hypergraphs and their maximum cores from Cellzome and scientific computing
applications. Legends for times are h: hours, m: minutes, and s: seconds.
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Figure 3. The yeast protein complex hypergraph and its maximum core. Yellow and red nodes
correspond to proteins, and pink and green nodes correspond to complexes. Red nodes correspond
to proteins and green nodes to complexes in the maximum 6-core.


