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Abstract      
  
Systemic pathways-oriented approaches to analysis of 
metabolic networks are effective for small networks but 
are computationally infeasible for genome scale 
networks. Current computational approaches to this 
analysis are based on the mathematical principles of 
convex analysis.  The enumeration of a complete set of 
“ systemically independent”  metabolic pathways is at the 
core of these approaches and it is computationally the 
most demanding component.   An efficient parallel out-
of-core algorithm for generating a complete set of 
systemically independent metabolic pathways, termed 
“ extreme pathways” , is presented. These pathways 
represent the edges of a high-dimensional convex cone 
and can be used to derive any admissible steady-state 
flux distribution (or phenotype) for a specified metabolic 
genotype. The algorithm can be used for computing 
“ elementary flux modes”  that are different but closely 
related to extreme pathways. The algorithm combines a 
bitmap data representation, search space reduction, and 
out-of-core implementation to improve CPU-time and 
memory requirements by several orders of magnitude. 
Augmented with a parallel implementation, it provides 
extremely scalable performance. No previous parallel 
and/or out-of-core algorithms for the enumeration of 
systemically defined metabolic pathways are known. 

 
 

1. Introduction 
 

The elucidation of genome-scale metabolic 
networks [5, 9, 13] necessitates the development of more 
efficient and effective methods for the analysis of their 
integrated properties and the comparison of these 
properties amongst different organisms. Systemic 
pathways oriented approaches [2, 7, 14-19] centered 
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around properties of metabolic networks at steady state 
imposed by their stoichiometric structure have been 
successfully applied to various metabolic systems in 
defining their limitations and production capabilities [17, 
19]. Various algorithms and mathematical tools have 
been developed [10, 14, 19]. However, while efficient in 
analyzing reactions systems of small size, the 
computational complexity of these algorithms limits 
their practical applicability to organism-scale metabolic 
networks [14, 17], especially in the context of 
comparative analysis of metabolic networks among 
different organisms.  

In recent years, two related systemic pathways 
oriented approaches are advocated for defining and 
comprehensively describing all metabolic routes 
(phenotypes) that are both stoichiometrically and 
thermodynamically feasible for a given metabolic 
genotype. Both of them share a common underlying 
mathematical framework capitalized on the principles of 
convex analysis. These principles include closely related 
concepts of “elementary flux modes”  [10, 19] and 
convex basis [8], or “extreme pathways”  [14, 17] (for a 
recent review, see [18]). 

Both elementary modes and extreme pathways are 
systemically independent flux vectors that lie in the null 
space of the stoichiometric matrix. When non-negativity 
constraints are imposed on flux vectors, this null space 
takes the shape of a convex polyhedral cone, called 
steady-state flux cone. An extreme pathway represents 
an edge of this steady-state flux cone whereas an 
elementary flux mode is a steady-state flux vector that 
cannot be decomposed into two flux vectors that would 
have additional zero components. Any vector within the 
cone can be represented as a nonnegative linear 
combination of extreme pathways (elementary modes). 
The set of elementary modes (extreme pathways) is 
unique. The extreme pathways (elementary modes) are 
systemically independent because none of them can be 
written as a nonnegative linear combination of the 
others. For a more detailed explanation of their 
similarities and dissimilarities refer to [10, 14]. 

An algorithm for constructing a convex basis (or a 
complete set of extreme pathways) has been developed 



[8; 14; 20]. An algorithm for computing both convex 
basis and elementary modes has been implemented as 
part of METATOOL [10]. For simplicity’s sake, we will 
focus on the common procedure of enumerating these 
pathways that is the core of both algorithms. It is 
computationally the most expensive. Without loss of 
generality, our discussion will be presented in the 
context of extreme pathways in what follows.  

