
TurboBLAST®: A Parallel Implementation of BLAST Built on the TurboHub

R.D. Bjornson, A.H. Sherman*, S.B. Weston, N. Willard, J. Wing
TurboGenomics, Inc.

Abstract

BLAST (Basic Local Alignment Search Tool) is by far the
most widely used application for rapid screening of large
sequence databases. This paper describes TurboBLAST, a
parallel implementation of BLAST suitable for execution
on networked clusters of heterogeneous PCs,
workstations, or Macintosh computers.

1. Introduction*

For biological scientists, the characterization of novel
DNA and protein sequences is an extremely important
problem. One powerful approach is based on detailed
assessments of the similarity or homology between novel
sequences and sequences in large databases of previously
characterized genes or proteins. Both functional and
evolutionary information may be inferred from when such
assessments are used carefully. Unfortunately, detailed
similarity assessments may be quite difficult and time
consuming to obtain, often requiring compute-intensive
structural comparisons or human intervention by a skilled
biologist at some point in the process. For this reason, it is
common to use simpler techniques to screen large
databases to identify a modest number of sequences most
likely to be worthy of detailed examination.

BLAST (Basic Local Alignment Search Tool)
[1-3,9,10] is by far the most widely used application for
rapid screening of large sequence databases. The inputs to
BLAST are a set of input query sequences and a number
of DNA or protein databases. For each input query
sequence, BLAST determines a group of sequences in the
databases that have high-scoring pairwise alignments to
the query sequence, where the scoring of alignments is
based on the use of a user-specified scoring matrix
accounting not only for regions of exact matches, but also
for insertions, deletions, and substitutions of DNA bases
or amino acids. Since the BLAST algorithm considers
both local and global alignments, it can detect regions of
high similarity embedded in otherwise unrelated
sequences, often identifying sequences that, upon detailed
examination, can provide important clues about the nature
and function of the query sequence.

*Contact author.

The National Center for Bioinformatics Information
(NCBI) develops and distributes an implementation of
BLAST that has become something of a “gold standard”
for similarity assessment [2]. When run on modern PCs or
workstations, it can process large sequence databases
quite quickly. However, sequence databases are exploding
in size, growing at an exponential rate that far exceeds the
rate of increase in hardware capability (which generally
obeys Moore’s Law). As a result, the use of the NCBI
BLAST application on a single processor has become too
costly, inefficient, and time-consuming for many life
science laboratories.

To address this problem, we and others have
examined the use of parallel computation (e.g.,
[5,6,13,15]). NCBI itself provides an option that employs
multiple threads to accelerate performance on small
shared-memory multiprocessors. The common wisdom,
and our own experience, is that this works reasonably
well for small numbers of processors (2 or 4), but that it
does not scale up very well, particularly when multiple
databases and small query sequences are used. Others,
most notably SGI [6], have developed alternative versions
of BLAST that address some of the performance issues in
NCBI’s threaded implementation, but such alternatives
diverge from NCBI’s code (leading to significant
validation questions) and are difficult to keep in synch
with the relatively frequent updates provided by NCBI.

Even a “perfect” threaded implementation of
BLAST, however, would have to face the fact that
database growth will require the use of increasingly large
and costly multiprocessor machines. Given the
widespread availability of powerful, yet cheap commodity
PCs, a potentially superior alternative is the use of
networked clusters of such machines. To pursue this
alternative, we have developed TurboBLAST [15], an
accelerated, parallel deployment of NCBI BLAST. We
use the term “deployment” rather than “implementation”
because TurboBLAST delivers high-performance not by
changing the BLAST algorithm, but by coordinating the
use of multiple copies of the unmodified serial NCBI
BLAST application. As a result, TurboBLAST supports
all of the standard variants of the BLAST algorithm
supported in NCBI BLAST (blastn, blastp, blastx, tblastn,
and tblastx), it provides results that are effectively
identical to those obtained with the NCBI application, and
it is easy to keep up with new versions of BLAST as they
are distributed by NCBI. TurboBLAST is available for

many parallel computing environments, from
heterogeneous clusters of PCs, workstations, and
Macintosh computers, to parallel supercomputers, to the
worldwide computing grid. All that is required is that
each machine have a Java virtual machine (JVM) and a
native executable for NCBI’s BLAST application.

