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Abstract 
 

BLAST (Basic Local Alignment Search Tool) is by far the 
most widely used application for rapid screening of large 
sequence databases. This paper describes TurboBLAST, a 
parallel implementation of BLAST suitable for execution 
on networked clusters of heterogeneous PCs, 
workstations, or Macintosh computers.  

1. Introduction* 

For biological scientists, the characterization of novel 
DNA and protein sequences is an extremely important 
problem. One powerful approach is based on detailed 
assessments of the similarity or homology between novel 
sequences and sequences in large databases of previously 
characterized genes or proteins. Both functional and 
evolutionary information may be inferred from when such 
assessments are used carefully. Unfortunately, detailed 
similarity assessments may be quite difficult and time 
consuming to obtain, often requiring compute-intensive 
structural comparisons or human intervention by a skilled 
biologist at some point in the process. For this reason, it is 
common to use simpler techniques to screen large 
databases to identify a modest number of sequences most 
likely to be worthy of detailed examination. 

BLAST (Basic Local Alignment Search Tool) 
[1-3,9,10] is by far the most widely used application for 
rapid screening of large sequence databases. The inputs to 
BLAST are a set of input query sequences and a number 
of DNA or protein databases. For each input query 
sequence, BLAST determines a group of sequences in the 
databases that have high-scoring pairwise alignments to 
the query sequence, where the scoring of alignments is 
based on the use of a user-specified scoring matrix 
accounting not only for regions of exact matches, but also 
for insertions, deletions, and substitutions of DNA bases 
or amino acids. Since the BLAST algorithm considers 
both local and global alignments, it can detect regions of 
high similarity embedded in otherwise unrelated 
sequences, often identifying sequences that, upon detailed 
examination, can provide important clues about the nature 
and function of the query sequence.  

                                                 
*Contact author. 

The National Center for Bioinformatics Information 
(NCBI) develops and distributes an implementation of 
BLAST that has become something of a “gold standard” 
for similarity assessment [2]. When run on modern PCs or 
workstations, it can process large sequence databases 
quite quickly. However, sequence databases are exploding 
in size, growing at an exponential rate that far exceeds the 
rate of increase in hardware capability (which generally 
obeys Moore’s Law). As a result,  the use of the NCBI 
BLAST application on a single processor has become too 
costly, inefficient, and time-consuming for many life 
science laboratories.  

To address this problem, we and others have 
examined the use of parallel computation (e.g., 
[5,6,13,15]). NCBI itself provides an option that employs 
multiple threads to accelerate performance on small 
shared-memory multiprocessors. The common wisdom, 
and our own experience, is that this works reasonably 
well for small numbers of processors (2 or 4), but that it 
does not scale up very well, particularly when multiple 
databases and small query sequences are used. Others, 
most notably SGI [6], have developed alternative versions 
of BLAST that address some of the performance issues in 
NCBI’s threaded implementation, but such alternatives 
diverge from NCBI’s code (leading to significant 
validation questions) and are difficult to keep in synch 
with the relatively frequent updates provided by NCBI. 

Even a “perfect” threaded implementation of 
BLAST, however, would have to face the fact that 
database growth will require the use of increasingly large 
and costly multiprocessor machines. Given the 
widespread availability of powerful, yet cheap commodity 
PCs, a potentially superior alternative is the use of 
networked clusters of such machines. To pursue this 
alternative, we have developed TurboBLAST [15], an 
accelerated, parallel deployment of NCBI BLAST. We 
use the term “deployment” rather than “implementation” 
because TurboBLAST delivers high-performance not by 
changing the BLAST algorithm, but by coordinating the 
use of multiple copies of the unmodified serial NCBI 
BLAST application. As a result, TurboBLAST supports 
all of the standard variants of the BLAST algorithm 
supported in NCBI BLAST (blastn, blastp, blastx, tblastn, 
and tblastx), it provides results that are effectively 
identical to those obtained with the NCBI application, and 
it is easy to keep up with new versions of BLAST as they 
are distributed by NCBI. TurboBLAST is available for 



many parallel computing environments, from 
heterogeneous clusters of PCs, workstations, and 
Macintosh computers, to parallel supercomputers, to the 
worldwide computing grid. All that is required is that 
each machine have a Java virtual machine (JVM) and a 
native executable for NCBI’s BLAST application. 

