
Sequence Alignment on the Cray MTA-2�

Shahid H. Bokhari
Department of Electrical Engineering

University of Engineering & Technology

Lahore 54890, Pakistan

shb@acm.org

Jon R. Sauer
Eagle Research & Development

11001 West 120th. Ave., Suite 400

Broomfield, CO 80201

sauer@EagleRD.com

Abstract

The standard algorithm for alignment of DNA sequences
using dynamic programming has been implemented on the
Cray MTA-2 (Multithreaded Architecture-2) at ENRI (Elec-
tronic Navigation Research Institute), Japan. Descriptions
of several variants of this algorithm and their measured
performance are provided. It is shown that the use of
“Full/Empty” bits (a feature unique to the MTA) leads to
implementations that provide almost perfect speedup for
large problems on 1–8 processors. These results demon-
strate the potential power of the MTA and emphasize its
suitability for bioinformatic and dynamic programming ap-
plications.

1. Introduction

We describe the results of a series of experiments with
sequence alignment algorithms on the Cray MTA-2 (Mul-
tithreaded Architecture-2) supercomputer [1, 2]. This re-
search is an outgrowth of our prior work on simulating an
ultrafast silicon based DNA sequencer [3, 8]. Our prior
work addressed the problems of simulating the molecular
dynamics of the ultrafast sequencer on the Cray MTA-2. We
are now investigating the problems of analyzing the massive
amounts of information that such a sequencer would gener-
ate. Clearly, very large amounts of computational power
will be needed to analyse the resultant volumes of data.

As a first step, we have embarked on a study of the
implementation of traditional DNA sequence alignment al-
gorithms on the very non-traditional Cray MTA-2 super-
computer. The unusual architecture of this machine per-
mits us to parallelize algorithms without having to concern

�This research was supported by the National Institutes of Health, grant
R21HG02167-01. Access to the Cray MTA-2 was provided by Cray Inc.,
Cray Japan Inc., and the Electronic Navigation Research Institute (ENRI),
Japan. Additional support was provided by the Optoelectronic Computing
Systems Center, University of Colorado, Boulder.

ourselves with explicit details of parallel communications,
mapping, load balancing, etc. The MTA-2 thus serves as
an interesting alternative to more conventional supercom-
puters, clusters and ‘piles’ of PCs. It is potentially of great
value to the bioinformatics community because it promises
parallelization of existing serial code with minor modifica-
tions.

In the following, we first briefly discuss the architecture
of the MTA-2. We start our presentation of sequence align-
ment by describing an implementation of the ‘naive’ algo-
rithm for brute force exact matching. We show that, even
for this simple algorithm, there are situations where careful
algorithm design is needed for good performance.

The bulk of this paper is taken up by an exploration of the
classic dynamic programming algorithm for approximate
sequence alignment. We provide details of several imple-
mentations and describe the performance of the codes in
detail. The MTA-2 is seen to permit easy implementation
of the basic dynamic programming algorithm and demon-
strates excellent speedup. It is a convenient machine for a
researcher to develop and explore various alternative algo-
rithms for a given problem.

2. Cray MTA Architectural Features

We first describe the general approach that the Cray
MTA1(Multithreaded Architecture) uses to obtain good par-
allel performance on arbitrary codes. We then discuss the
hardware and basic performance specifications of this ma-
chine.

The MTA’s approach to achieving high performance is to
invest in additional hardware and software to support paral-
lelism, possibly at the expense of additional compiler over-
head. This approach does not permit the use of commodity
microprocessors for parallel processing and requires a pro-

1Formerly known as the Tera MTA. In April 2000, Tera Computer
Company acquired the Cray Research business from Silicon Graphics, Inc.
and subsequently changed its name to Cray Inc.

tracted cycle of development and production. However, the
potential benefits are very attractive.

In the following brief overview of the MTA [2],
we limit ourselves to features relevant to our
code. Detailed information may be found at
www.cray.com/products/systems/mta/ ps-
docs.html .

Zero Overhead Thread Switching. An MTA proces-
sor has special purpose hardware (streams) that can hold
the state of up to 128 threads. Thestateof each stream in-
cludes registers, condition codes, and a program counter.
On each clock cycle, each processor switches to a dif-
ferent resident thread and issues one instruction from that
thread. A blocked thread, e.g., one waiting for a word from
memory or for a synchronization event, generally causes
no overhead—the processor just executes the instructions of
some other ready threads.