For small networks, generating the set of extreme 
pathways is simple. However, for genome-scale 
networks, the calculation of extreme pathways poses a 
significant computational challenge. The computational 
time as well as the number of extreme pathways grows 
exponentially as the size of the metabolic network grows 
linearly. The problem of enumerating the extreme 
pathways can be reduced in polynomial time to the 
problem of enumerating all vertices of an n-dimensional 
convex polyhedron that is known to belong to the class 
of NP problems [3].  Currently, this bottleneck of 
computational intractability has been addressed by either 
considering the reduced reaction network (with the 
enzyme subsets taken as combined reactions, or 
monofunctional “super-enzymes”  [6, 10, 12] or 
decomposing the network into computationally feasible 
subsystems to generate pathways in each subsystem that 
may be pieced together [17]. 

In this paper, we present a parallel out-of-core 
algorithm for the enumeration of metabolic systemic 
pathways. The algorithm combines a bitmap data 
representation, search space reduction, and out-of-core 
implementation to improve CPU-time and memory 
requirements by several orders of magnitude. 
Augmented with a parallel implementation, it results in 
extremely scalable performance. No previous parallel 
and/or out-of-core algorithms for the enumeration of 
systemically defined metabolic pathways are known. 

 
2. Metabolic Extreme Pathways within the 

Context of Convex Analysis 
 

This section briefly describes the underlying 
mathematical theory for the systemic definition of 
metabolic extreme pathways presented by [14]. 

To study structural and functional properties of 
metabolic networks, the metabolic system is often placed 
into a steady-state: 

0=⋅ vS      (1) 
where S is a nm×  stoichiometric matrix of m 
metabolites (rows) and n reactions (columns) and v  is a 
vector of reaction rates, called the flux vector. The 
stoichiometric coefficient ijS  corresponds to the number 

of moles of metabolite i produced (or consumed) in 
reaction j. The complete set of flux vectors satisfying the 
homogeneous system of linear equations (1) lies in the 

null space of S [4] spanned by basis vectors that can be 
calculated by standard linear algebra methods, e.g. the 
Gaussian elimination algorithm [4]. Note that the basis 
vectors are not unique but their number equals the 
dimensionality of the null space, which is )(Srankn − . 

In many cases, only biochemically meaningful null space 
vectors are of interest. 

Thus, solutions to a system of Eq. (1) have 
additional constraints imposed by principles of 
thermodynamics and by systemic (input/output) 
characteristics of the network. In particular, all reversible 
internal reactions are split into forward and reverse 
fluxes that are constrained to be non-negative. Exchange 
fluxes (with respect to hypothetical boundaries of the 
system under study) or pseudoreactions [1] are left 
unconstrained or constrained to some lower and upper 
limits depending on the ability of corresponding 
metabolites to enter or exit the system. (For more details 
see [14-15]. The constraints on internal (v) and exchange 
(b) fluxes can be expressed mathematically as:  

ii ∀≥   ,0v  and jjjj ∀≤≤   βα b   (2) 

If exchange fluxes are unconstrained, then Eq. (1) 
and (2) are reduced to a system of homogeneous linear 
equations and inequalities:  

0  ,0 ≥=⋅ vvS     (3) 
From convex analysis [11], all solutions to system (3) of 
equations and inequalities form a convex polyhedral 
cone, K. Every point within K can be represented by a 
non-negative linear combination of the extreme rays ip : 
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where k denotes the number of extreme rays. In the 
context of metabolic systems, these extreme rays are 
called extreme pathways as each extreme ray 
corresponds to a particular pathway in a reaction 
network. The set of extreme pathways is conically or 
systemically independent. This means that none of the 
extreme pathways can be formed as a non-negative 
linear combination of the other extreme pathways. Based 
on Eq. (4) and systemic independence, this set of 
extreme pathways is referred to as the conical basis of 
the convex space (3). From a network function 
perspective, this means that any attainable steady-state 
flux vector (or phenotype) allowable by the constraints 
placed on the metabolic system can be reached by 
controlling (switching on/off) the activity levels of the 
extreme pathways for a defined metabolic genotype. 
Unlike a linear basis of the null space, the conical basis 
is unique up to scalar multipliers. Moreover, the number 
of extreme pathways is usually much greater than the 
dimensionality of the cone.  

