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Abstract

We present a method for the automatic generation of
oligonucleotide probe sets for DNA microarrays. This ap-
proach is well suited particularly for specificity evaluation
of designed probes in large data sets. Algorithms for probe
preselection, hybridization prediction and probe selection
are presented. Combinatorial techniques are introduced
for the selection of probe sets of high differentiation ca-
pability even from sequence databases of homologous con-
served genes. These techniques include the automatic gen-
eration of group specific probes and the design of exlud-
ing probes. A basic prototype was implemented including a
shared memory parallelization and distribution. The prin-
cipal applicability of our method to a database of very con-
served sequence data was shown and the run-time perfor-
mance estimated.

1. Introduction

Oligonucleotide microarrays are currently used in gene
expression studies [7] as well as for diagnostic purposes,
e.g. the identification of microorganisms in clinical, food
and environmental samples [2, 12, 20].

Apart from engineering aspects of microarray technolo-
gies, the main problem is to determine suitable sets of
oligonucleotide probes. These probe sets should reliably
detect and differentiate target sequences of interest (rather
the respective genes, gene transcripts or organisms). Large
databases have, therefore, to be analyzed efficiently.

Algorithms and their implementations have been pub-
lished, which solve these problems automatically [10, 15,
16]. The resulting programs work well for data sets that en-
able the finding of sequence specific probes due to a high

variability within the analyzed target sequences. None of
these algorithms and their implementations, however, solve
the problems that occur when sequence databases of homol-
ogous genes need to be analyzed.

This problem occurs for instance, when a microarray is
designed for the identification of organisms on the basis of
sequence variabilities of conserved genes, e.g. the riboso-
mal ribonucleic acid sequences. In these cases additional
functionalities of the chip designing program are required
to fulfill the identification demands of the DNA microar-
ray. If it is impossible to design sequence specific probes
due to high similarities, it could be advantageous to deter-
mine probes that are specific for groups of closely related
sequences. In some cases it could even be helpful to select
probes that detect target sequences as well as some non tar-
get sequences. These probes have identification value when
applied in combination with probes that react specifically
with the respective non-target sequences, so called exclud-
ing or negative probes. In this paper we describe an algo-
rithm and its parallel implementation that meets the require-
ments mentioned above and is, therefore, well suited for the
fast design of oligonucleotide probe sets from nucleic acid
sequence databases of both, variable and highly conserved
genes.

2. Problem statement

Probe design is a combinatorial optimization problem,
where sensitivity and specificity must be optimized while
several qualitative criteria, e.g. guanine/cytosine (G/C) con-
tent and melting temperature range of the probes, have to be
maintained. Maximizingspecificityandsensitivityare often
conflicting goals. In practice it is often impossible to design
specific probes for each selected sequence, especially when
dealing with highly conserved data. To nevertheless obtain
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a feasible working solution, one has to make compromises.
Thus we extended the typical probe design problem 2.1 by
another problem 2.2 which allows to relax criteria if the data
is highly conserved.

Problem 2.1 (Positive probes).Given a selected subsetS1

in a databaseS0 of sequences, find for each sequences
in S1 at least onepositive probep which hybridizes within
S1 only with s; it may however cross-hybridize with some
sequencesB, whereB ⊆ S2 := S0 \ S1 if this can’t be
avoided. High specificity means that the number of non-
target matches is minimized, while high sensitivity means
that a maximum number of selected target sequences is cov-
ered.

Problem 2.2 (Negative probes).Given the positive probes
identified inProblem 2.1, determine as few as possibleneg-
ative probeswhich together hybridize with all sequences in
B but with none inS1. High specificity means in this con-
text, thatno sequences inS1 may cross-hybridize with any
negative probe, while high sensitivity means, that a maxi-
mum number of sequences inB must be covered.

2.1. Probe design constraints

The following constraints are imposed onto the probe se-
lection process:

• Minimum and maximum length of the probes.
• The melting temperature of the probe-target hybrids

must not differ more than a maximum value. This
can be accomplished e.g. by specifying a range of
percentage of G/C content.