In the remainder of this paper, we first provide
background on sequence similarity searching in general
and provide relevant details about BLAST. Then we turn
to TurboBLAST, first describing our general
parallelization strategy and then going on to discuss the
implementation of TurboBLAST, the underlying
TurboHub system on which it is built, and some of the
details of the approach to task and database splitting that
is among the most important aspects of TurboBLAST.
Finally, we conclude by providing a sampling of
benchmark results to illustrate the performance achievable
with TurboBLAST.

2. Sequence Similarity Searching and BLAST

2.1 General Background

In this paper we are concerned with comparisons
among sequences of letters representing members of two
classes of biological sequences: nucleotide sequences, in
which each letter represents one of four DNA bases, and
peptide or protein sequences, in which each letter
represents one of twenty amino acid residues. There are
many different methods for comparing such sequences.
Some methods, such as those based on the analysis of
transformational grammars (cf. [9], Chapter 9), compare
sequences by comparing the properties of the
mathematical algorithms that may be used to generate the
sequences in question. However, most commonly used
methods involve the use of direct sequence alignment at
some point in the comparison process.

Sequence alignment provides an explicit mapping
between the letters in two or more sequences. For the
purposes of this paper, we will consider only pairwise
alignment involving just two sequences. Given a pair of
sequences, there are many possible alignments, and each
one can be assigned a quality score using a metric that
rewards exact letter matches and that penalizes
substitutions (i.e., where a letter in one sequence is
mapped to a different letter in the other sequence) and
gaps (i.e., where mapped letters are the same, but they
occur in different relative positions due to insertions or
deletions in the sequences). The rewards or penalties for
matches and substitutions are typically specified in the
form of a 4x4 or 20x20 table (called a “substitution
matrix” or “scoring matrix”) whose entries reflect the
biological significance of the corresponding matches or
substitutions. Gaps are penalized using a formula that
may depend on the number, position, and length of each

gap. The global similarity score of a pair of sequences is
simply the score of the best (i.e., highest-scoring)
alignment of the entirety of the two sequences. Even if the
global similarity score is low, there may still be portions
of the sequences that match extremely well, and such
local alignments are often of higher biological interest
than the best global alignment.

To assess the similarity of a given input query
sequence to an entire database, the query sequence is
aligned separately to each sequence in the database in
order to identify those database sequences with the
highest-scoring local alignments (called “hits”). The
results of this process (often called a “similarity search”)
are then reported as a rank-ordered hit list, often
augmented by a series of individual sequence alignments
and various overall scores and statistics.

There are numerous programs and algorithms
available to perform similarity searching. For a basic
discussion of bioinformatics and sequence similarity
searching, see [4] and [7]. One of the earliest algorithms
for performing sequence similarity searching using
pairwise alignment was implemented in the FASTA
program [11,12].

2.2 The BLAST Algorithm

BLAST [1-3,9,10] is certainly the most popular
algorithm for sequence similarity searching. The approach
used by the BLAST algorithm is to first identify short
segments with high-scoring alignments without gaps, and
then to extend each such local alignment as far as possible
in both directions, with or without gaps, so long as the
score resulting after each new extension remains
sufficiently large. The method then evaluates the
statistical significance of all such high-scoring matches
and reports as hits only those that satisfy a pre-selected
threshold of significance.

More precisely, BLAST begins by dividing the input
query sequence into all possible contiguous subsequences
(called “words”) of length w (called the “word length”).
The value of w depends on the type of sequence involved,
but defaults to w=3 for comparison of protein sequences,
for example. For a given database sequence, BLAST
searches for subsequences that exactly match one of the
words. When such a match is found, the search process is
suspended, and BLAST tries to extend the subsequence
match in both directions (possibly introducing gaps), so
long as the score for the extended match does not
decrease significantly from the score for the original word
match. Ultimately, the extension process terminates either
when the end of one of the sequences is reached, or when
the score has diminished sufficiently. If the score at that
point is high enough, then the extended match is
tentatively included in the hit list (possibly displacing a
hit that was found earlier), and the search for word

matches resumes. When all word matches have been
processed for a given database sequence, that sequence is
discarded, and work starts on the next sequence in the
database. At the end of the entire process, BLAST reports
the hit list along with various overall statistics. The
amount by which the local score may diminish before
terminating the extension process, and the threshold for
inclusion in the hit list are among a number of
empirically-determined parameters that are supplied as
inputs to BLAST.