Pipelined Processors.Each processor in the MTA has
21 stages. As each processor issues an instruction from a
different stream at each clock tick, at least 21 ready threads
are required to keep it fully utilized. Since the state of up
to 128 threads is kept in hardware, this target of 21 ready
threads is easy to achieve.

Flat Shared Memory. The MTA has a byte addressable
memory. Full/empty tag bits (described below) are associ-
ated with 64-bit words. Addresses are scrambled by hard-
ware to scatter them across memory banks [2]. As a result,
the memory has no locality, and there are no issues of parti-
tioning data or mapping memory on the machine.

Extremely Fine-grained Synchronization.Each 64-bit
word of memory has an associatedfull/emptybit. A mem-
ory location can be written into or read out of using ordi-
nary loads and stores, as in conventional machines. Load
and store operations can also be under the control of the
full/empty bit. For example, a “read-when-full, then set-
empty” (y = readfe[x]) operation atomically reads
data from a location only after that location’s full/empty bit
is setfull. The full/empty bit is setemptyduring the read op-
eration atomically with reading the data. If the full/empty
bit is not set, the thread executing the read operation sus-
pends (in hardware) and is later retried. The thread resumes
when the read operation has completed. This is a low over-
head operation since the thread is simply removed from and
later reinserted into the ready queue. This feature allows ex-
tremely fine-grained synchronization and is detailed in Sec-
tion 2.1, below.

2.1. Parallel Implementation

Behavior of the Full/Empty (F/E) bits. The operations de-
scribed below are atomic with respect to reading or writing
and changing the state of the full/empty bit.

A synchronized writeinto a variable succeeds when it is

threads

pipeline
(21 − stage)

128 streams

Figure 1. The MTA (1 processor).

128
virtual
processors

128
virtual
processors

128
virtual
processors

Memory
Shared

Network
Interconnection

Figure 2. A view of the MTA (multiple proces-
sors). Each stream may be thought of as a
virtual processor.

empty. If the variable isfull then, the write blocks until it
becomesempty. When the write completes, the location is
setfull. A thread attempting a synchronized write into afull
location will be suspended (byhardware) and will resume
only when that location becomesempty.

A synchronized readfrom a variable succeeds when it is
full. If it is empty, then the read blocks until it becomes
full. When the read completes, the location is setempty. A
thread attempting a synchronized read from anemptyloca-
tion will be suspended (byhardware) and will resume only
when that location becomesfull.

There are several ways of using the full/empty bits, for
example, inpe[i] = pe[i] - pdiff; the update to
pe[i] can be done as follows:

1. Perform a synchronized read ofpe[i] .

2. Perform the subtraction (in registers).

3. Store the result tope[i] under a synchronized write.

The update tope[i] is guaranteed to be atomic with re-
spect to other loop instantiations wanting to update the same
pe[i] .
Synchronized Variablescan be declared thus:
sync float pe[100]; .

In this case, writes and reads to/frompe[] will follow
the full/empty rules given above.
Machine Genericsare machine language instructions such
aswriteef() (“wait until a variable is empty, then write
a value into it and set the full/empty bit to full”) that can be
invoked from within Fortran or C.

To ensure that pe[i] = pe[i] - pdiff; is
handled properly when several threads are using the same
value ofi , we could use
writeef(pe[i],readfe(pe[i])-pdiff)); .
Machine generics such aswriteef andreadfe become
individual MTA machine instructions. This technique is
the most flexible and gives full control to the programmer.
We have used it to great advantage in our codes.
Compiler Directives. Directives can be used to make the
compiler use full/empty bits to ensure correct updating. For
example, the directive

#pragma mta update
pe[i] = pe[i] - pdiff;

instructs the compiler to insert, in the statement that imme-
diately follows the directive, appropriate machine instruc-
tions to insure that the update tope[i] is atomic.
Compiler Detection. The compiler can also detect program
statements where use of full/empty bits would be required
and insert the required machine instructions. This is the
least intrusive solution but may not work in all cases.