In the remainder of this paper, we first provide 
background on sequence similarity searching in general 
and provide relevant details about BLAST. Then we turn 
to TurboBLAST, first describing our general 
parallelization strategy and then going on to discuss the 
implementation of TurboBLAST, the underlying 
TurboHub system on which it is built, and some of the 
details of the approach to task and database splitting that 
is among the most important aspects of TurboBLAST. 
Finally, we conclude by providing a sampling of 
benchmark results to illustrate the performance achievable 
with TurboBLAST. 

2. Sequence Similarity Searching and BLAST 

2.1 General Background 

In this paper we are concerned with comparisons 
among sequences of letters representing members of two 
classes of biological sequences: nucleotide sequences, in 
which each letter represents one of four DNA bases, and 
peptide or protein sequences, in which each letter 
represents one of twenty amino acid residues. There are 
many different methods for comparing such sequences. 
Some methods, such as those based on the analysis of 
transformational grammars (cf. [9], Chapter 9), compare 
sequences by comparing the properties of the 
mathematical algorithms that may be used to generate the 
sequences in question. However, most commonly used 
methods involve the use of direct sequence alignment at 
some point in the comparison process.  

Sequence alignment provides an explicit mapping 
between the letters in two or more sequences. For the 
purposes of this paper, we will consider only pairwise 
alignment involving just two sequences. Given a pair of 
sequences, there are many possible alignments, and each 
one can be assigned a quality score using a metric that 
rewards exact letter matches and that penalizes 
substitutions (i.e., where a letter in one sequence is 
mapped to a different letter in the other sequence) and 
gaps (i.e., where mapped letters are the same, but they 
occur in different relative positions due to insertions or 
deletions in the sequences). The rewards or penalties for 
matches and substitutions are typically specified in the 
form of a 4x4 or 20x20 table (called a “substitution 
matrix” or “scoring matrix”) whose entries reflect the 
biological significance of the corresponding matches or 
substitutions. Gaps are penalized using a formula that 
may depend on the number, position, and length of each 

gap. The global similarity score of a pair of sequences is 
simply the score of the best (i.e., highest-scoring) 
alignment of the entirety of the two sequences. Even if the 
global similarity score is low, there may still be portions 
of the sequences that match extremely well, and such 
local alignments are often of higher biological interest 
than the best global alignment.  

To assess the similarity of a given input query 
sequence to an entire database, the query sequence is 
aligned separately to each sequence in the database in 
order to identify those database sequences with the 
highest-scoring local alignments (called “hits”). The 
results of this process (often called a “similarity search”) 
are then reported as a rank-ordered hit list, often 
augmented by a series of individual sequence alignments 
and various overall scores and statistics. 

There are numerous programs and algorithms 
available to perform similarity searching.  For a basic 
discussion of bioinformatics and sequence similarity 
searching, see [4] and [7].   One of the earliest algorithms 
for performing sequence similarity searching using 
pairwise alignment was implemented in the FASTA 
program [11,12]. 

2.2 The BLAST Algorithm 

BLAST [1-3,9,10] is certainly the most popular 
algorithm for sequence similarity searching. The approach 
used by the BLAST algorithm is to first identify short 
segments with high-scoring alignments without gaps, and 
then to extend each such local alignment as far as possible 
in both directions, with or without gaps, so long as the 
score resulting after each new extension remains 
sufficiently large. The method then evaluates the 
statistical significance of all such high-scoring matches 
and reports as hits only those that satisfy a pre-selected 
threshold of significance. 

More precisely, BLAST begins by dividing the input 
query sequence into all possible contiguous subsequences 
(called “words”) of length w (called the “word length”). 
The value of w depends on the type of sequence involved, 
but defaults to w=3 for comparison of protein sequences, 
for example. For a given database sequence, BLAST 
searches for subsequences that exactly match one of the 
words. When such a match is found, the search process is 
suspended, and BLAST tries to extend the subsequence 
match in both directions (possibly introducing gaps), so 
long as the score for the extended match does not 
decrease significantly from the score for the original word 
match. Ultimately, the extension process terminates either 
when the end of one of the sequences is reached, or when 
the score has diminished sufficiently. If the score at that 
point is high enough, then the extended match is 
tentatively included in the hit list (possibly displacing a 
hit that was found earlier), and the search for word 



matches resumes. When all word matches have been 
processed for a given database sequence, that sequence is 
discarded, and work starts on the next sequence in the 
database. At the end of the entire process, BLAST reports 
the hit list along with various overall statistics. The 
amount by which the local score may diminish before 
terminating the extension process, and the threshold for 
inclusion in the hit list are among a number of 
empirically-determined parameters that are supplied as 
inputs to BLAST.  