 
 



 1: for each col=SelectColumn() {  
 2:     for each irow in Tcol  {  
 3: if (Scol[irow][col] == 0)  Copy irow to Tcol+1   
 4: else for each krow > irow {  
 5:      if (Scol[irow][col] * Scol[krow][col] < 0)  
 6:         for any jrow {  
 7:               if(wi·irow+wk·krow is independent 

  on jrow in Icol) {  
 8:      Copy wi·irow+wk·krow into Tcol+1 
 9:              }  // end-if 
10:         }  // end-for-jrow 
11: }  // end-for-krow 
12:    }  // end-for-irow 
13: }  // end-for-col 

Figure 1. Pseudo-code of the serial in-core 
EP algorithm. 

3. The Extreme Pathways (EP) Algor ithm 
 

This section presents the core of the serial version of 
the algorithm for calculating the complete set of extreme 
pathways for a reaction network [14]. The procedure is 
based on the principles of finding extreme solutions to a 
homogeneous system of equations and inequalities 
developed in convex analysis [8] and further extended to 
an inhomogeneous system [20]. 

Our description of EP algorithm mostly follows 
[20]. The algorithm begins with the construction of an 
initial tableau T(0) containing the transpose of an nm×  
stoichiometric matrix S augmented on the left by an 

nn×  identity matrix I :  

)( T(0) S IT =     (5) 
The consecutive tableaux T(1), T(2),…, T(m) are 
constructed as follows. T(j+1) is obtained from T(j) by a 
series of steps including: 
1) Selecting a pivot column of the right-hand side of 
T(j) (originating from the transposed stoichiometry 
matrix).  This is the column that will be zeroed out 
during the jth iteration. The choice of a pivot column may 
affect the performance of the algorithm. However, a 
selection strategy based on sparse matrix computation 
ideas is beyond the scope of this paper. For simplicity, 
the )1( ++ jn th column for the jth iteration is chosen. 

2) Copying all rows containing a zero in the pivot 
column to the next tableau, T(j+1). 
3) Taking all possible positive linear combinations of 
pairs of rows with an opposite sign pivot column 
element so that the combination produces a zero in the 
pivot column. This is somewhat like Gaussian 
elimination restricted to positive linear combinations. 

For example, given a pair of rows, )( j
ir  and )( j

kr , of 

opposite sign in the pivot column of T(j), the new row 
)1( +jr  is generated as: 
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where )(
1 ,

j
jnk ++r  and )(

1 ,
j

jni ++r  are the )1( ++ jn th elements 

of the corresponding rows, )( j
kr  and )( j

ir . 

4) Transferring each row )1( +jr  obtained in the 
previous step to the next tableau, T(j+1), if the following 
conical independence constraint is satisfied: 

)(  )()( )()()( j
l

j
k

j
i ZZZ rrr ⊄∩  for all kil ,≠  (7) 

where the set )( )( j
qZ r  contains all the column indices, c, 

for which the elements of row q of the left-hand side part 
of T(j) (originating from the identity matrix) equal zero:  

}0 ,:{)( )(
 ,

)( =≤= j
cq

j
q nccZ rr    (8) 

Note that the number of rows may increase, 
decrease, or remain the same with each iteration. The 

number of rows in the final tableau, T(m), corresponds to 
the number of extreme pathways. The left-hand side of 
T(m) formed by the first n columns contains all the 
extreme pathways for system (3).  A pseudo-code for 
this algorithm is given in Fig. 1.  

Inspection of the pseudo-code in Fig. 1 shows that 
there can be two parts in the optimization of the 
performance of the EP algorithm: one in the outer for  
loop (line 1) when the next pivot column is selected 
(global optimization), and the other in the step of zeroing 
out the selected pivot column (lines 2-12), when the 
conical independence condition (7) is checked for each 
pair of rows of opposite signs (local optimization). Our 
experiments with different stoichiometric matrices show 
that the overall computation time can change drastically 
depending on the column order of the stoichiometric 
matrix. Our future research will investigate heuristics for 
permuting columns at each step. For the purposes of this 
paper, we assume the columns are already permuted and 
focus only on the local optimization. Since the 
cumulative cost of checking for conical independence 
(condition 7) is the most time consuming operation 
(about 99% of the total execution time based on profiling 
results obtained by a gprof UNIX utility), a speedup can 
be achieved by minimizing the number of rows to be 
checked per each combined pair of rows (lines 6-10) (see 
“Search space reduction”  section) as well as by 
improving the efficiency of an individual check (line 7) 
(see “Bitmap data representation”  section). The next 
section describes the details of the local optimization 
part in the improvement of the EP algorithm’ s 
performance as well as presents a parallel out-of-core 
version of the locally optimized EP algorithm. 
 