3. Exact Matching

The naiveO(mn) exact matching algorithm for match-
ing a patternP of lengthm against a textT of lengthn is
easily implemented in parallel on the MTA. The essential
code is as follows

#pragma mta assert parallel
for (i=0; i < n-m+1; i++) {

int j;
for(j=0; j < m ; j++){

if (P[j]!=T[i+j])
break;

}
if (j >= m){

found++;
F[int_fetch_add(&Ptr,1)]=i;

}
}

Here found is the number of matches; the loca-
tions of these matches are stored in arrayF . The
int fetch add function is essential when multiple
threads are storing into the same array. The compiler di-
rective#pragma mta assert parallel is used to

0.02

0.2

0.1

0.6

1

2

101 102 103 104 105 106

tim
e

(s
ec

)

pattern (bases)

P=1

P=2

P=3

P=4

na
iv

e

2-phase

Figure 3. Comparison of the naive and 2-
phase algorithms for exact matching on 1–4
processors. Text size is 1.8 million bases.

reassure the compiler that it is safe to parallelize the loop
that follows.

This implementation gives excellent speedup ifm � n

(Fig. 3). However, whenm is large, a serious problem
arises. The one, potentially successful, substring is exe-
cuted by one thread while the remaining threads quickly run
out of work. Thus only a very tiny fraction of the power of
the machine is applied to the one successful substring. This
is a fundamental scheduling issue that arises, for example,
in classical job-shop scheduling and also in the cutting stock
problem.

This algorithm was tested on the DNA ofH. Influenzae
[7], which has1:8 million bases. In Fig. 3, the y-axis is
time (secs). The x-axis is pattern (substring) sizem, varying
from 10 to 1.8 million bases. The plots shows the time re-
quired to find a substring ofH. Inf. The substring is chosen
to lie at the very end ofH. Inf, as that is the worst case prob-
lem. The figure illustrates that the performance of the naive
algorithm shows good speedup for small substring sizes but
is useless beyond about104 bases.

The solution to this problem is to implement a two phase
algorithm in which the first phase serves to identify a num-
ber of potential substring starting points. In the second
phase the patternP is equipartitioned into a number of
blocks which are tested in parallel. If all blocks match, suc-
cess is returned.

We can see in Fig. 3 that the two phase algorithm incurs a

small constant overhead, but otherwise gives excellent per-
formance and speedup. As the substring size becomes large,
the time to find a matchdecreases. This is due to two fac-
tors. Firstly, the amount of work required to match a pat-
tern of lengthm against a text of lengthn is proportional
to (n � m + 1)n, m � n. This expression varies from
2(n � 1) for m = 2 to n, for m = n. Thus form = n

(extreme right hand points in 2-phase plots), the intrinsic
amount of work is halved. Secondly, as the pattern size,m,
becomes large, the overhead of parallelization is reduced,
as there are fewer potential starting points to consider. Thus
there is a dramatic fall in the time required to find a match
as the pattern size increases.

4. Approximate Matching using Dynamic Pro-
gramming

Our implementation of the dynamic programming algo-
rithm for sequence matching is based on the presentation in
the seminal text of Gusfield [6]. We match a patternP of
sizejP j = m against a textT of sizejT j = n. The strings
P andT are taken for the alphabetc, t, a, g . An in-
teger matrixD of sizem�n is used for the actual dynamic
programming. The standard recurrence relation is used:

D(i; j) = min(

D(i� i; j) + 1;

D(i; j � 1) + 1;

D(i� 1; j � 1) +

if(P(i) 6= T(i)) then 1 else 0

)

Figure 4 shows the dependencies between the elements
of the matrix. It is clear that the updating of matrixD can
proceed along rows, columns or antidiagonals, as shown
in Fig. 5. On serial computers the choice between row or
column order would depend on the way the2d matrixD
was mapped onto1d memory. On conventional parallel ma-
chines, the antidiagonal order would be preferred as it leads
to the maximum amount of parallelism.

The Cray MTA-2 has auniformly accessibleshared
memory and is thus insensitive to row or column order
differences. Furthermore, as we shall demonstrate below,
its very fine grained synchronization mechanism (based on
Full/Empty bits) frees it from the necessity of using antidi-
agonal order. In fact, for some ranges of problem sizes, an-
tidiagonal order has slightly poorer performance than row
order.

5. Implementation

Several variants of the standard dynamic programming
algorithm were implemented and evaluated on the 4 proces-

(0,1)(0,0) (0,2) (0,3) (0,4) (0,5)

(1,0)

(2,0)

(3,0)

(4,0)

(5,0)

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,2) (2,3)(2,1)

(3,1)

Figure 4. Dependencies in the matrix.

sor MTA-2 at ENRI [5] and an 8 processor machine at Cray
Seattle. The strings tested were subsets of the genome ofH.
Influenzae[7], which has size� 1:8� 106 bases. For each
experiment, a substring “text”T of size29 to 215 of this
genome was first copied out and then a “pattern”P of equal
size was generated by randomly replacing 50% of the bases
of T by a random selection fromc, t, a, g . PatternP
was then aligned against textT .