• Probes should not contain self complementary re-
gions that are longer than four sequential nucleotides.

• There must be a minimum difference in the melting
temperatures of target and non-target sequences. This
can be accomplished by ensuring a minimum number
of mismatches (stronger than G-U/T) to all other se-
quences.

2.2. System constraints

For practical reasons, other constraints are imposed onto
the development of such a system. The most important are:

• Execution time: A probe set for a chip must be com-
putable in at most a few hours.

• Usability: The software must be able to read different
standardized sequence and alignment data formats; a
user interface should allow the selection of sequences
and provide methods to visualize the specificity of de-
signed probe sets.

3. Algorithmics

Our approach on the generation of oligonucleotide probe
sets comprises three steps (as shown in Figure 1). Firstly, a
pool of suitable probe candidates is generated (s. 3.1). In
the next step the hybridization behaviour of these probes is
predicted (s. 3.2). Based on the results the probes are se-
lected (s. 3.3).

3.1. Probe preselection

All possible probe candidates are generated. For perfor-
mance reasons these should be as few as possible, while all
optimal candidates must be kept.

3.1.1 Attributizing a suffix tree

To find suitable probe candidates, a generalized suffix tree is
constructed from the sequences in setS1 in linear time [8].
The suffix tree is then traversed and extensible filter chains
determine if branches of unsuitable probes are cut off. The
current implementation utilizes filters forprobe length, G-
C contentandself-complementarity. The latter uses a suffix
tree to check, if a probe contains two disjoint substrings of
a certain minimal length which are the Watson-Crick com-
plements of each other. The remaining probes are uniquely
inserted into hashtables. The number of probes that have to
be analyzed in the further probe design process are, thereby,
reduced dramatically.

3.1.2 Further preselection by removing unspecific
probes

A probe match algorithm is applied onS1 to determine
probes which are found in many sequences of different
groups - usually those stemming from highly conserved re-
gions. These are not suitable as specific probes and, there-
fore, removed from the hashtable of possible probes. After
this step typically only a small percentage of the original
probe pool is left, which helps to keep the hybridization pre-
diction matrix sparse.

3.2. Hybridization prediction

This is the most time-consuming part, as all generated
probe sequences are searched inexactly in the database con-
taining all sequences. This results in a hybridization matrix
which predicts melting temperatures for all probe - target
pairings. Our approach uses anintelligent hashingstrategy
to solve this problem efficiently.
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Figure 1. Stepwise decomposition of the probe design algorithms. The program flow is visualized in
UML statechart notation. The hybridization prediction part visualizes the worker-producer architec-
ture for multithreaded computation, described in 5.1.

3.2.1 Basic idea

All probe candidates of equal length are stored in several
hashtables. A target frame of the same length is moved
over target and nontarget sequences. At each place, hash
values are calculated and looked up in the hashtables. If
a hit occurs, the melting temperature is predicted, and the
probe - target interaction is stored in the hybridization ma-
trix. For performance reasons, the computation of the hash
values should take constant time. The hash functions must
be chosen in a way that makes this inexact matching possi-
ble (this is meant by the term intelligent hashing), which is
accomplished by a coding theoretical approach as described
in 4.2.1.

3.2.2 Design of the codes

Currently we use one code to guarantee general mis-
matches, one to handle weak G-U/T mismatch pairings,
and one to guarantee the detection of single insertions and
deletions, combined with any number of weak mismatches.
Thus, if our algorithm interprets a probe-target pairing as
non-matching, then this pairing has (for suitably chosen pa-
rameters)

• at least four central mismatches of which at least two
are no G-U/T pairings.

• one insertion or deletion and at least one non G-U/T
central mismatch.

The codes have been designed to guarantee experimentally
identified criteria of unspecificity.

Empirical simulation To test the effectiveness of these
codes, one million random probe-target pairings have been
generated, in which the above criteria are minimally failed
(thus only worst-case constellations are examined). Four
mismatches were chosen or one insertion or deletion plus
one strong central mismatch. Tab. 1 shows the results of the
experiment.

