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Abstract 

  Gene clustering, the process of grouping related genes in 
the same cluster, is at the foundation of different genomic 
studies that aim at analyzing the function of genes. 
Microarray technologies have made it possible to measure 
gene expression levels for thousand of genes 
simultaneously. For knowledge to be extracted from the 
datasets generated by these technologies, the datasets 
have to be presented to a scientist in a meaningful way. 
Gene clustering methods serve this purpose. In this paper, 
a hybrid clustering approach that is based on Self-
Organizing Maps and Particle Swarm Optimization is 
proposed. In the proposed algorithm, the rate of 
convergence is improved by adding a conscience factor to 
the Self-Organizing Maps algorithm. The robustness of the 
result is measured by using a resampling technique. The 
algorithm is implemented on a cluster of workstations. 
 

1. Introduction 
 

Gene clustering methods are essential in the analysis of 
gene expression data collected over time and under 
different experimental conditions. Microarray expression 
data for thousands of genes can now be collected 
efficiently and at a relatively low cost. Clustering was 
used, for example, to understand the functional differences 
in cultured primary hepatocytes relative to the intact 
liver[1]. In another study, clustering techniques were used 
on gene expression data for tumor and normal colon tissue 
probed by oligonucleotide arrays [2]. This latter study was 
based on the expression data of a collection of 40 tumor 

and 22 normal colon tissue samples. A two-way clustering 
algorithm was applied to the data and resulted in a 
separation of cancerous from non-cancerous tissue and a 
strong indication that coregulated genes cluster together. 
Gene clustering techniques were also used to analyze 
temporal gene expression data during rat central nervous 
system development [3]. This study was based on the 
temporal mRNA expression of 112 genes and it 
established that most of the patterns are clustered into five 
basic expression patterns.  

Clustering aggregates similar input patterns into 
distinct, mutually exclusive subsets referred to as clusters. 
As stated by Anderberg [4], “the objective is to group the 
data units or the variables into clusters such that elements 
within a cluster have a high degree of ‘natural association’ 
among themselves while the clusters are ‘relatively 
distinct’ from one another.” Clustering is a two-phase 
process. In the first phase, the number of clusters in the 
data is determined or assumed. The second phase assigns 
each data point (pattern) to a single cluster. 

Several clustering algorithms such as hierarchical 
clustering [3,5], Principle Component Analysis based 
(PCA-based) [6,7], genetic algorithms [8], and artificial 
neural networks [1,9,10,11], have been used to cluster 
gene expression data. Particle Swarm Optimization [12] is 
another computational intelligence method that, to the best 
of our  knowledge, has not been used to cluster gene 
expression data. In this paper Particle Swarm Optimization 
is used with Self-Organizing Maps to cluster genes. In 
Section 2, Self-Organizing Maps and Particle Swarm 
Optimization are reviewed and the proposed hybrid 
clustering approach that uses both of these algorithms is 
discussed. Descriptions of the rat [1] and yeast [13] 
benchmark data sets that are used in this paper are 
described in Section 3. Section 4 includes the clustering 



result for the proposed hybrid algorithm and a comparison 
of this result to that of clustering using either Self-
Organizing Maps or Particle Swam Optimization. Related 
work is the subject of Section 5. Section 6 of this paper 
summarizes the major findings of this study.      

 
2. Hybrid SOM and PSO Algorithm 
 

In this section the advantages and disadvantages of 
Self-Organizing Maps (SOM) and Particle Swarm 
Optimization (PSO) clustering algorithms are investigated. 
Several aspects of these algorithms are discussed including 
issues dealing with large gene expression data sets and 
execution time. In addition, two complementary 
techniques to clustering algorithms, namely conscience 
and resampling, are also discussed. Finally, the proposed 
hybrid SOM/PSO algorithm is introduced.   
 