The implementation of BLAST from NCBI can 
perform five different types of similarity searches, 
corresponding to different combinations of sequence 
types in the input queries and databases. The simplest 
ones compare a nucleotide or peptide sequence with 
sequences of the same type. The blastp program compares 
a peptide query sequence against a database of protein 
sequences. The blastn program compares a nucleotide 
query sequence against a database of nucleotide 
sequences.  

The other three types of searches compare sequences 
are more complex. In living cells, there is a relationship 
between nucleotide and peptide sequences in which each 
sequence of three consecutive nucleotide bases (called a 
“codon”) is translated into a corresponding amino acid. In 
general, for a given nucleotide sequence, it is impossible 
to know where to start marking off the codons. Thus 
comparisons must consider three possible translations 
corresponding to different “frames” that start marking off 
the codons at the first, second or third position in the 
sequence. Since DNA has two strands, and each of the 
three frames determined by the nucleotide sequence in 
question has an analogue on the complementary strand 
that is translated in the opposite direction, there are a total 
of six frames that must be considered. The blastx program 
compares the six-frame conceptual translation products of 
a nucleotide query sequence (both strands) against a 
protein sequence database. The tblastn program compares 
a protein query sequence against a nucleotide sequence 
database in which each sequences is dynamically 
translated in all six reading frames (both strands). Finally, 
the tblastx program compares the six-frame translations of 
a nucleotide query sequence against the six-frame 
translations of a nucleotide sequence database.   

The program blastall is provided by NCBI as single 
interface permitting access to all five types of BLAST 
comparisons. It permits a user to specify a group of input 
query sequences and one or more databases against which 
each of the query sequences is to be compared. For the 
purposes of running the algorithm and computing overall 
statistics, blastall treats multiple databases as if they were 
aggregated into a single large “virtual database” that is 
mapped to the available virtual memory space on the 
machine performing the search. Each query sequence is 

searched against the entire virtual database before moving 
on to the next query sequence. 

The computational cost of applying the BLAST 
algorithm to a pair of sequences is clearly linear in the 
lengths of the sequences, although the constant of 
proportionality may vary widely for different databases 
and query sequences. (As a result, it should not be 
assumed that searching against half of a database takes 
even roughly half the time required to search against the 
entire database.) While the description above makes the 
computation seem quite tedious and lengthy, in practice, 
the pairwise comparison process has been made very 
efficient through the use of a binary encoding of the 
sequences that reduces memory requirements 
substantially and permits use of a clever implementation 
based on finite automata. To extend the pairwise 
comparison to a complete search of one query sequence s 
against a number of databases D1,D2,D3,. . ., Dn blastall 
uses an iteration similar to the following: 

For each Query Sequence s {
For each Database Di {

For each sequence d in Di {
Compare s to d using BLAST;
Update aggregate statistics}}

Report results for sequence s}

As noted above, the entire contents of the individual 
databases are aggregated and mapped as a single virtual 
database onto the available virtual memory. When the 
mapped database can be held entirely in available 
physical memory, the iteration runs quite efficiently. 
However, a difficulty arises when the size of the virtual 
database exceeds the available physical memory. In that 
event, a significant amount of paging may occur as 
portions of the virtual database are brought into physical 
memory from disk, replacing other previously loaded 
data. Not surprisingly, this introduces a significant 
amount of noncomputational overhead and inefficiency. 
that may, in many cases, far exceed the computational 
cost that would have been incurred by the original 
BLAST computation had there been sufficient physical 
memory available to hold the entire database.  

3. The TurboBLAST System 

3.1 Strategy 

An individual BLAST job specifies a number of 
input query sequences to be searched against one or more 
sequence databases. In order to achieve parallel speed-up, 
TurboBLAST implements a distributed Java “harness” 
that splits BLAST jobs into multiple small pieces, 
processes the pieces in parallel, and integrates the results 



into a unified output. The harness coordinates the 
following activities on multiple machines: 

 
• Creation of BLAST tasks, each of which requires the 

comparison of a small group of query sequences 
(typically 10-20 sequences) against a modest-sized 
partition of one of the databases sized so that the 
entire task can be completed within the available 
physical memory without paging; 

 
• Application of the standard NCBI blastall program to 

complete each task; and  
 
• Integration of the task results into a unified output. 
 