∆Tm °C 0-4 5-9 10-14 15-19
cases out of106 7 603 16207 46576

Tab. 1 Melting temperature difference (rounded
downwards) for worst case hash misses

This experiment shows that in more than 93 % of thecrit-
ical cases, a melting temperature difference of more than 20
°C can be expected, whereas a difference of below 10 °C is
very improbable compared to sequencing and experimental
errors.

All calculated checksums utilize only a portion of the
original probe text bits. E.g., to ignore border mismatches,
one can exclude the probes’ border regions from the check-
sum generation. This is interesting in terms of hybridiza-
tion thermodynamics. The checksum calculation functions
should be chosen to be injective, as the size of the function’s
range directly determines the number of expected hashtable
collisions to which running time is proportional. Ifm − 1
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mismatches must be detected, which should not lie on theb
border nucleotides of a probe of lengthl, the numberk of
available key bits can be calculated by

k = 2
⌊
l − 2b
m

⌋
Complexity Since the number of possible probe candi-
dates – entries in the hashtable – is roughly‖S1‖, and each
position of the databaseS0 must be checked, the expected
complexity for the hybridization prediction algorithm is

ops = C
α‖S0‖‖S1‖

2k

whereC is a small implementation constant andα ≈ 0.1
is the percentage of probes kept after preselection. If single
insertions and deletions should be detected, thenmmust be
equal to4.

3.2.3 Hashtable lookup and local thermodynamical
alignments

The interesting point in intelligent hashing is to allow ”in-
exact equality”. This is accomplished by the most time-
consuming subroutine, the probe comparison operator. This
routine constructs a local thermodynamical alignment as
described in [10], but only the inner three bands of the dy-
namical programming matrix are computed, since only sin-
gle insertions or deletions must be detected. The compari-
son routine computes the expected nearest neighbour melt-
ing temperature; for details about precision of this thermo-
dynamical model see [18]. This local alignment can be con-
structed in timeO(l) for probes of lengthl. While this char-
acterwise comparison and calculation gives another factor
- linear with the probe length - the coding theoretical ap-
proach does reduce the number of necessary comparisons as
far as possible. Another advantage of using hashtables for
searching is that unspecific probes can be simply removed
if the number of matches surpasses a predefined threshold.

3.2.4 Storage of the sparse hybridization matrix

To store the hybridization matrix, a quadruple tree data-
structure is used; it allows efficient enumeration of row
or column entries and selected subsections can easily be
”sliced” out. Thus when the chip has been designed, only
the subregion concerning all involved probe-target interac-
tions can be saved to disk.

3.3. Probe selection

Using this matrix,Probe-selectiongenerates a solution
to the positive probe problem 2.1. Subsequently, negative
probes are calculated, which solve problem 2.2.

3.3.1 Selecting positive probes

Once the hybridization matrix has been constructed, it is
used to select the probes and solve problem 2.1 (positive
probes). Checking each possible subset of probes is too ex-
pensive. Therefore, an efficient algorithm is required for
the probe selection process. While other approaches, such
as [10, 13, 15, 16] leave the user merely with a sorted re-
sult list of probes at this point, our approach, in addition to
this possibility, utilizes the combinatorial ideas presented in
4.1 to choose an optimal probe covering even for conserved
data.

Our algorithm works in the following way: For each
probe candidate, the numberg of matches inS1 and the
numberb of matches inS2 is counted and the highest pre-
dicted melting temperaturet within S1 is identified. Probes
for which g or b is too large are removed. The probes are
then sorted, with respect tog, b andt.

Afterwards, a modified Depth First Search is conducted
on the selections of possible probe subsets. In a descending
order, probepn is chosen iff it allows to double the number
of potential binary chip experiment results, which means it
is independent from the current probe selection (see 4.14).
If, for a predefined number of steps no new probe can be
chosen, the branch is truncated. After a predefined maxi-
mum number of iterations, this selection process stops. This
algorithm can not guarantee the optimal selection in terms
of coverage, but it performs reasonably well in practice. It
also guarantees to choose all specific probes if any were
found.