2.1 Self Organizing Maps 
 

Self-Organizing Maps (SOM) were introduced in [14]. 
The foundation of this algorithm comes from the orderly 
mapping of information in the cerebral cortex. With SOM, 
high dimensional datasets are projected onto a one- or 
two-dimensional space. Typically, a SOM has a two-
dimensional lattice of neurons and each neuron represents 
a cluster. The adaptation (learning) process of SOM is 
unsupervised. All neurons compete for each input pattern; 
the neuron that is chosen for the input pattern wins it. Only 
the winning neuron is activated (winner-takes-all). The 
winning neuron updates itself and neighbor neurons to 
approximate the distribution of the patterns in the input 
dataset. After the adaptation process is complete, similar 
clusters will be close to each other (i.e., topological 
ordering of clusters). Topological ordering helps in 
detecting both distinct and similar clusters quickly. The 
SOM algorithm is very efficient in handling large datasets. 
The SOM algorithm is also robust even when the data set 
is noisy [15]. However, SOM has a few disadvantages. For 
example, the number of clusters needs to be specified. As 
previously mentioned, clustering is a two-phase process: 
determining the number of clusters and clustering the data. 
Determining the number of clusters is not trivial since the 
characteristics of the data set are usually not known a 
priori. However, as suggested in [16], this can be 
overcome by running the algorithm with varying numbers 
of clusters and selecting the most appropriate clustering 
result according to a figure of merit.  

SOM has been widely used as a clustering method. In 
[10], SOM was used to analyze hematopoietic 
differentiation successfully. In [11], it was used to analyze 
yeast gene expression data [13], and in [1] it was applied 
to temporal gene expression analysis of monolayer 
cultured rat hepatocytes dataset.  

 

 2.2 Particle Swarm Optimization 
 

Particle swarm optimization (PSO) [12] is an 
evolutionary computation method. In order to find an 
optimal or near-optimal solution to the problem, PSO 
updates the current generation of particles (each particle is 
a candidate solution to the problem) using the information 
about the best solution obtained by each particle and the 
entire population. Each particle has a set of attributes: 
current velocity, current position, the best position 
discovered by the particle so far and, the best position 
discovered by the particle and its neighbors so far. The 
user can define the size of the neighborhood. There is one 
version of PSO called global PSO in which all the 
particles are considered to be neighbors of each other. All 
particles start with randomly initialized velocities and 
positions. Then the nth component of the new velocity and 
the new position for the ith particle are updated by using 
the following equations: 
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where w is the inertia weight [17]; c1 and c2 are random 
numbers, Gi is the best particle found so far within the 
neighbors and li,n is the best position discovered so far by 
the corresponding particle. Velocity magnitudes are often 
clipped to a predetermined maximum value, Vmax. 

PSO has been applied to several optimization problems. 
For example, PSO was applied to human tremor analysis 
[18]. It was also applied to reactive power and voltage 
control [19], and PSO was used to train neural networks 
[20]. PSO is effective in nonlinear optimization problems 
and it is easy to implement. In addition, only few input 
parameters need to be adjusted in PSO. Because the 
update process in PSO is based on simple equations, PSO 
can be efficiently used on large data sets. A disadvantage 
of the global PSO is that it tends to be trapped in a local 
optimum under some initialization conditions.  

 
2.3 Conscience 
 

The conscience is an auxiliary mechanism for 
competitive learning [21]. The conscience directs each 
component that takes part in a competitive learning toward 
having the same probability to win the competition.  
Conscience was added to SOM by assigning each output 
neuron a bias. To become a winner, the output neuron has 
to overcome its own bias. The conscience is implemented 
so that the bias is proportional to the frequency that an 
output neuron wins the competition. First an intermediary 
parameter yi  is calculated for the ith output neuron as 
follows: 

      (1) 
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Then the bias factors pi and the final biases bi are 
calculated by using the following equations: 
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where N is the number of output neurons, and B and C are 
two parameters that the user selects. These two parameters 
dictate by how much the winning neuron should be 
penalized each time. In this paper, B is set to 0.0001 and C 
is set to 10, while initially bi = 0 and pi = 1/N [21].   