The implementation of BLAST from NCBI can
perform five different types of similarity searches,
corresponding to different combinations of sequence
types in the input queries and databases. The simplest
ones compare a nucleotide or peptide sequence with
sequences of the same type. The blastp program compares
a peptide query sequence against a database of protein
sequences. The blastn program compares a nucleotide
query sequence against a database of nucleotide
sequences.

The other three types of searches compare sequences
are more complex. In living cells, there is a relationship
between nucleotide and peptide sequences in which each
sequence of three consecutive nucleotide bases (called a
“codon”) is translated into a corresponding amino acid. In
general, for a given nucleotide sequence, it is impossible
to know where to start marking off the codons. Thus
comparisons must consider three possible translations
corresponding to different “frames” that start marking off
the codons at the first, second or third position in the
sequence. Since DNA has two strands, and each of the
three frames determined by the nucleotide sequence in
question has an analogue on the complementary strand
that is translated in the opposite direction, there are a total
of six frames that must be considered. The blastx program
compares the six-frame conceptual translation products of
a nucleotide query sequence (both strands) against a
protein sequence database. The tblastn program compares
a protein query sequence against a nucleotide sequence
database in which each sequences is dynamically
translated in all six reading frames (both strands). Finally,
the tblastx program compares the six-frame translations of
a nucleotide query sequence against the six-frame
translations of a nucleotide sequence database.

The program blastall is provided by NCBI as single
interface permitting access to all five types of BLAST
comparisons. It permits a user to specify a group of input
query sequences and one or more databases against which
each of the query sequences is to be compared. For the
purposes of running the algorithm and computing overall
statistics, blastall treats multiple databases as if they were
aggregated into a single large “virtual database” that is
mapped to the available virtual memory space on the
machine performing the search. Each query sequence is

searched against the entire virtual database before moving
on to the next query sequence.

The computational cost of applying the BLAST
algorithm to a pair of sequences is clearly linear in the
lengths of the sequences, although the constant of
proportionality may vary widely for different databases
and query sequences. (As a result, it should not be
assumed that searching against half of a database takes
even roughly half the time required to search against the
entire database.) While the description above makes the
computation seem quite tedious and lengthy, in practice,
the pairwise comparison process has been made very
efficient through the use of a binary encoding of the
sequences that reduces memory requirements
substantially and permits use of a clever implementation
based on finite automata. To extend the pairwise
comparison to a complete search of one query sequence s
against a number of databases D1,D2,D3,. . ., Dn blastall
uses an iteration similar to the following:

For each Query Sequence s {
For each Database Di {

For each sequence d in Di {
Compare s to d using BLAST;
Update aggregate statistics}}

Report results for sequence s}

As noted above, the entire contents of the individual
databases are aggregated and mapped as a single virtual
database onto the available virtual memory. When the
mapped database can be held entirely in available
physical memory, the iteration runs quite efficiently.
However, a difficulty arises when the size of the virtual
database exceeds the available physical memory. In that
event, a significant amount of paging may occur as
portions of the virtual database are brought into physical
memory from disk, replacing other previously loaded
data. Not surprisingly, this introduces a significant
amount of noncomputational overhead and inefficiency.
that may, in many cases, far exceed the computational
cost that would have been incurred by the original
BLAST computation had there been sufficient physical
memory available to hold the entire database.

3. The TurboBLAST System

3.1 Strategy

An individual BLAST job specifies a number of
input query sequences to be searched against one or more
sequence databases. In order to achieve parallel speed-up,
TurboBLAST implements a distributed Java “harness”
that splits BLAST jobs into multiple small pieces,
processes the pieces in parallel, and integrates the results

into a unified output. The harness coordinates the
following activities on multiple machines:

• Creation of BLAST tasks, each of which requires the

comparison of a small group of query sequences
(typically 10-20 sequences) against a modest-sized
partition of one of the databases sized so that the
entire task can be completed within the available
physical memory without paging;

• Application of the standard NCBI blastall program to

complete each task; and

• Integration of the task results into a unified output.