3.3.2 Covering the cross-hybridizing sequences

For the setB of cross-hybridizing sequences a new set of
probe candidates is created by the probe preselection pro-
cedure described above. Subsequently, hybridization pre-
diction is conducted onB ∪ S1. All probes which show
hybridization withinS1 are removed. Afterwards, the re-
maining probes are sorted by the number of hits inB, de-
scendingly. Successively, probes are chosen, which cover as
many yet uncovered elements ofB as possible in each step.
This procedure guarantees an optimal selection of negative
probes, in terms of coverage and probe number usage. Of
course, the negative probes selected this way can possibly
cross-hybridize with other sequences inS2\B, but the min-
imization of this quantity would result in a computationally
expensive iterative probe-match process; it is, however, not
necessary to optimize the negative probes this way. A mi-
croarray hybridization experiment that results in a reaction
of both, positive and negative probes has to be interpreted
very cautiously, as it does not precisely indicate the pres-
ence of the target sequence.
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4. Mathematical aspects

4.1. Combinatorial criteria for probe selection

In this section we present some mathematical theory to
formalize the process of probe selection and hybridization
prediction. We develop the notion of independent probe sets
which maximize the number of binary chip result interpre-
tations. This leads to a probe set for optimal identification
and differentiation of selected target sequences.

4.1.1 Basic definitions

Definition 4.1. We model nucleic acid sequences as strings
over a finitealphabetΣ := {A,C,G,U/T}. These se-
quences are taken from auniverseU := Σ+. Thedatabase
S0 is a finite subsetS0 ⊂ U , as are theselected sequences
S1 ⊂ S0. The complement ofS1 in S0 is S2 := S0 \ S1.
A target regionof a sequences ∈ U , s = (s1, . . . , sn) is a
substringsk,l = (sk, sk+1, . . . , sk+l−1) of s which starts at
positionk and has lengthl.
P l := Σl denotes probes of lengthl. P0 is the set of all

probes. Forp ∈ P0, p = (p1, p2, . . . , pn) the reverse com-
plementis p̄ := (p̄n, p̄n−1, . . . , p̄1) for Ā := U/T, C̄ :=
G, Ḡ := C, Ū/T̄ := A.

The lengthof a probep ∈ P0 is ‖p‖ := l iff p ∈ P l; this
definition is extended to finite sets:‖S‖ :=

∑
s∈S ‖s‖

Remark4.2. For defining the distanced : P l × P l → R
+
0

between two probes of equal length we utilize a metrics,
like theHamming distanceor theLevenshtein distance. For
definitions and efficient calculation see [19], pp. 94.

Definition 4.3. The distance function for probes of lengthl
and sequences of arbitrary length is:

dl : P l × U → R
+
0

dl(p, s) = min
i=1..‖s‖−l+1

{d(p, s̄i,l)}, ‖s‖ ≥ l

The canonical extension to setsS ⊂ S0 of sequences is:

dl(p, S) = min
s∈S
{dl(p, s)}

Definition 4.4. Therangeof a probep ∈ P0 in S ⊂ S0 is

S(p,∆) := {s ∈ S : d‖p‖(p, s) ≤ ∆}
for S ⊂ U finite ,∆ ∈ R+

0

Remark4.5. In the following, the value of∆ is assumed to
be fixed, therefore we writeS(p) := S(p,∆).
Remark4.6. Sometimes it is impossible to find specific
probes for each selected sequence inS1, e.g. if S1 con-
tains families of very similar sequences. In this case we
want to select probes only if they maximize the number of
potential binary chip experiment results. This notion will
be formalized next.

4.1.2 Binary chip experiment results

Lemma 4.7. Let P ⊂ P0, |P | = k < ∞ be the set of
probes which are placed on a chip, and

h : {1..k} → {0, 1}

h(j) =

{
1 if probepj has hybridized,

0 otherwise

be the hybridization result function. Then

C(P, h) =

 ⋃
j∈h−1(1)

S0(pj)

 \
 ⋃
j∈h−1(0)

S0(pj)


gives the set of sequences identified by the chip experiment.
The number

c(P ) := |{C(P, h)|h : {1..|P |} → {0, 1}}|

counts the number of different experimental results.