In all, 8 different implementations of the algorithm were

(0,1)(0,0) (0,2) (0,3) (0,4) (0,5)

(1,0)

(3,0)

(4,0)

(5,0)

(1,1) (1,2) (1,3) (1,4)

(2,2) (2,3)(2,1)

(3,1)

A
nt

id
ia

go
na

l o
rd

er

(2,0)

(1,5)

Column order

R
ow

 order

Figure 5. Three different orders for updating
the matrix.

tested. The four algorithms that were best for some range
of problem sizes are described below. For each of the algo-
rithms we give the relevant portions of the CANAL (Com-
piler Analysis) output.

5.1 Antidiagonal

The antidiagonal algorithm is listed below. The algo-
rithm iterates serially over them + n antidiagonals of
the matrix. Each element of the antidiagonal is com-
puted in parallel. Synchronization is handled by the com-
piler (which has to be reassured through theassert
parallel pragma).

|/* antidiagonal */
|for(k=1; k<=m+n; k++){
| int i, j;

6 - | if(k<=m){
| j = 1;
|#pragma mta assert parallel
| for (i=k ; i >=1; i--) {

8 SD| D[i][j]=MIN(MIN
(D[i-1][j]+1,D[i][j-1]+1),

D[i-1][j-1]+(P[i]!=T[j]));
| j++;
| }
| }
| else{
| i = m;
|#pragma mta assert parallel
| for (j=k-m+1 ; j <=n; j++){

10 SD| D[i][j]=MIN(MIN
(D[i-1][j]+1,D[i][j-1]+1),

D[i-1][j-1]+(P[i]!=T[j]));
| i--;
| }
| }
|}

Loop 6 in dyn at line 24 in region 1

Loop 7 in dyn in loop 6
In parallel phase 3
Dynamically scheduled,

variable chunks, min size = 4

Loop 8 in dyn at line 28 in loop 7
Loop summary: 6 memory operations,

0 floating point operations
9 instructions,
needs 64 streams for full util.
pipelined

Loop 9 in dyn in loop 6
In parallel phase 3
Dynamically scheduled,

variable chunks, min size = 4

Loop 10 in dyn at line 36 in loop 9
Loop summary: 5 memory operations,

0 floating point operations
8 instructions,
needs 68 streams for full util.
pipelined

5.2 Rowwise with F/E Synchronization

In this case, ordinary rowwise order is used. The updat-
ing of each element of a row is synchronized through the
use of Full/Empty bits. Thereadff andwriteef op-
erators ensure that no matrix element is updated unless the
elements it depends on are themselves ready. Should this
not be the case, the special-purpose hardware of the MTA-2
switches over to some other update with zero overhead.

Two variants of this algorithm were implemented. The
row-col FE version (shown below) has the text loop on the
inside and the pattern loop on the outside. The col-row FE
version (not shown) isvice versa. There are slight, but in-
triguing, differences in performance between the two.

|/* rowwise with FE */
|#pragma mta assert parallel
|for (i=1; i <=m; i++) {
| int j, myPi;

7 p | myPi = P[i];
| for(j=1; j <= n ; j++){
| int v, h, d, m1, m2;

8 DS | v= readff(&D[i-1][j])+1;
8 DS | d= readff(&D[i-1][j-1])+

(myPi!=T[j]);
8 p- | m1 = MIN(d, v);
8 DS | h= readff(&D[i][j-1])+1;

| m2 = MIN(m1,h);
8 DS | writeef(&D[i][j], m2);

| }
|}

Loop 7 in dyn at line 28 in region 1
In parallel phase 4
Interleave scheduled

Loop 8 in dyn at line 31 in loop 7
Loop summary: 5 memory operations,

0 floating point operations
12 instructions,
needs 90 streams for full util.
pipelined

3 instructions added
to satisfy dependences

5.3 Antidiagonal with F/E Synchronization

This algorithm combines the best features of preceding
two. Iteration through the matrix is in antidiagonal order
and Full/Empty bits are used for synchronization.

|/* antidiagonal with FE */
|#pragma mta assert parallel
|for(k=1; k<=m; k++){
| int i, j=1;
| for (i=k ; i >=1; i--) {
| int v, h, d, m1, m2;