This approach has the advantage that it is guaranteed 
to generate the same pairwise sequence comparisons as 
the serial version of BLAST since it uses exactly the same 
executable to perform the search computations. High 
performance is achieved in two ways. First, the size of 
each individual BLAST task is set adaptively so that 
blastall processing will be efficient on the processor that 
computes the task. Second, a large enough set of tasks is 
created so that all the processors have useful work to do 
and so that nearly perfect load balance can be achieved. 

In the implementation described in the next section, 
the task creation process occurs in two parts. First, at the 
time of job submission, we create “initial tasks” that 
search a group of 10-20 sequences against all of the 
database(s). Later, if any the initial tasks is too large for 
efficient blastall processing on the machine that is 
working on it, the task is split dynamically into smaller 
subtasks by partitioning the database(s) in order to create 
tasks that are small enough for that machine. We discuss 
the details of task splitting below after first describing the 
overall implementation. 

3.2 Implementation 

To implement our approach, we have designed a 
classic three-tier system comprising three principal 
components: a Client, a Master, and a number of 
Workers. TurboBLAST is delivered with standard 
versions of the Client and Master components, but either 
may be customized to meet the needs of individual 
situations. 

 
Client: The Client is the part of the system accessed 
by an end user submitting BLAST jobs. The Client 
takes a BLAST job and divides it into a number of 
initial BLAST tasks, each of which searches a small 
group of the input query sequences against the full set 
of databases for the job. The Client submits these 
initial tasks to the Master, retrieves the results when 
they are available, and writes the results to a single 

file in the proper order. Currently, two Clients are 
available: one that provides a web-browser interface 
similar to the one available at the NCBI web site, and 
another designed for command-line use via a tblastall 
command that is the TurboBLAST equivalent of 
blastall. 
 
Master: The Master is a Java application that accepts 
initial BLAST tasks from one or more Clients and 
sets them up to for processing by the Workers. The 
Master includes the server portion of a sophisticated 
parallel execution system called the TurboHub that 
manages task execution, coordinates the Workers, 
and provides a virtual shared memories (VSM) used 
to share data among all the various components. The 
TurboHub supports dynamic changes in the set of 
Workers, fault tolerance, and other features that are 
essential in a robust software application intended for 
use in commercial settings. 
 
Another important part of the Master is the File 
Provider, a Java application that manages the 
genomic databases used for TurboBLAST jobs. The 
File Provider maintains a system-wide canonical 
copy of each database, and it delivers all or part of 
each database to the BLAST Workers as they require 
them. (Essentially, the BLAST Workers may thought 
of as having local caches on disk of portions of the 
canonical databases, and they update their cached 
copies automatically as required.) While the VSM is 
used to share and exchange a variety of data involved 
in a TurboBLAST run, the large files representing 
databases are transmitted from the Master to the 
Workers using a high-performance direct 
transmission protocol that does not involve the 
TurboHub server. 
 
Workers: Workers are processors that run a Java 
application that performs the actual BLAST 
computations by instantiating a local copy of the 
standard NCBI blastall application (a compiled C 
executable). As noted in the last section, blastall is 
only efficient when applied to BLAST searches for 
which the memory-mapped database(s) fit into 
available physical memory. If all the available tasks 
are too large, then the Workers will create smaller 
subtasks by partitioning the database(s) until the 
resulting subtasks are small enough. As the 
computation proceeds, some of the Workers will 
merge the subtask results to create the final results for 
each of the initial tasks. This entails parsing the 
blastall output (stored as XML data) and may require 
rescaling the scores and statistics to reflect the 
aggregate size of the databases in the initial task 
instead of the databases in the subtasks.  



 
An important aspect of Worker operation is 

scheduling, a topic that we have insufficient space to 
address here in any detail. The Piranha model [8] used by 
TurboBLAST is based on the use of a decentralized 
distributed scheduling system in which each participating 
machine makes its own scheduling decisions. In the case 
of TurboBLAST, the Workers make use of a scheduling 
algorithm to decide what tasks to perform, when to switch 
to merging, how to balance the potentially competing 
goals of efficiency and fairness when there are multiple 
TurboBLAST jobs competing for attention. 