Proof: If a probe matches, any subset of sequences of the
probe’s range can be in the result, this is expressed in the
first union. If a probe does not match, none of the sequences
in the probe’s range can be in the result, which is guaranteed
by subtracting the second union. In the definition ofc(P )
only unique chip results are counted. �

Remark4.8. Since we want to select probes which maxi-
mize the number of potential binary chip experiment results,
we need a measure for the expression power of the addition
of a new probe to a given probe set.

Definition 4.9. Let P ⊂ P0 finite, p ∈ P0 \ P , define
c(∅) := 1 and

µ(P, p) :=
c(P ∪ {p})

c(P )
∈ Q

theexpression power ofp with respect toP

Lemma 4.10. For Pn = {p1, . . . , pn} it holds that

c(Pn) =
n∏
i=1

µ

i−1⋃
j=1

{pj}, pi


Proof: This is a telescope product - only the enumerator of
the last and the denominator of the first term remain.�

Lemma 4.11. Define

C ′(P, h) =
⋃

j∈h−1(1)

S0(pj)

c′(P ) := |{C ′(P, h)|h : {1..|P |} → {0, 1}}|

Then it holds, thatc′(P ) = c(P )
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Proof: We have:
C(P, h) =(⋃
j∈h−1(1) S0(pj)

)
\
(⋃

j∈h−1(0) S0(pj)
)

=((⋃
j∈h−1(1) S0(pj)

)
∪
(⋃

j∈h−1(0) S0(pj)
))
\(⋃

j∈h−1(0) S0(pj)
)

=
(⋃

p∈P S0(p)
)
\(⋃

j∈h̄−1(1) S0(pj)
)

= Ω \ C ′(P, h̄)

whereΩ =
(⋃

p∈P S0(p)
)

independent fromh, h̄(j) :=
1 − h(j) for every j = 1..n. As .̄ is a permutation of
all h : {1..n} → {0, 1}, andC ′(P, h̄1) 6= C ′(P, h̄2) iff
C(P, h1) 6= C(P, h2) the claim holds. �

Lemma 4.12. For finiteP ⊂ P0 andp ∈ P0 \ P it holds
that

1 ≤ µ(P, p) ≤ 2

Proof: This is an immediate consequence of the represen-
tation from Lemma 4.11. �

Remark4.13. Since we are only interested in probes with
maximal expression power, we are looking for necessary
and sufficient conditions forµ(P, p) = 2. Therefore we
need the notion ofindependencyof probes.

4.1.3 Independent probe selections maximize the ex-
pression power

Definition 4.14. Let P ⊂ P0. P is called independent
(w.r.t. S) iff for all p ∈ P , somes ∈ S(p) exists with
s /∈ S(q) for all q ∈ P \ {p}. Otherwise,P is called
dependent.
p ∈ P0 \P is calledindependentof P (w.r.t. S) iff P ∪{p}
is independent.

Remark4.15. The above definition states that the empty set
is independent w.r.t. any setS.

Theorem 4.16. Let P be independent, finite subset ofP0.
Then

c(P ) = 2|P |

Proof: Per definition, for eachpk ∈ P there exists some

spk ∈
(
S(pk) \

(⋃
p∈P\{pk} S(p)

))
, thusspk in C ′(P, h)

iff h(k) = 1. Since there are2|P | possibleh, it holds that
c(P ) = 2|P | �

Theorem 4.17. Let P be independent, finite subset ofP0

andp ∈ P0 \ P . Then the following statements are equiva-
lent:
(i) p independent fromP
(ii) µ(P, p) = 2

Proof: (i)⇒ (ii) From the definition it is clear that
if P is independent andp is independent fromP , then

P ∪ {p} is independent. Thus Theorem 4.16 shows that
c(P ∪ {p}) = 2|P |+1 andc(P ) = 2|P |, and (ii) follows.

(ii)⇒ (i) Suppose, p is dependent from P .