In clustering, it is important to have the output of SOM 
as close as possible to the pattern distribution in the 
dataset. The purpose of the conscience is to obtain a better 
approximation of the pattern distribution. Conscience-
based competitive learning has also been used in other 
applications such as modeling, classification, etc. For 
example, in [22] color images were classified by this 
method and high classification accuracy was obtained 
even when regions of the image are very similar in color.   

 
2.4 Resampling 
 

One of the major issues in using a clustering algorithm 
to cluster new and unknown expression data is measuring 
the robustness of the clustering result. For this purpose, a 
resampling technique was proposed in [16]. This 
technique is based on the simple idea that stipulates that if 
the algorithm is applied to a randomly selected subset of 
the original set, then patterns that are in the same cluster in 
the original clustering should also be in the same cluster in 
the clustering result obtained for the subset if the result is 
robust. Multiple subsets can be selected randomly and the 
results of clustering these subsets can be compared to the 
original clustering result in order to measure the 
robustness of the clusters obtained.  The difference 
between the clustering based on the randomly selected 
subset and the original clustering result is measured by a 
merit function given in [16] which is expressed as follows: 
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similarity matrix. A similarity matrix is constructed as 
follows: 
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The symbols i and j correspond to the indices of patterni 
and patternj in the similarity matrix for the original 
clustering and for the clustering after resampling. These 
indices are preserved among the original data and any 
subset of the data selected randomly for the purpose of 
resampling. As previously mentioned, several subsets are 
selected and processed by the clustering algorithm and the 
mean value of all the merits calculated for each subset is 
regarded as the measure for the robustness of the result. 
The smaller the value of the merit the more robust the 
algorithm is. 

This technique can be used in conjunction with any 
clustering algorithm. Although it does not improve the 
clustering, it can be used to assess the quality of the result. 
The method can also be used to estimate the number of 
clusters needed for a given dataset. Given an unknown 
data set, several runs of a given clustering algorithm under 
varying input parameters can be performed. As suggested 
in [16], if resampling is used with each run, the clustering 
result of choice is the one with the lowest merit value. As 
will be shown in Section 4, this can be used to choose an 
adequate number of clusters when running a clustering 
algorithm on an unknown data set. 

One of the major drawbacks of the resampling 
technique is that it is computationally expensive. There are 
two important parameters that are associated with this 
technique: the percentage of the original data that is 
selected as part of any subset and the number of times the 
resampling is repeated. As indicated in [16], the subset of 
the data selected should be close to 60% of the original 
data. Also, the number of times resampling is performed 
depends on the percentage selected and the size of the 
original data set. In this study, we found that for large data 
sets, resampling should be performed about 100 times, and 
for small data sets repeating the resampling 20 to 50 times 
is sufficient. These two parameters are clearly application 
dependent. However, from the experiment conducted in 
these studies, it was established that resampling may need 
to be performed repeatedly on a large number of patterns, 
which is computationally expensive and sometimes 
amounts to the running of the original algorithm 50 to 100 
times on nearly the same amount of data as the original 
data. Therefore, the resampling technique was 
implemented in parallel by using the parallel virtual 
machine environment (PVM) [23].  

In the parallel implementation, the original clustering is 
performed on the master node. This can be done by using any 
clustering method. In the case of this study it was PSO, SOM 
or the proposed hybrid SOM/PSO clustering algorithm. Once 
this phase is completed, several subsets are selected at 
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random and the same clustering algorithm is repeated on 
these subsets using one of the available slave nodes based on 
a workpool approach. Each slave is assigned a new subset 
from the workpool when it finishes the subset it is currently 
processing. For each subset, the merit is calculated by the 
slave node that is assigned to the subset. The aggregate merit 
of all the subsets is computed by the master node. Since the 
clustering of the individual subsets is completely 
independent, very little communication overhead is incurred 
by the parallel implementation. This overhead consists of the 
master node distributing the data subsets and collecting the 
merit values at the end of the computation. As will be shown 
in Section 4, this parallel implementation results in significant 
speedups if resampling is performed a large number of times.  

2.5 Particle Swarm Optimization Applied to Self-
organizing Maps 
 

The proposed hybrid SOM/PSO algorithm uses PSO to 
evolve the weights for SOM. The weights are trained by 
SOM in the first stage. In the second stage they are 
optimized by PSO. 