3.3 The TurboHub System 

At the heart of TurboBLAST is the TurboHub, an 
execution engine for parallel and distributed Java 
applications developed by TurboGenomics and based, in 
part, on the Paradise® system for distributed computing 
developed by Scientific Computing Associates [14]. The 
TurboHub is capable of delivering scalable high 
performance in a wide range of computing environments, 
from heterogeneous networks of PCs, Macs, or 
UNIX/Linux workstations, through multiprocessor 
parallel servers, to the “Computational Grid” formed from 
wide-area networks of diverse machines. 

While the TurboHub supports many types of parallel 
applications, it has been designed and tuned especially to 
provide automation and dynamic acceleration for data-
parallel applications in which large numbers of 
independent tasks corresponding to computations on 
independent data must be processed efficiently in parallel. 
TurboBLAST is one example of such an application, but 
there is a broad class of applications known as workflows 
that are ubiquitous in bioinformatics computation. 
Workflows may be thought of as flowcharts (including 
logic and loops), where the flowchart boxes (components) 
correspond to computational applications or database 
accesses. Applications written in any language (e.g., 
NCBI’s blastall, which is written in C) may be enabled 
for use as workflow components in the TurboHub simply 
by embedding them in thin wrappers written in Java 
following to a published API. The TurboHub manages the 
flow of data through the workflows, automatically 
scheduling the components, transforming data as required 
between them, balancing load, and handling any errors 
that may occur.  

In the case of TurboBLAST, the workflow is 
extremely simple and contains only a single component 
(the Worker, which is a wrapped-up blastall component), 
so the TurboHub has a relatively simple job to do. (It 
simply starts the Worker component on every available 
machine.) In general, however, the TurboHub makes use 
of a Piranha scheduling model to provide support for 
accelerating workflows in a number of ways: 

 
• Pipelining: By default, individual components are 

scheduled to run on separate processors or machines, 
with data passed automatically from one machine to 
the next. This allows all components to operate 
concurrently, with each one working on a different 
portion of the data. 

 
• Component Replication: The TurboHub recognizes 

when a slow component becomes a bottleneck in a 
workflow, and it automatically schedules extra 
instances of such components to eliminate the 
bottlenecks. The TurboHub dynamically manages the 
flow of data to the multiple component instances to 
ensure that the load is balanced evenly among them. 

 
• Parallel Components: A wide range of applications 

may realize performance benefits from the use of 
parallel computing in which multiple processors are 
all focused on the solution of a single instance of an 
application. Many of these applications (such as 
TurboBLAST) may be sped up by preprocessing their 
input data, carrying out a large number of 
independent, concurrent computations on the 
preprocessed data (in parallel, and in any order), and 
post-processing the results of the independent 
computations to construct the final outputs. In such 
cases, the implementation in TurboHub simply 
requires creation of a suitable Java wrapper to handle 
the data manipulations; the TurboHub itself handles 
the management of the task processing. In more 
complex cases, parallel applications may be 
implemented using the TurboHub in combination 
with tools from SCA or with any of a number of 
other standard technologies such as MPI, PVM, or 
OpenMP. 

 
Most of the TurboHub’s acceleration of workflows 

takes place automatically, without any user intervention 
or modification of the original applications underlying the 
components. The TurboHub makes dynamic decisions 
about component scheduling, fault recovery, and other 
aspects of workflow execution, as appropriate, based, in 
part, on information available to it from the Java wrappers 
created to convert the original applications into 
TurboHub-enabled components in the first place. 

3.4 Task/Database Splitting 

A significant aspect of TurboBLAST is the technique 
we use to create suitably-sized BLAST tasks for the 
Workers. We view task creation as somewhat of a 
balancing act involving two competing goals. On the one 
hand, it seems desirable to maximize resource utilization 
and minimize task startup overhead by having each 



Worker process the largest possible tasks for which it can 
run tblastall efficiently given its available physical 
memory and other computational resource limitations. In 
an extreme case, this could mean that a Worker with a lot 
of memory might take on the entire BLAST job, 
completely eliminating the potential performance gains to 
be had from parallel computing. In more ordinary 
situations, there might be a very small number of tasks 
per Worker, so that it load imbalance among the Workers 
might limit the performance gains, particularly if the 
number of Workers varies over time or if the Workers are 
heterogeneous with respect to their capabilities.  