4. Parallel Out-of-core Computation Model 
 



To improve the performance of the EP algorithm in 
Fig. 1 we have developed a parallel out-of-core version 
of this algorithm. Our strategy is to transform a large 
problem into a set of small sub-problems and to perform 
these sub-problems almost concurrently with reasonable 
data transfers, latency, and synchronization so that the 
cumulative computational cost is much less than the cost 
of the aggregate problem. The key idea is based on: 
1) The reduction of memory requirements via: a) using 
a bitmap data representation scheme with a high data 
compression rate; b) deploying an out-of-core strategy; 
2) The reduction of computational time via: a) 
performing efficient bitwise logical operations without 
decompression overheads; b) minimizing search space to 
check for conical independence by maintaining 
descriptive statistics about data with cost effective 
updates; c) storing all critical information in memory 
thus minimizing I/O access; and d) maintaining almost 
even load balance between processors; 
3) The reduction of communication cost via: a) having 
one-time synchronization per long-running iteration 
followed by initialization of some minimal global 
information; and b) partitioning the data to minimize 
data transfer needs; 
 
4.1. Bitmap data representation 
 

The concepts of Row Feature and RF hash table are 
at the core of our algorithm. Row Feature is a triple 
summarizing the information about a row vector in the 
left part of the tableau.  
Definition 1. Given a row vector ),...,,( 21 nrrr=r , the 

Row Feature (RF) vector of r  is defined as a triple 
))(  ),( ),(()( rrrr LastFirstBRF =  where 

1) )(rB  is a non-negative integer number whose 

binary (base 2) representation gives the non-zero 
structure of r . More formally )(rB  is defined as: 
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2) )(rFirst  is the index of the first non-zero 

component of r  defined as: 
} allfor   0 and  0  :{)( jirrjFirst ij <=≠=r      (10) 

3) )(rLast  is the index of the last non-zero component 

of r  defined as: 
} allfor   0 and  0  :{)( jirrjLast ij >=≠=r       (11) 

Theorem 1 (RF Additivity Theorem). Assume that 
))(  ),( ),(()( 1111 rrrr LastFirstBRF =  and =)( 2rRF  

))(  ),( ),(( 222 rrr LastFirstB  are the RF vectors of two 

rows. Then the RF vector of the row that is formed by 
combining the two rows as in Eq. (6), is:  

   
)} )(,)(max{ )} ,(

,)(min{ ),(|)(()()(

212

12121

r rr

 rr  rr  r

LastLastFirst

FirstBBRFRF =+
   (12) 

From the RF definition and the additivity theorem 
we know, that the RF vectors need to be computed only 
for the initial tableau, T(0). For the consecutive matrices 
T(1), T(2),…, T(m), they are updated as rows are 
combined. Thus, we do not need to store the entire 
tableau, but only the RF vectors of its rows as summary. 
This RF summary not only takes much less space 
( )( mnp +  double precision numbers where p is the 

current number of rows in the tableau vs. p3  integer 
numbers) but it is much more efficient for checking the 
conical independence condition (7) due to efficient 
bitwise logical operations as shown below. 
Definition 2. Given three row vectors 321  and , , rrr , their 

characteristic function F is defined as a logical function: 
)( & ))( | )((!  ), ,( 321321 rrrrrr BBBF =              (13) 

Theorem 2 (Conical Independence). For a pair of 

rows, )( j
ir  and )( j

kr , of the tableau T(j),  the conical 

independence constraint (7) holds  if and only if the 

characteristic function F of  )( j
ir , )( j

kr , and )( j
lr  (see 

(13)) is true for all kil , ≠ , i.e.: 
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4.2. Search Space Reduction 
 
Definition 3. The RF hash table H of tableau T is 
defined as: 