In the first stage of the hybrid SOM/PSO algorithm, 
SOM is used to cluster the dataset. In this stage either 
regular SOM or SOM with conscience can be used. The 
SOM normally runs for 100 iterations and generates a 
group of weights. In the second stage, PSO is initialized 
with the weights produced by SOM in the first stage. Then 
PSO is used to refine the clustering process.  

Each particle consists of a complete set of weights for 
SOM. The dimension of each particle is the number of 
input neurons of SOM times the number of output neurons 
of SOM. The objective of PSO is to improve the clustering 
result by evolving the population of particles. The global 
version of PSO was used in this case. The population of 
particles was set to 40. PSO was run for 20 epochs. The 
inertia weight was set to 0.4 during all the epochs to 
emphasize a local search near the weights generated by 
SOM. The use of SOM followed by PSO was dictated by 
the fact that SOM is efficient in generating a topological 
order among the clusters. PSO can then be used to refine 
this clustering.  
 
 3. Experiment Setup 
 

The experiments performed in this study focus on 
evaluating the proposed hybrid SOM/PSO algorithm. The 
SOM/PSO, the original SOM and the PSO algorithms, 
were applied to two data sets: the yeast data set [13] and 
the rat data set [1]. These data sets are described in the 
next subsections. The execution times for the sequential 
and the parallel execution times of the algorithms under 
study were collected on a linux cluster with one master 
node and four slave nodes. The master node has a PIII 
1.2GHz processor and 1024 MBytes RAM. Each slave 
node has two PIII 1.2GHz processors and 1024 MBytes 

RAM. 
 

3.1 Yeast Gene Expression Data 
 

The yeast data set [13] consists of 6554 gene expression 
profiles. Each profile records the fluctuation of expression 
levels over two cell cycles, which contain 17 time points. 
Each profile in this data set was normalized to unit length 
so that the comparisons were made on the basis of shape, 
i.e., relative heights of each component with each profile. 

For the standalone SOM, each neuron of SOM was 
initialized with random numbers. Each profile is fed to 
SOM and then the best matching neuron and its neighbors 
are updated such that their distance with respect to the 
profile is minimized. One epoch is completed when all 
6554 profiles are fed to the network. SOM ran for 100 
epochs with a time-varying learning rate and a time-
decreasing Gaussian neighborhood function.  

In the standalone PSO, the dimension of each particle 
equals the number of input neurons multiplied by the 
number of output neurons. Each particle can be divided 
into as many segments as the number of output neurons. 
Each segment represents the centroid of a cluster. Particles 
were initialized with random numbers. Thus, an original 
clustering can be obtained by assigning each gene 
expression profile to the cluster with the closest centroid. 
The particles are then updated by using equations (1) and 
(2). 

For the hybrid SOM/PSO, the first stage is the same as 
the standalone SOM. After SOM ran for 100 epochs, the 
weights generated were used to initialize particles in PSO. 
Then the same process used in the standalone PSO is 
repeated in the second stage of the proposed hybrid 
method. The results generated by the three methods are 
compared in Section 4.  
 
3.2 Rat Hepatocytes Gene Expression Data 
 

This gene expression data set is the monolayer cultured rat 
hepatocytes data set [1]. It contains 4116 gene expression 
profiles. Each profile consists of data from five time points 
(4 hour, 12 hour, 24 hour, 48 hour and 72 hour). The 
profiles were scaled to –1 and 1 so that the comparisons 
were made on the basis of the magnitude. All three 
approaches were applied to this data set by following the 
same methodology used for the yeast data set.  

 
4. Result 
 

For each of the yeast and rat data sets, sixty percent of 
the entire data set was resampled. The resample process 
was repeated 20 times. Merits were calculated with respect 
to each cluster so that the robustness of individual clusters 
could be investigated. The average merits for each cluster 
over the twenty times resample were calculated as the final 



merit of each cluster. Figures 1 and 2 show the average 
merits over all clusters for a varying cluster sizes for the 
yeast and the rat data sets, respectively. The average merits 
reported in figures 1 and 2 are smaller for SOM or 
SOM/PSO compared to PSO. This indicates that both 
SOM and SOM/PSO are more robust than PSO. The 
average merits for SOM and SOM/PSO are comparable. 