Then for some pj ∈ P ∪ {p} it holds, that

S(pj) ⊂
(⋃

pj∈P\{pk} S(pj)
)

Thus C ′(P ∪
{pn}, (1, . . . , 1, 0︸︷︷︸

j-th position

, 1, . . . , 1)) = C ′(P ∪

{pn}, (1, 1, . . . , 1, 1)) and since P was independent,
c(P ) = 2|P | but c(P ∪ {p}) < 2|P |+1, thus we see that
µ(P, p) < 2 and (i) follows. �

Corollary 4.18. Those setsP ⊂ P0, for whichc(P ) = 2|P |

holds are exactly the independent probe selections. These
can be constructed inductively by adding probes to indepen-
dent sets while making sure that the resulting sets in each
step remain independent.

Proof: Definition 4.14 shows that adding probes to depen-
dent sets will always result in dependent sets. Since the
empty set is independent, and any finite set can be induc-
tively constructed by adding one element after another to
smaller sets, the claim follows from 4.10, 4.16 and 4.17.

�

4.2. Calculating the distance

The calculation of the distance of probes and sequences
is a computationally expensive operation. Additionally,
since|P | ≈ ‖S1‖, the amount of distance calculations is
Ω(‖S1‖ · ‖S0‖), which would result in a long computation
time. To speed up the process we only calculate the exact
distance if this value is small, and therefore the exact value
needs to be known to predict the hybridization behaviour.
So we have to solve the following problem.

Problem 4.19. Givens ∈ S1, P ⊂ P l, dmax ∈ N, identify
P ′ ⊂ P with p ∈ P ′ iff d(p, s) ≤ dmax.

From the definition of the distance one sees that
d(p, s) > dmax iff d(p, s̄k,l) > dmax for all suitablek. So
our problem is solved, if it is possible to efficiently calculate
the sets

P (sk,l) := {p ∈ P : d(s̄k,l, p) ≤ dmax}

in time ε‖S1‖ for a smallε < 1. Introducing up todmax

arbitrary errors intosk,l and for each malformed copy look-
ing up quickly whether it can be found in the setP or not is
still too expensive. But the idea of investigating the neigh-
borhood of one probep can be modified to utilize the fact
that the “neigborhoods” of a probe are typically occupied
sparsely. Formally, the setP l of possible probes can be
looked at as a2l-dimensional hypercubeQ, in which ver-
tices are marked if the corresponding probe is in the subset
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P . The idea is now to construct some “continuous” map-
ping ofQ into some structure in which neighborhoods can
be enumerated quickly.

4.2.1 Coding theory

Our approach is to calculate checksums for each probe
p and the reverse complements of each targett and
make sure that at least one checksum is equal if the dis-
tance d(p, t) ≤ dmax. For k = dmax + 1 this can
be done by calculating the checksumsc0, . . . ck−1 for a
probe/targetp ∈ P kl, p = (p0, p1, ...pkl−1) by cj :=
(pj , pk+j , p2k+j , . . . , p(l−1)k+j). It is also possible to con-
struct codes to check for certain types of mismatches, such
as G-U/T mismatches, or for insertions and deletions. These
checksums can then be used to store all probes inP in
hashtables. For each target, the checksums are calculated
and looked up in the hashtable. If a hash miss occurs, it
is guaranteed that the target looked up has at leastk mis-
matches. This technique utilizes the fact that the neighbor-
hood of probes inP – which would get similar checksums
– is occupied sparsely. The calculation of hash values for
the targets can be done in constant time for small probes by
utilizing the bit-shift operations implemented in hardware.

5. Prototype implementation - preliminary test
results

A basic prototype of the algorithm presented above has
been implemented in C++ relying on the Qt library [21],
keeping our future plans in mind, e.g. to develop a com-
prehensive, modern graphical user interface. Furthermore,
the Qt library enables platform independency. Generic pro-
gramming using templates was employed for basic data
structures. A proprietary memory manager was set up to
guarantee effective cache utilization by data locality. Con-
figuration and data exchange currently utilizes the standard
data format FASTA (a regular expression can be specified
for parsing any FASTA format subtype) as well as the ARB
data format for raw and aligned data [13] .