This approach has the advantage that it is guaranteed
to generate the same pairwise sequence comparisons as
the serial version of BLAST since it uses exactly the same
executable to perform the search computations. High
performance is achieved in two ways. First, the size of
each individual BLAST task is set adaptively so that
blastall processing will be efficient on the processor that
computes the task. Second, a large enough set of tasks is
created so that all the processors have useful work to do
and so that nearly perfect load balance can be achieved.

In the implementation described in the next section,
the task creation process occurs in two parts. First, at the
time of job submission, we create “initial tasks” that
search a group of 10-20 sequences against all of the
database(s). Later, if any the initial tasks is too large for
efficient blastall processing on the machine that is
working on it, the task is split dynamically into smaller
subtasks by partitioning the database(s) in order to create
tasks that are small enough for that machine. We discuss
the details of task splitting below after first describing the
overall implementation.

3.2 Implementation

To implement our approach, we have designed a
classic three-tier system comprising three principal
components: a Client, a Master, and a number of
Workers. TurboBLAST is delivered with standard
versions of the Client and Master components, but either
may be customized to meet the needs of individual
situations.

Client: The Client is the part of the system accessed
by an end user submitting BLAST jobs. The Client
takes a BLAST job and divides it into a number of
initial BLAST tasks, each of which searches a small
group of the input query sequences against the full set
of databases for the job. The Client submits these
initial tasks to the Master, retrieves the results when
they are available, and writes the results to a single

file in the proper order. Currently, two Clients are
available: one that provides a web-browser interface
similar to the one available at the NCBI web site, and
another designed for command-line use via a tblastall
command that is the TurboBLAST equivalent of
blastall.

Master: The Master is a Java application that accepts
initial BLAST tasks from one or more Clients and
sets them up to for processing by the Workers. The
Master includes the server portion of a sophisticated
parallel execution system called the TurboHub that
manages task execution, coordinates the Workers,
and provides a virtual shared memories (VSM) used
to share data among all the various components. The
TurboHub supports dynamic changes in the set of
Workers, fault tolerance, and other features that are
essential in a robust software application intended for
use in commercial settings.

Another important part of the Master is the File
Provider, a Java application that manages the
genomic databases used for TurboBLAST jobs. The
File Provider maintains a system-wide canonical
copy of each database, and it delivers all or part of
each database to the BLAST Workers as they require
them. (Essentially, the BLAST Workers may thought
of as having local caches on disk of portions of the
canonical databases, and they update their cached
copies automatically as required.) While the VSM is
used to share and exchange a variety of data involved
in a TurboBLAST run, the large files representing
databases are transmitted from the Master to the
Workers using a high-performance direct
transmission protocol that does not involve the
TurboHub server.

Workers: Workers are processors that run a Java
application that performs the actual BLAST
computations by instantiating a local copy of the
standard NCBI blastall application (a compiled C
executable). As noted in the last section, blastall is
only efficient when applied to BLAST searches for
which the memory-mapped database(s) fit into
available physical memory. If all the available tasks
are too large, then the Workers will create smaller
subtasks by partitioning the database(s) until the
resulting subtasks are small enough. As the
computation proceeds, some of the Workers will
merge the subtask results to create the final results for
each of the initial tasks. This entails parsing the
blastall output (stored as XML data) and may require
rescaling the scores and statistics to reflect the
aggregate size of the databases in the initial task
instead of the databases in the subtasks.

An important aspect of Worker operation is

scheduling, a topic that we have insufficient space to
address here in any detail. The Piranha model [8] used by
TurboBLAST is based on the use of a decentralized
distributed scheduling system in which each participating
machine makes its own scheduling decisions. In the case
of TurboBLAST, the Workers make use of a scheduling
algorithm to decide what tasks to perform, when to switch
to merging, how to balance the potentially competing
goals of efficiency and fairness when there are multiple
TurboBLAST jobs competing for attention.

3.3 The TurboHub System

At the heart of TurboBLAST is the TurboHub, an
execution engine for parallel and distributed Java
applications developed by TurboGenomics and based, in
part, on the Paradise® system for distributed computing
developed by Scientific Computing Associates [14]. The
TurboHub is capable of delivering scalable high
performance in a wide range of computing environments,
from heterogeneous networks of PCs, Macs, or
UNIX/Linux workstations, through multiprocessor
parallel servers, to the “Computational Grid” formed from
wide-area networks of diverse machines.