Figures 1 and 2 show that for both SOM and SOM/PSO 
the 8x8 cluster size corresponds to the knee of the average 
merit curve. As mentioned previously, this analysis can be 
used to select an appropriate cluster size. For the above 
example, 8x8 represents the best trade-off between the 
robustness and the trivial case where the number of 
clusters becomes very large for the problem. The 8x8 
cluster size was selected for the remainder of the 
experiments in this paper. 

 

 
Figure 1: The average merit over all clusters for 
the rat hepatocytes data set for varying number 
of clusters. 

 
Figure 2: The average merit over all clusters for 
the yeast data set for varying number of clusters. 
 

The clustering results of the three methods were 
compared by examining the distribution of p450 genes on 
the map for the rat hepatocytes data set and srRna genes 
for the yeast gene expression data set. In isolated 
hepatocyte cells, it is known that cytochrome p450 
expression is decreased over time, and these transcripts 
have been shown to cluster together [1]. The 18srRna and 
25sRna processing proteins are highly expressed and are 
transcribed together from the same transcript, so it is 

expected that they would cluster together [24]. In this 
paper both 18srRna and 25srRna genes are identified as 
srRna genes. There are a total of 39 p450 genes in the rat 
hepatocytes data set and 40 srRna genes in the yeast data 
set. If the clustering method works well, those genes 
should be in the same cluster or in clusters that are close to 
each other. 
 

 
(a) 

 
 

 
(b) 

 
Figure 3: Left upper (a) and right lower (b) 
corners for SOM clustering of the rat hepatocytes 
data set. 

 
In the standalone PSO, p450 genes were part of a large 

cluster. This cluster contains most of the genes in the rat 
hepatocytes data set, which indicates that clustering was 
not adequately performed here. In SOM, most of the p450 
genes were included in clusters 54, 60, 62, 63 and 64. 
Although these genes were distributed across several 
clusters, these clusters were topologically close to each 
other. For the SOM/PSO method, most of the p450 genes 
were included in clusters 6, 7, 8, 14, and 22. These clusters 

 
40 
 
 
 
 
 
48 
 
 
 
 
 
56 

  6                     7                     8 



are also topologically close to each other. In SOM, six 
p450 genes were included in cluster 63. This cluster had a 
total of 21 genes. In SOM/PSO, the same six p450 genes 
were included in cluster 7. This cluster had a total of 24 
genes. Cluster 7 of SOM/PSO had three more genes than 
cluster 63 of SOM. In SOM, these genes were assigned to 
cluster 62, which is topologically adjacent to cluster 63.  

 

 
(a) 

 

 
(b) 

 
Figure 4: Left upper (a) and right lower (b) 
corners for PSO clustering of the rat hepatocytes 
data set. 
 

The overall map is of size 8 by 8 cluster. Figure 3a and 
3b show the average expression of the patterns in the 
clusters for the clusters in the left upper corner and right 
lower corner of the map. For the rat hepatocytes data set, 
the original size of the map was set to 8 by 8. Figures 3 
and 4 show the left upper and right lower corners of the 
map for SOM and PSO clustering, respectively, in the case 
of the rat hepatocytes data set. Figure 5 shows the left 
lower and right upper corners of the map for SOM/PSO 
clustering also in the case of rat hepatocytes data set. For 
SOM (Figure 3) and SOM/PSO (Figure 5), the negative 

weights and positive weights were grouped together. 
These two distinct groups of weights were placed on the 
two corners of the map (left upper and right lower corners 
for SOM; left lower and right upper corners for 
SOM/PSO). Actually, if figures 5a and 5b are rotated 
along the x-axis, they look nearly identical to figures 3a 
and 3b, respectively. For the standalone PSO, very little 
similarity exists among nearby clusters, and also there are 
no apparent distinctions among clusters that are 
topologically far from each other. 