10 DS| v= readff(&D[i-1][j])+1;
10 DS| d= readff(&D[i-1][j-1])+

(P[i]!=T[j]);
10 DS| h= readff(&D[i][j-1])+1;
10 p-| m1 = MIN(d, v);

| m2 = MIN(m1,h);
10 DS| writeef(&D[i][j], m2);

| j++;
| }
|}
|#pragma mta assert parallel
|for(k=2; k<=n; k++){
| int i=m, j;
| for (j=k ; j <=n; j++){
| int v, h, d, m1, m2;

12 DS| v= readff(&D[i-1][j])+1;
12 DS| d= readff(&D[i-1][j-1])+

(P[i]!=T[j]);
12 DS| h= readff(&D[i][j-1])+1;
12 p-| m1 = MIN(d, v);

| m2 = MIN(m1,h);
12 DS| writeef(&D[i][j], m2);

| i--;
| }
|}

Loop 10 in dyn at line 30 in loop 9
Loop summary: 6 memory operations,

0 floating point operations
12 instructions,
needs 90 streams for full util.
pipelined. 2 instructions added

to satisfy dependences

Loop 11 in dyn in region 1
In parallel phase 4
Interleave scheduled

Loop 12 in dyn at line 44 in loop 11
Loop summary: 6 memory operations,

0 floating point operations
12 instructions,
needs 88 streams for full util.
pipelined. 3 instructions added

to satisfy dependences

6. Experimental Results

The plot in Figure 6 presents the results of our experi-
ments. We vary processors from1 to 8 and problem size
from 512 � 512 to 32768 � 32768. We omit the range of

10

100

1 2 3 4 5 6 7 8

tim
e

(s
ec

)

processors

327682

162842

81922

40962

20482

10242

5122

0.001

0.01

0.1

1

10

100

row-col FE
col-row FE
antidiagonal FE
antidiagonal

Figure 6. Aligning patterns and texts of equal
sizes. Run times of only the dynamic pro-
gramming phase.

problem sizes for which the antidiagonal algorithm is not
competitive. In these initial experiments we align equal pat-
terns and texts. In later experiments we explore the perfor-
mance of our algorithms when the pattern is smaller than
the text.

Consider first the two algorithms that use Full/Empty
bits, antidiagonal with FE and row-col/col-row with FE.
Fig. 6 shows the run times of the dynamic programming
phase only (omitting the time for theO(m + n) traceback
phase, which is difficult to parallelize). The run times of
these algorithms are indistinguishable for problems of size
4096� 4096 and larger. Furthermore, these algorithms ex-
hibit almost perfect speedup for these problem sizes. For
problems smaller than these, the antidiagonal algorithm
(which would be expected to have better performance on
a parallel processor) is slightly worse than the rowwise al-
gorithm. This is because the antidiagonal approach “un-
covers” parallel work at a rate proportional to the size of the
antidiagonals (i.e.1; 2; 3; : : : ;m; : : : ; 3; 2; 1) while the row-
wise algorithm does so proportionally to the size of the rows
(m;m;m; : : :). The Full/Empty mechanism of the MTA is
able to attend to those elements of the matrix whose depen-
dencies have been satisfies while holding others until later.
A conventional parallel processor would not be able to react
to unsatisfied dependencies with such alacrity.

Figure 7 shows the total run time (O(mn) dynamic pro-
gramming phase, parallelized, plus theO(m + n) trace-
back phase, not parallelized). As would be expected, the
O(m + n) component makes a slight difference for small

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8

tim
e

(s
ec

)

processors

327682

162842

81922

40962

20482

10242

5122
row-col FE
col-row FE
antidiagonal FE
antidiagonal

Figure 7. Aligning patterns and texts of equal
sizes. Total run times (dynamic programming
phase plus traceback).

0.001

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8

tim
e

(s
ec

)

processors

32768
16484
8192
4096
2048
1024

pattern
size=

text size = 32768

1024 = pattern size512
256

text size = 1024

column-row FE, text size = 32768
column-row FE, text size = 1024

Figure 8. Aligning patterns of various sizes
against texts of sizes 32768 and 1024 bases.

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8

tim
e

(s
ec

)

processors

32768

16484

8192

4096

2048

1024
512

256

pattern
size=

text size = 32768

column-row FE
row-column FE

Figure 9. Investigating an interchange in the
row/column order. Dynamic programming
phase only.