While the TurboHub supports many types of parallel
applications, it has been designed and tuned especially to
provide automation and dynamic acceleration for data-
parallel applications in which large numbers of
independent tasks corresponding to computations on
independent data must be processed efficiently in parallel.
TurboBLAST is one example of such an application, but
there is a broad class of applications known as workflows
that are ubiquitous in bioinformatics computation.
Workflows may be thought of as flowcharts (including
logic and loops), where the flowchart boxes (components)
correspond to computational applications or database
accesses. Applications written in any language (e.g.,
NCBI’s blastall, which is written in C) may be enabled
for use as workflow components in the TurboHub simply
by embedding them in thin wrappers written in Java
following to a published API. The TurboHub manages the
flow of data through the workflows, automatically
scheduling the components, transforming data as required
between them, balancing load, and handling any errors
that may occur.

In the case of TurboBLAST, the workflow is
extremely simple and contains only a single component
(the Worker, which is a wrapped-up blastall component),
so the TurboHub has a relatively simple job to do. (It
simply starts the Worker component on every available
machine.) In general, however, the TurboHub makes use
of a Piranha scheduling model to provide support for
accelerating workflows in a number of ways:

• Pipelining: By default, individual components are

scheduled to run on separate processors or machines,
with data passed automatically from one machine to
the next. This allows all components to operate
concurrently, with each one working on a different
portion of the data.

• Component Replication: The TurboHub recognizes

when a slow component becomes a bottleneck in a
workflow, and it automatically schedules extra
instances of such components to eliminate the
bottlenecks. The TurboHub dynamically manages the
flow of data to the multiple component instances to
ensure that the load is balanced evenly among them.

• Parallel Components: A wide range of applications

may realize performance benefits from the use of
parallel computing in which multiple processors are
all focused on the solution of a single instance of an
application. Many of these applications (such as
TurboBLAST) may be sped up by preprocessing their
input data, carrying out a large number of
independent, concurrent computations on the
preprocessed data (in parallel, and in any order), and
post-processing the results of the independent
computations to construct the final outputs. In such
cases, the implementation in TurboHub simply
requires creation of a suitable Java wrapper to handle
the data manipulations; the TurboHub itself handles
the management of the task processing. In more
complex cases, parallel applications may be
implemented using the TurboHub in combination
with tools from SCA or with any of a number of
other standard technologies such as MPI, PVM, or
OpenMP.

Most of the TurboHub’s acceleration of workflows

takes place automatically, without any user intervention
or modification of the original applications underlying the
components. The TurboHub makes dynamic decisions
about component scheduling, fault recovery, and other
aspects of workflow execution, as appropriate, based, in
part, on information available to it from the Java wrappers
created to convert the original applications into
TurboHub-enabled components in the first place.

3.4 Task/Database Splitting

A significant aspect of TurboBLAST is the technique
we use to create suitably-sized BLAST tasks for the
Workers. We view task creation as somewhat of a
balancing act involving two competing goals. On the one
hand, it seems desirable to maximize resource utilization
and minimize task startup overhead by having each

Worker process the largest possible tasks for which it can
run tblastall efficiently given its available physical
memory and other computational resource limitations. In
an extreme case, this could mean that a Worker with a lot
of memory might take on the entire BLAST job,
completely eliminating the potential performance gains to
be had from parallel computing. In more ordinary
situations, there might be a very small number of tasks
per Worker, so that it load imbalance among the Workers
might limit the performance gains, particularly if the
number of Workers varies over time or if the Workers are
heterogeneous with respect to their capabilities.

Taking the opposing view, one might choose to have
a large number of relatively small tasks. This would
permit more Workers to participate, increasing the
potential performance gains. It would also tend to deliver
a higher degree of load balance among the Workers, since
there would be a finer granularity division of the total
amount of work. However, there many down sides to
using a large number of small tasks. For example:
computational resources may be wasted for small tasks;
there is an increase in aggregate task startup overhead
(i.e., the cost of communicating the task data and results,
and the cost of actually starting the tblastall executable for
the task); the effort required to merge the task results will
grow; and it is likely that the aggregate amount of
network communication cost will go up.