 
 

 
(a) 

 
 

 

 
(b) 

 
Figure 5: Right upper (a) and left lower (b) 
corners for SOM/PSO clustering of the rat 
hepatocytes data set. 
 

Cluster 1 in Figure 3 (SOM) and cluster 57 in Figure 5 
(SOM/PSO) contain the genes with the largest positive 
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magnitude for the first three attributes of the data set. In 
the case of the SOM/PSO two additional genes are in 
cluster 57. In SOM one of these genes is in cluster 9 and 
the other is in cluster 10. Both of these clusters are 
neighbors as shown in Figure 3.  

Another interesting case is that of cluster 63 of Figure 3 
(SOM) and cluster 7 of Figure 5 (SOM/PSO). In 
SOM/PSO, cluster 7 contains 21 genes. Three of these 
genes are in cluster 62 of SOM while the rest are in cluster 
63. Clusters 62 and 63 are topological neighbors.  

For the rat hepatocytes data set, the SOM and 
SOM/PSO clustering results are essentially similar.  
 

Method Cluster 
number 

Size of  
the cluster  

Number of 
matches 

56 39 7 SOM 
64 43 33 

PSO 36 6551 40 
8 30 30 SOM/PSO 
16 32 10 

 
Table 1: clustering of srRna genes for the yeast 
data set. 
 

Table 1 shows the distribution of the srRna genes for 
the yeast data set. The srRna genes were divided across 
two clusters by the standalone SOM. These two clusters 
are adjacent on the map. The majority of the srRna genes 
are in cluster 64, which includes 33 out of the 43 srRna 
genes. SOM/PSO also generated two clusters for srRna 
genes, which are topological neighbors. One of the 
clusters, cluster 8, contains only srRna genes. This 
indicates that the proposed hybrid SOM/PSO approach 
results in a better clustering for srRna genes. 

For the yeast data set, the size of the map was also set to 
8 x 8. Figures 6, 7 and 8 show the left-most and the right-
most columns on the map for the three methods. For 
SOM/PSO, the clusters exhibiting the sine patterns are in 
the left-most column on the map. Furthermore, the phase 
of the patterns gradually shifts from the upper cluster to 
the lower cluster in the column. This was the expected 
behavior of the data set. SOM also clustered sine patterns 
in several clusters. However, these clusters were 
distributed among the left and right columns. The phase 
shift was missing from the map. The standalone PSO 
approach generated a map that did not exhibit any of the 
expected features. 

In order to investigate the impact of conscience on the 
speed of convergence, the SOM implementation was 
modified so that the SOM algorithm terminates when the 
difference in intra-cluster variance between one epoch and 
the next is less than 0.0001. The number of epochs that 
were executed was recorded in the case when the 
conscience was used and when it was not used. Since the 
SOM algorithm is part of both the standalone SOM 
approach as well as the SOM/PSO approach, any 

improvement to the SOM algorithm will improve both 
approaches. Table 2 shows the number of iterations with 
and without conscience for the SOM algorithm. For both 
the rat and yeast data set the conscience reduces the 
number of epochs by more than half.  

 

  
 

Figure 6: The left most and right most columns 
for SOM clustering of the yeast data set. 
 
 

Data Set SOM 
without 
conscience  

SOM with 
conscience 

Rat 
Hepatocytes 

540 150 

Yeast  450 220 
 
Table 2: Number of epochs for the SOM algorithm 
with and without conscience. 
 

In addition to reducing the number of epochs, SOM 
with conscience also is more robust than SOM without 
conscience. Resampling was performed 20 times. The 
average merits for SOM and SOM/PSO with and without 
conscience are shown in Table 3. 
 



Without conscience With conscience Data 
set SOM SOM/PSO SOM SOM/PSO 
Rat  0.000808 0.000912 0.000535 0.000544 
Yeast 0.000717 0.000752 0.000548 0.000566 
 
Table 3: The average merit values for SOM and 
SOM/PSO with and without conscience for the rat 
hepatocytes and the yeast data sets.  
 