5.1. Parallelization and distribution

The prototype has been parallelized on an SMP plat-
form. A worker-producer architecture is used to improve
efficiency of the hybridization prediction routine. Several
producer threads each search distinct parts of the evaluation
database, a worker thread writes the search results to the
quadruple tree as displayed in Fig. 1.
The chosen algorithms are well suited for distribution: the
calculation of rectangular regions of the quadruple tree ma-
trix can be distributed to several machines within a cluster.
Results can then be merged.

5.2. Preliminary test results

The software prototype was tested with data from
the small subunit ribosomal ribonucleic acid (ssu
rRNA) database of the ARB project (ssujun02.arb,
www.arb-home.de ). The original dataset was prepro-
cessed before designing oligonucleotide probe sets. Just
almost full length sequences (longer than 1400 bases) were
kept, while partial sequences were removed. Furthermore,
sequence fragments beyond ssu rRNA alignment regions
were truncated. The test-ready dataset contains 20.282 ssu
rRNA sequences. 69% of them are prokaryotic. Sequence
lengths range between 4.179 and 1.401 bases. However,
97% of the sequences are shorter than 2.000 bases and 70%
have a length within a range of 1.400 and 1.600 bases.

Design of an oligonucleotide probe set.The program
was executed after a subset of the data had been selected as
target sequences, in our test all sequences of members of the
archaeal kingdomCrenarchaeota(68) and of the bacterial
generaDeinococcus(16), Thermus(48) andMeiothermus
(15). All other sequences within the database were con-
sidered to be non-target by the program. The parameter
probe lengthwas set to 22 bases length andG/C-content
was restricted to the range between 50 and 60 percent. The
algorithm firstly tried to determine a maximum independent
probe selection, thereby choosing specific probes for each
of the target sequences if available. Additionally, it pro-
posed probes such that every sequence was covered at least
by one probe. This led to the generation of group specific
probes. Some of the group specific probes hit non target
sequences. In this case negative probes that allow the dis-
crimination of these non target sequences were added. The
designed set of oligonucleotide probes (22 meres) consisted
of 101 probes. 55 sequence specific probes were found. 45
group specific probes were determined. All 147 sequences
were covered by one or more probes. Three probes were
selected that cover in addition to target sequences also four
non-target sequences in total. Those non-target sequences
could be covered by two negative probes. The designed
probe set of this experiment will be published on
wwwbode.cs.tum.edu/˜meierh/ .

Estimation of the Runtime Performance. For this ex-
periment we used the test-ready dataset (20282 sequences)
and subsets of it, containing 1000, 2000, 5000, and 10000
sequences. This corresponds to dataset sizes‖S0‖ of 1.7,
3.4, 8, 17, and 35 million bases (Mb). The software pro-
totype was executed on each of the datasets with identical
parameter settings and target sequence selection. Runtime
performance was estimated on an Intel Dual Pentium III 933
MHz with 1 GByte main memory in single and dual proces-
sor mode. Measured values for total running time and the
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running time of the parallelized component are displayed in
Tab. 2. These results indicate a performance improvement
of up to 59% and 65%, respectively.

Database size in Mb 1.7 3.4 8 17 35

Tot. run. time 1 CPU 62 84 168 309 580
Tot. run. time 2 CPUs 49 61 113 200 364

Parall. part 1 CPU 46 70 150 284 544
Parall. part 2 CPUs 34 47 96 177 329

Tab. 2 Performance measurements for chip design process
selection size‖S1‖ = 220 Kb, running time in[s]

6. Discussion

In this document we have presented an approach to the
probe generation problem even for datasets of conserved
sequences, such as the small subunit ribosomal ribonucleic
acid (ssu RNA) database. The advantages of the system are
specifically:

High performance. Expected execution time is linear
with the size of the evaluation databaseS0 and even de-
creases if longer probes are used. First test runs indicate that
the expected high performance could actually be achieved
in practice. Within a large database a set of 101 oligonu-
cleotide probes specific for the identification and differenti-
ation of 147 sequences was designed on a common personal
computer within six minutes onlyTab.2.