})(  and  )( :{]][[ lastLastfirstFirstilastfirstH ii === rr
(15) 

Thus, the hash table H defines a partition of the rows of 
T such that two rows are in the same partition if their RF 
vectors have the same First() and Last() values. From 
such a partition of tableau T it follows that for any pair 
of rows, it is sufficient to check the conical 
independence constraint (7) only for the subset of rows 
defined by the First() and Last() values of their 
combination (6). This is summarized by theorem 3. 
Theorem 3 (Reduced Conical Independence). For a 

pair of rows, )( j
ir  and )( j

kr , of T(j),  the conical 

independence constraint (7) holds  if and only if the 

characteristic function F of  )( j
ir , )( j

kr , and )( j
lr  is true 

for ∀ ]][[ qpHl ∈ ,  )( 1+≥ jFirstp r  and )( 1+≤ jLastq r . 



 
4.3. Out-of-core Computation Model 
 

The exponential (for the entire program run) and 
quadratic (for a single iteration) space complexity of the 
EP algorithm (“Complexity Analysis”  section) results in 
huge data structures that cannot fit into memory. This 
necessitates “out-of-core”  calculations where data are 
stored on disk and brought into memory. 

Our out-of-core programming model is based on 
several key aspects. Due to space limitation, we limit 
ourselves here to an enumeration of the issues and 
illustration of the simplified pseudo-code in Fig. 2: 
• Storing small (linear vs. non-linear) size critical 
(most frequently accessed) information in memory. 
Frequent checks for conical independence drive our 
choice of in-core data structure. Based on the reduced 
conical independence theorem, it is sufficient for 
performing these checks to have the in-core data 
structure that consists of: 1) the RF array A(j) of RF 
vectors corresponding to the rows of the left-hand side of 
the current tableau, T(j); and 2) the RF hash table H(j) of 
T(j). Thus, only the summary information about the 
tableau is stored in memory; the current and next 
tableaux, T(j) and T(j+1), respectively, are stored on disk. 
• Providing a flexible trade off between 
computational cost and I/O access cost. We do not need 
to store (hence, read and write) the right-side (S(j)) of the 
tableau, T(j) (originating from the S matrix). We can 
always compute it provided the left-side (I (j)) is known:  

T)()( SIS ⋅= jj               (16) 
• Deploying a data-parallel programming paradigm 
in partitioning data into in-core and out-of-core that will 
naturally lead to the parallelization of the algorithm. 
Every iteration, the rows of tableau T(j) are partitioned 
into three parts with each part stored in a separate file: 
the file j.zero stores all the “zero”  rows of T(j) that have a 
zero in the pivot column and the file j.pos (j.neg) stores 
all the “positive”  (“negative” ) rows with a positive 
(negative) entry in the pivot column. The partition is 
done by the previous (j-1)th iteration: before a new row 
of T(j) is stored on disk, the value in the j th pivot column 
is checked and the row is saved into the appropriate file. 
Such partitioning of the matrix has several advantages: 
1) It reduces the computational complexity of finding 

the next pair of rows (lines 2-5 in Fig. 1) from )( 2pO  to 

)( pO  where p is the number of rows in T(j)); 

2) It allows for restructuring the code in such a way 
that the decision on what should be in-core and out-core 
becomes very deterministic. In particular, the positive 
and negative rows are processed by two nested loops 
(lines 5-12 in Fig.2) with the internal loop (of higher I/O 
access rate) over the smaller file. The in-core vs. out-
core decision is made based on the priority determined 

by the number of accesses: entries of A(j) and H(j) (line 
2), entries of the internal loop (line 6), and  entries of the 
external loop (line 5) in decreasing order. The out-of-
core entries of the matrix are brought in-core in big 
blocks of size determined by the available memory. This 
strategy allows us to fully utilize the entire in-core 
memory; 
3) It easily expands to the parallel implementation of 
the out-of-core code (see “Parallel Computation Model”  
section); 
 
4.4. Parallel Computation Model 
 

In this paper, we will assume an abstract machine 
model in which a number of processors are 
interconnected via a high-speed network. Each processor 
is connected to a local disk of its own that will be used 
as out-of-core scratch space.  