We have adopted an intermediate approach to task
creation that seems to work well in practice. As noted
above, we start by creating initial tasks that we believe are
large enough so that the task startup overhead is
negligible, even if the databases are eventually divided
into relatively small pieces. Our experience has been that
the time for communication and tblastall startup is rarely
more than a tiny fraction of the tblastall run time, so long
as the tasks have at least 10-20 input query sequences,
and the Workers have a reasonable amount of physical
memory (say at least 256 Megabytes per CPU).

While creating the initial tasks often provides a
sufficient degree of parallelism, it frequently occurs that
the initial tasks are too large for the Workers, since each
task searches against all of the database(s). When a task is
too large, Workers leave the set of query sequences as-is
and split the database(s) to create two smaller subtasks.
When a task involves multiple databases, the subtasks are
created so that roughly half the databases are in each task.
When a task involves only a single database, the subtasks
are created by partitioning the single database. Workers
require only a small amount of data (passed via the VSM)
to assess whether a particular task is of suitable size and,
if necessary, to determine how to split it into two
subtasks. The actual database files are never sent to a
Worker until it actually requires them to run a BLAST
task using tblastall.

We have experimented with a variety of techniques
for actually splitting the databases. At one extreme, we
implemented “virtual splitting” in which the database is
never split physically, but only a portion of the database is
mapped to virtual memory. This has the advantage of
generality (since the database may be split dynamically on
any boundary between sequences), but it means that every
database must be delivered to every machine, consuming
significant time and network bandwidth. As an
alternative, we also considered storing multiple copies of
each database on the Master, corresponding to
partitionings of differing granularity (e.g., halves,
quarters, eighths, etc.). This avoids the need to deliver all
the data to every machine, but it requires that the database
server store multiple copies of the databases consume a
lot of disk space and are difficult to manage.

In our current implementation, we require that
databases be pre-split into a number of partitions using
the standard NCBI database formatting program
formatdb. Depending on the characteristics of the
database, formatdb will create 3, 5, or 7 files to represent
each partition. Of these, only one (the file containing the
actual sequence data for the partition) is large; the others
are relatively small index files. We view the partitions
created by formatdb as the leaves in a binary partition
tree, and we build “alias files” that enable us to represent
the databases corresponding to any of the nodes in the
tree. Specifically, the database corresponding to any given
node is composed of the single alias file for the node plus
all of the files created by formatdb for the leaves in the
sub-tree rooted at the node. When a Worker needs to
obtain a particular portion of a database, it makes a
request to the File Provider, which responds by delivering
the necessary files to the Worker.

Our current approach has a number of advantages.
First, it is reasonably general, since individual databases
may be divided at a number of different granularities.
Moreover, since there is no requirement that all subtasks
use the same partitioning of any database, Workers can
easily adapt the task sizes to their own capabilities.
Another advantage is that while the File Provider is able
to deliver exactly the required amount of sequence data to
each of the Workers, it need not waste disk space by
storing more than one copy of each formatted database.
(The alias files are quite small.)

4. Performance Results

We conclude this paper by presenting a few
benchmark results to illustrate the performance achievable
with TurboBLAST. In the first example, 50 Expressed
Sequence Tags (ESTs) totaling 18,500 nucleotides were
searched against three databases obtained from the NCBI
web site. The databases were Drosophila (1,170
sequences containing approximately 123 million

nucleotides), the GSS Division of GENBANK
(approximately 1.27 million sequences containing 651
million nucleotides), and E-coli (400 sequences
containing approximately 4.6 million nucleotides).

The search was performed using the blastn variant of
blastall, and it was run on a group of IBM Netfinity PCs,
each containing a single 500-Megahertz Pentium III
processor, 512 Kilobytes of cache memory, and 256
Megabytes of main memory. The PCs were connected
via a switched 100-Megabit Ethernet network. The serial
run required 2131.8 second (wall-clock time) on one of
the machines. With 11 Workers, only 130.0 seconds was
required, representing a speedup of more than a factor of
16. Times and speedup factors for runs with varying
numbers of Workers are shown in Figures 1a and 1b.
Clearly the superlinear speedup here is due to the
elimination of the paging overhead discussed earlier,
rather than to a superlinear reduction in actual
computation time. This is an excellent example of a case
where the overhead dominates the tblastall computation
time, since the TurboBLAST time achieved with just one
worker was just over 1000 seconds, nearly twice as fast as
serial blastall.