Low memory consumption.Even for very large evalua-
tion databases (several hundred Mbs) 0.5-1 GByte of main
memory is sufficient, when the total size of selected tar-
get sequences does not exceed one million bases. Memory
consumption only depends on the size of the sequence se-
lection,not on the evaluation database size.

Automatic design of group probes and negative probes
to work with previously unstructured and even conserved
data.

High quality probe design.The usage of local thermo-
dynamical alignments fully exploits the nearest neighbour
model as an unspecificity measure. Interfaces to software
packages as ARB allow the usage of refined and less error-
prone data. Proposed probes lay in the same regions of the
target sequences – within a few bases – as probes manually
designed by expert microbiologists, even the group probe
coverage was similar, see 5.2. It was not within the scope
of this paper to present comprehensive probe set design re-
sults. Further studies will be performed on different data
sets and the quality of designed probe sets for custom-made
microarrays will be evaluated within the near future.

In a very small percentage of cases, the coding theoreti-
cal approach fails to discern sequences with a small differ-
ence in the melting temperature as described in 3.2.2. The

greedy calculation of the nonlinear nearest neighbour melt-
ing temperature can – in very few cases – differ from the
optimal alignment. This may also be a problem, as analyzed
in [10]. Despite of this fact, our approach works very well
in empirical simulations and testcases, as shown in 5.2. One
constraint seems to be the quadratic time complexity when
probes for all sequences in the database should be gener-
ated; but even then, the complexity factor is very small and
distribution or batch-processing as described in 6.1 can be
fully exploited to handle even very large datasets.

Comparison with related work The ARBprobe design
tool allows to design probes for single sequences or a group
of sequences. Its alignment is used to refine the data by
identifying sequence errors which would otherwise hinder
successful probe design. It is however not suited for large
scale probe design. Hybridization prediction is done by cre-
ating an index search tree containing all substrings of length
at mostk. The time and space complexity of this approach
depends on the database size.

The program described in [15] relies on the least com-
mon substring (or least common factor, LCF) of each probe
/ target pairing. It performs well even on large data sets,
but there are currently no results analyzing the LCF as an
unspecificity measure. This approach only works well with
short probes of about 20-25 bases, and it doesn’t have any
features to compute probe coverings for highly conserved
data - it only calculates specificity statistics for each probe
and sorts the resulting probes. The memory consumption of
this approach is extremely large and depends on the evalua-
tion database size.

There are other systems involving inexact searching, e.g.
[14, 16], but most of them cannot deal efficiently with inser-
tions or deletions, or employ simpler thermodynamics. The
approach of [10] provides the most exact thermodynamical
evaluation, but its execution time is too slow to work with
large databases.

6.1. Future work

Comprehensive tests of the algorithm and the evaluation
of the quality of designed probe sets Though the proto-
type shows promising properties regarding speed and probe
quality, these results have to be verified more closely. In
detail, this will require tests with additional databases, e.g.
genome databases and comparison of the results with that
of other available software packages.

Graphical User Interface To improve the general usabil-
ity, the prototype will be extended by a user interface, which
will facilitate the import of arbitrary databases and the se-
lection of sequences. This will help to attract more attention
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of molecular and computational biologists and accellerate
its use in research institutes as well as in companies devel-
oping oligonucleotide microarrays.

Scalability - Genome databases The current implemen-
tation has been designed to work even with the highly
conserved ssu-rRNA sequences. In contrast, within one
genome database it is more likely that for each selected gene
an unique probe can be found. This reduces the problem of
finding negative probes.

The selection of unique probes for every gene within one
genome can be accomplished, even in the current imple-
mentation. To minimize memory usage and hashtable col-
lisions, at most a few hundred or thousand genes should be
selected in one run after which the program is restarted with
another selection. The designed probes for these subsets of
the data can then be merged. The whole processes will be
automatized both for distribution and for simple batch pro-
cessing. This is possible, because the probe match code en-
sures that all generated probes are specific within thewhole
database.
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