Given the partitioning of data described in the 
previous section, the parallel algorithm becomes as 
follows. For every j th iteration, each processor initializes 
a global RF array and a global RF hash table of the 
matrix T(j). Initialization is done by merging all local RF 
arrays stored by other processors on their scratch disks. 
This data is transferred by the requesting processor using 
the rcp UNIX utility. Uniform file naming convention 
and pid-hostname (pid is a process id) mapping allow for 
such transfers without requesting it from the owner 
process. Processor-specific offset number for row 
indices obtained from the master processor is used to 
maintain a global indexing scheme in both the RF array 
and the RF hash table. Each processor is processing its 
own local data files (j.mypid.zero, j.mypid.pos, 
j.mypid.neg) as well as remote negative (or positive 
depending on global size) files (j.pid.neg) from all the 
other processors. On completion of the j th iteration, a 

 1: for each col {  
 2:     Initialize Acol and Hcol  
 3:     Copy each row from col.zero into col+1.zero,  

          col+1.pos or col+1.neg file;  
 4:     Update Acol+1  
 5:     for each irow in col.pos {  
 6:           for each krow in col.neg {  
 7:         if (wi·irow+wk·krow is independent  

            on any jrow in Acol) {  
 8:  Copy wi·irow+wk·krow into  

col+1.zero, col+1.pos or col+1.neg 
 9:  Update Acol+1 

10:        }  // end-if 
11:   }  // end-for-krow 
12:     }  // end-for-irow 
13: }  // end-for-col 

 
Figure 2. Pseudo-code of the serial out-of-
core EP algorithm. 



processor synchronizes with the master on whether to 
continue with the next iteration (if all processors finished 
this iteration). It also sends the master some information 
required for local-global mapping of row indices. 

Maintaining reasonable load balance is another issue 
in the design of our parallel code. We expanded our 
computational model above by making each processor 
operate in a concurrent server-client mode using multi-
threading. As a client, a processor executes the parallel 
out-of-core code described above. As a server, it accepts 
requests from other clients that have finished their 
execution and are ready to help. A server-thread makes a 
decision on which of the data files are unprocessed, 
sends the requester the name of the file, and updates the 
list of locally processed files. The requester (“helper” ) 
gets information on which processor needs help from the 
master. Thus, the master is responsible for assigning 
helpers, maintaining global mapping information, and 
interprocess synchronization. 
 
5. Per formance Evaluation  
 

While experiments showed differences among the 
serial and parallel out-of-core algorithms in CPU-time 
and memory up to several orders of magnitude, a 
theoretical analysis is difficult. One major source of 
difficulty is predicting the resulting number of extreme 
pathways that is largely determined by the structure of 
the stoichiometric matrix. This number can vary from 

one to � �)()( Sranknnconst −⋅ . Another difficulty is 

introduced by the iterative structure of the algorithm; it 
is not only the structure of the stoichiometric matrix, but 
the structure of all intermediate tableaux generated in the 
solution process determine the complexity. Considering 
these difficulties we give complexity estimates for a 
given iteration expressed in terms of its parameters as a 
first step in this direction. 
 
5.1. Complexity Analysis 

 
To allow a theoretical comparison of the serial and 

out-of-core EP algorithms we sketch some space and 
time complexity analyses not for the entire program but 
for a given iteration. Let p(j) and q(j) denote the number of 
rows and positive-negative pairs in the tableau T(j), 
respectively. Referring to the pseudo-codes of the serial 
(Fig. 1) and out-core (Fig. 2) algorithms, the following 
space and time complexities can be provided:  
• Space complexity. Since both T(j) and T(j+1) are 
stored in memory, the space complexity of the serial 
code is:  

)()()(
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         (17)  

Substituting the upper bound for p(j+1), this results in the 
following worst case space cost:  

))(( 2)()( npOSpace jj ⋅=                (18) 
The out-of-core (OOC) algorithm needs to store the RF 
array, A(j), and RF hash table, H(j), in memory for its 
efficient execution. This results in the following space 
requirement for b-bit hardware: 
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In a big-O notation, Eq. (19) is equivalent to:  