0.01

0.1

1

10

100

1 2 3 4 5 6 7 8

tim
e

(s
ec

)

processors

32768

16484
8192
4096
2048

1024

pattern
size=

text size = 32768

column-row FE
row-column FE

Figure 10. Investigating an interchange in the
row/column order. Total time (dynamic pro-
gramming phase plus traceback).

problems, but is negligible otherwise.
Turning to the “plain” (i.e. without Full/Empty) antidi-

agonal algorithm, it is seen that it outperforms the others
for large problem sizes. This is probably because there is
enough parallelism in large problems to keep the MTA busy
without having to depend on (and suffer the overhead, how-
ever slight, of) the Full/Empty mechanism.

Figure 8 shows the timings obtained when the column-
row FE algorithm is run with various pattern sizes aligned
against texts of sizes 32768 and 1024 bases. As would have
been expected, large problems show perfect speedup. As
the pattern size becomes smaller, performance saturates be-
cause of lack of available work (i.e. smallm� n).

The above figures illustrate some intriguing results ob-
tained while investigating the order in which the dynamic
programming matrix is filled in. Fig. 9 shows only the
dynamic programming time, while Fig. 10 gives the total
time. In Section 6.2 we present the row-column FE version,
wherein the iteration is:

for (i = 1; i <= m; i++) {
m pattern elements
for (j = 1; j <= n ; j++){

n text elements
}

}

The alternate column-row FE order is:

for (j = 1; j <= n ; j++){
n text elements
for (i = 1; i <= m; i++) {

m pattern elements
}

}

It can be seen that the column-row algorithm gives sig-
nificantly better performance for small pattern sizes. This is
presumably because the column-row order is more effective
in uncovering parallelism for the hardware. A precise per-
formance model of this phenomenon is an interesting chal-
lenge for future research. Figure 10 shows, however, that
the advantage of the column-row order is minimized when
the traceback time is added in.

7. Conclusions

We have described how the standard dynamic program-
ming sequence alignment algorithm may be ported to the
Cray MTA-2. Once the standard algorithm has been ported,
many other variants are very easy to implement. For exam-
ple, after completing the work described in this paper, we
were able to port the classical Smith-Waterman algorithm
[4] with no more than a few hours of work.

The unusual architecture of the Cray MTA-2 permits
easy parallelization of a vast range of algorithms. We expect

that future developments in the field of supercomputing will
include the MTA and its variants and related architectures.
Such machines will be easy to program and will provide at-
tractive alternatives to the more traditional supercomputer
architectures that are in vogue today.

The next steps in this research will be

1. Testing of these algorithms on larger MTA-2 configu-
rations.

2. Implementation and testing of a linear (as opposed to
quadratic) space alignment algorithm.

3. Exploration of other sequence alignment algorithms
that might usefully be ported to the MTA-2.

8. Acknowledgments

We are grateful to the staffs at Cray Research (Seat-
tle), Cray Japan and ENRI for their generous assistance.
This work would not have been possible without the sup-
port and encouragement of Dick Russel, Bracy Elton and
Simon Kahn. We are indebted to David Callahan for his in-
sightful comments. The support provided by Kazuki Watan-
abe, Toshiomi Muto, Susumu Igawa, Toshiaki Ishimoto and
Satoru Yoshioka is gratefully acknowledged.

References

[1] G. Alverson, R. Alverson, D. Callahan, B. Koblenz, A. Porter-
field, and B. Smith. Exploiting heterogeneous parallelism on
a multithreaded multiprocessor. InProc. Int. Conf. Supercom-
puting, pages 188–187, 1992.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The Tera computer system. In
Proc. Int. Conf. Supercomputing, pages 1–6, 1990.

[3] S. H. Bokhari, M. A. Glaser, H. F. Jordan, Y. Lansac, J. R.
Sauer, and B. V. Zeghbroeck. Parallelizing a DNA simulation
code for the Cray MTA-2. InProceedings of the IEEE Com-
puter Society Bioinformatics Conference, CSB2002, pages
291–302, 14-16 August, 2002.

[4] P. Clote and R. Backofen.Computational Molecular Biology,
An Introduction. John Wiley & Sons, 2000.

[5] ENRI. Electronic Navigation Research Institute.
www.enri.go.jp.

[6] D. Gusfield. Algorithms on Strings Trees and Sequences.
Cambridge University Press, 1997.

[7] H. influenzae. www.tigr.org/tigr-scripts/ CMR2/
GenomePage3.spl?database=ghi.

[8] J. Sauer and B. V. Zeghbroeck. Ultra-fast nucleic acid se-
quencing device and a method for making and using the same.
US Patent No. 6,413,792, July 2, 2002.