 

 
 

Figure 7: The left most and right most columns 
for PSO Clustering of the yeast data set. 
 

The execution times of the parallel implementations of 
the SOM, PSO and SOM/PSO algorithms with resampling 
on the rat hepatocytes data set is shown in Figure 9. 

The parallel implementation of resampling for all three 
approaches improves execution times and allows 
robustness to be evaluated for larger data sets and an 
increased number of patterns in the resampling. The 
benefit of parallelization is more prominent when the 
execution time of the original algorithm is long and when 
the number of resamples increases. Higher speedups are 
obtained for the standalone PSO and SOM/PSO than the 
standalone SOM because the sequential version of PSO 

takes longer to execute than the sequential version of 
SOM.  

 
Figure 8: The left most and right most columns 
for SOM/PSO clustering of the yeast data set. 
 
5. Related Work  
 

In [15], SOM network was compared with hierarchical 
clustering methods on 252 data sets. These data sets were 
designed to include data imperfections such as dispersion, 
outliers, irrelevant information, and nonuniform cluster 
densities. SOM outperformed hierarchical clustering 
methods for 191 of the 252 data sets. It was more robust 
and had higher accuracy. However, when the dispersion of 
the data set was low or cluster densities varied greatly, 
SOM was inferior to hierarchical clustering methods. The 
SOM network did better than, or at least as well as, the 
best of the seven popular hierarchical clustering 
algorithms in about 76% of the case tested, and even better 
with high-dispersion data sets. It should be noted that a 
conscience was not implemented in the SOM networks 
used in [15]. Since the number of outputs was limited to 
the number of known clusters, and linear topology was 
chosen, the conscience probably would not have been 
useful. SOM did relatively less well on data sets with low 
dispersion for which one cluster contained at least 60 



percent of the population (and for which there were four or 
more clusters). This situation is almost never encountered 
in real-world data sets. Most real life data sets have high 
dispersion, and a majority of the cluster population is 
scattered over several clusters. 

In [25], five clustering algorithms, average linkage 
hierarchical clustering, k-means, Partitioning Around 
Medoids (PAM), SOM with the neighborhood radius 
approaching one and SOM with the neighborhood radius 
approaching zero were compared. It was found that k-
means and SOM with the neighborhood radius 
approaching zero generated similar results because the 
SOM algorithm reduces to k-means if the neighborhood 
radius is set to zero. It was also found that a larger 
neighborhood radius in the SOM algorithm increases 
robustness while sacrificing intra-cluster compactness. 

The hybrid combination of SOM and PSO proposed in 
this paper combines unsupervised learning (SOM) and 
reinforced learning (PSO). It maintains the desirable 
topological ordering of SOM while generating either a 
similar clustering (rat hepatocytes data set) or a more 
refined clustering (yeast data set). This paper extends 
previous work by adding a second stage to SOM.  

6. Conclusions 
 

The hybrid SOM/PSO method proposed in this paper 
preserves the topology structure of SOM. It also attempts 
to generate a more compact clustering result than SOM. In 
other words, SOM/PSO tries to tune the original SOM 
such that it can achieve a better tradeoff between the 
average quantization error and the topographic error [26]. 
This was particularly apparent for the yeast data set where 
the proposed hybrid method generated the expected result 
with a phase shift of sine patterns on one column.  For the 
rat hepatocytes data set the result of the clustering by 
using SOM or SOM/PSO are essentially the same. 

The conscience can be used with either the standalone 
SOM or the proposed SOM/PSO method, and results in a 
faster convergence and a better representation of the 
pattern distribution in the data set. Furthermore, the 
conscience tends to improve the robustness of the original 
algorithm. 

This paper also shows that resampling is a useful 
technique for estimating the robustness of the algorithm. 
Since resampling is computationally expensive, it should 
be implemented in parallel if the input data sets are large. 
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Figure 9: Execution time in seconds of the 
parallel implementations of SOM, PSO and 
SOM/PSO with resampling for the rat hepatocytes 
data set. 
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