)( )()( npOSpace jj
OOC ⋅=                (20) 

Thus, from Eq. (18) and (20) the out-of-core algorithm 
has linear space complexity compared to quadratic space 
complexity of the serial code for a given iteration. 
• Time complexity. Note that processing of positive-
negative rows takes most of the execution time. 
Computational time for processing zero rows is linear 
and will be ignored in what follows. The upper bound 
for the time complexity can be estimated as follows:  

      ))(()( 23)(2)()()( npOnOpqTime jjjj ⋅=⋅⋅=      (21)  
 
5.2. Empir ical Evaluation Results 
 

To demonstrate the performance of our algorithm, 
we provide results for a real metabolic subsystem of E. 
coli with 66 metabolites and 118 reactions, of which 24 
are reversible. Our results on several other real metabolic 
subsystems show similar behavior. Fig. 3 shows the 
analysis of the number of pathways and the number of 
positive-negative row pairs for the first 16 iterations. Fig. 
3.a. and 3.b. are plots of the actual number of pathways, 
p(j), and the ratio of these numbers in two consecutive 
iterations, p(j)/ p(j-1) (giving the base of exponent if 
number of pathways is expressed as a power sequence), 

respectively. The number of pathways grows 
exponentially with the number of iterations (giving a 
fluctuating base of exponent with an average value of 2). 
Almost quadratic dependence of the number of positive-
negative row pairs (Fig. 3.c) on the number of rows in 
the tableau (Fig. 3.a) is observed. The ratio of the 
maximum possible versus actual number of positive-
negative row pairs for a given number of rows is plotted 
in Fig. 3.d. Fig. 4 shows comparative results for overall 
memory utilization of the in-core (Fig. 1) and modified 
out-of-core (Fig. 2) algorithms. The memory cost for the 
in-core algorithm grows exponentially with the number 
of iterations (giving a fluctuating base of exponent with 
an average value of 2). The base of exponent average 
value for the growth of memory cost in the out-of-core 
algorithm is 1.3 (Fig. 4.a). A sustained memory 
improvement of one to two orders of magnitude with 
each iteration is observed (Fig. 4.b). 
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Figure 3. Comparative results on the number of pathways and number of positive-negative row 
pairs for a metabolic subsystem of E. coli with 66 metabolites and 118 reactions. a) The number of 
pathways at each iteration. b) The ratio of the actual number of pathways in two consecutive 
iterations. c) The number of positive-negative row pairs at each iteration. d) The ratio of maximum 
possible to actual number of positive-negative row pairs. 
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Figure 4. Comparative results for overall memory utilization of the in-core and modified out-of-
core algorithms. a) Memory cost for in-core (diamonds) and out-of-core (squares) algorithms. b) 
The ratio of in-core to out-of-core memory costs.  



Table 1 shows comparative results for the overall 
execution time cost for the in-core algorithm (Fig. 1) and 
parallel out-of-core algorithm on one, two, four and eight 
processors. The comparison of the in-core algorithm and 
the parallel algorithm on a single processor demonstrates 
the improvement of two to three orders of magnitude. 
The parallel algorithm scales up almost linearly with the 
number of processors. Finally, the total execution of the 
parallel algorithm on 20 SUN SPARC workstations 
completes within 3 hours whereas the in-core algorithm 
does not finish within 4 days. 
 

Parallel out-of-core I teration Incore 
p=1 p=2 p=4 p=8 

33 1 0 1 0 1 
34 7 1 0 1 0 
35 56 3 3 2 2 
36 5784 115 64 35 20 
37 90 4 2 2 2 
38 151 4 4 3 3 
39 N/F 926 483 260 145 
40 N/F 1 1 1 1 
41 N/F 1 1 1 1 
42 N/F 171 90 52 33 
43 N/F 20 11 9 8 
44 N/F 1237 704 370 194 
45 N/F 1 1 1 1 
46 N/F 596 273 179 98 

Table 1. Comparative results for overall 
execution time cost for the in-core algorithm 
and parallel out-of-core algorithm on one, two, 
four, and eight processors (N/F – Not finished). 
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