As a second example, we used the blastx variant of
blastall to perform a search in which the input queries
were chromosomes 1, 2, and 4 from the Arabidopsis
genome, and the database was the Swiss-Prot protein
database. In this case the database contained roughly 12.8
million peptides. The search was run on the same set of
machines as in the first example, and TurboBLAST was
able to achieve a speedup of nearly 10.8 using 11
Workers, reducing the serial time of 5 days, 19 hours, and
13 minutes to a parallel time of 12 hours, 54 minutes.

Finally, our third example involves the use of the
blastn variant to perform a search in which the input
queries were 500 mouse ESTs of containing 200-400
nucleotides each, and the database was a version of the
NT database from NCBI that contained at total of
1,681,522,266 nucleotides. In this case, the benchmarks
were run on an IBM Linux cluster containing 8 dual-
processor workstations connected via 100-Megabit
Ethernet. Each workstation contained two 996-Megahertz
Pentium III processors and 2 Gigabytes of physical
memory. The serial blastall run required 4945 seconds,
and the parallel results are tabulated in Table 1. With
Workers running on each of the 8 workstations (using 16
CPUs), the speedup was nearly a factor of 14,
representing nearly 90% parallel efficiency, despite the
fact that one of two of the workstations were also serving
as the Client and the Master, respectively.

5. References

[1] Altschul, S.F. & Gish, W., “Local alignment statistics.”
Meth. Enzymol. 266:460-480 (1996).
[2] Altschul, S.F., et al., “Basic local alignment search tool.” J.
Mol. Biol. 215:403-410 (1990).
[3] Altschul, S.F., et al., “Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs.” Nucleic
Acids Res. 25:3389-3402 (1997).
[4] Baxevanis, A.D. and Ouellette, B.F., eds., Bioinformatics: A
Practical Guide to the Analysis of Genes and Proteins, Wiley-
Interscience (1998).
[5] Braun, R.C., et al., in Future Generation Computer Systems
17:745-754 (2001).
[6] Camp, N. “High Throughput BLAST.” Technical Report,
Silicon Graphics, Inc. (1998).
[7] Durbin, R. et al., Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids, Cambridge
University Press (1998).
[8] Kaminsky, D., Adaptive Parallelism with Piranha, Ph.D.
Dissertation, Yale University, 1994.
[9] Karlin, S. & Altschul, S.F., “Methods for assessing the
statistical significance of molecular sequence features by using
general scoring schemes.” Proc. Natl. Acad. Sci. USA 87:2264-
2268 (1990).
[10] Karlin, S. & Altschul, S.F., “Applications and statistics for
multiple high-scoring segments in molecular sequences.” Proc.
Natl. Acad. Sci. USA 90:5873-5877 (1993).
[11] Lipman, D.J. and Pearson, W.R., “Rapid and sensitive
protein similarity searches,” Science 227:1435-1441 (1985).
[12] Pearson, W.R. and Lipman, D.J., “Improved tools for
biological sequence comparison,” Proc. Natl. Acad. Sci., Vol.
85:2444-2448 (1988).
[13] Pedretti, K.T., et al., in Lecture Notes in Computer Science,
1662:271-282 (1999).
[14] Scientific Computing Associates, Inc., Paradise User’s
Guide & Reference Manual (Version 4.0). New Haven, CT,
1996.
[15] TurboGenomics, Inc., TurboBLAST User’s Guide (Version
1.1). New Haven, CT, 2001.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11
Number of Worker Computers

Ti
m

e
in

 S
ec

on
ds

Figure 1a: Times for Example 1

Number of
Worker Processors

Time
(Secs.)

Parallel
Speedup

2 2534.38 1.95
4 1277.19 3.87
6 862.90 5.73
8 658.78 7.51

10 520.67 9.50
12 460.69 10.74
14 403.64 12.25
16 357.03 13.85

Table 1: Results for Example 3

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11

Number of Worker Computers

Sp
ee

du
p

Figure 1b: Parallel Speedups for Example 1

	A
	
	
	Abstract

	1. Introduction*
	2. Sequence Similarity Searching and BLAST
	2.1 General Background
	2.2 The BLAST Algorithm

	3. The TurboBLAST System
	3.1 Strategy
	3.2 Implementation
	3.3 The TurboHub System
	3.4 Task/Database Splitting

	4. Performance Results
	5. References
	
	
	
	Table 1: Results for Example 3