Taking the opposing view, one might choose to have 
a large number of relatively small tasks. This would 
permit more Workers to participate, increasing the 
potential performance gains. It would also tend to deliver 
a higher degree of load balance among the Workers, since 
there would be a finer granularity division of the total 
amount of work. However, there many down sides to 
using a large number of small tasks. For example: 
computational resources may be wasted for small tasks; 
there is an increase in aggregate task startup overhead 
(i.e., the cost of communicating the task data and results, 
and the cost of actually starting the tblastall executable for 
the task); the effort required to merge the task results will 
grow; and it is likely that the aggregate amount of 
network communication cost will go up. 

We have adopted an intermediate approach to task 
creation that seems to work well in practice. As noted 
above, we start by creating initial tasks that we believe are 
large enough so that the task startup overhead is 
negligible, even if the databases are eventually divided 
into relatively small pieces. Our experience has been that 
the time for communication and tblastall startup is rarely 
more than a tiny fraction of the tblastall run time, so long 
as the tasks have at least 10-20 input query sequences, 
and the Workers have a reasonable amount of physical 
memory (say at least 256 Megabytes per CPU). 

While creating the initial tasks often provides a 
sufficient degree of parallelism, it frequently occurs that 
the initial tasks are too large for the Workers, since each 
task searches against all of the database(s). When a task is 
too large, Workers leave the set of query sequences as-is 
and split the database(s) to create two smaller subtasks. 
When a task involves multiple databases, the subtasks are 
created so that roughly half the databases are in each task. 
When a task involves only a single database, the subtasks 
are created by partitioning the single database. Workers 
require only a small amount of data (passed via the VSM) 
to assess whether a particular task is of suitable size and, 
if necessary, to determine how to split it into two 
subtasks. The actual database files are never sent to a 
Worker until it actually requires them to run a BLAST 
task using tblastall. 

We have experimented with a variety of techniques 
for actually splitting the databases. At one extreme, we 
implemented “virtual splitting” in which the database is 
never split physically, but only a portion of the database is 
mapped to virtual memory. This has the advantage of 
generality (since the database may be split dynamically on 
any boundary between sequences), but it means that every 
database must be delivered to every machine, consuming 
significant time and network bandwidth. As an 
alternative, we also considered storing multiple copies of 
each database on the Master, corresponding to 
partitionings of differing granularity (e.g., halves, 
quarters, eighths, etc.). This avoids the need to deliver all 
the data to every machine, but it requires that the database 
server store multiple copies of the databases consume a 
lot of disk space and are difficult to manage. 

In our current implementation, we require that 
databases be pre-split into a number of partitions using 
the standard NCBI database formatting program 
formatdb. Depending on the characteristics of the 
database, formatdb will create 3, 5, or 7 files to represent 
each partition. Of these, only one (the file containing the 
actual sequence data for the partition) is large; the others 
are relatively small index files. We view the partitions 
created by formatdb as the leaves in a binary partition 
tree, and we build “alias files” that enable us to represent 
the databases corresponding to any of the nodes in the 
tree. Specifically, the database corresponding to any given 
node is composed of the single alias file for the node plus 
all of the files created by formatdb for the leaves in the 
sub-tree rooted at the node. When a Worker needs to 
obtain a particular portion of a database, it makes a 
request to the File Provider, which responds by delivering 
the necessary files to the Worker. 

Our current approach has a number of advantages. 
First, it is reasonably general, since individual databases 
may be divided at a number of different granularities. 
Moreover, since there is no requirement that all subtasks 
use the same partitioning of any database, Workers can 
easily adapt the task sizes to their own capabilities. 
Another advantage is that while the File Provider is able 
to deliver exactly the required amount of sequence data to 
each of the Workers, it need not waste disk space by 
storing more than one copy of each formatted database. 
(The alias files are quite small.)  

4. Performance Results 

We conclude this paper by presenting a few 
benchmark results to illustrate the performance achievable 
with TurboBLAST. In the first example, 50 Expressed 
Sequence Tags (ESTs) totaling 18,500 nucleotides were 
searched against three databases obtained from the NCBI 
web site. The databases were Drosophila (1,170 
sequences containing approximately 123 million 



nucleotides), the GSS Division of GENBANK 
(approximately 1.27 million sequences containing 651 
million nucleotides), and E-coli (400 sequences 
containing approximately 4.6 million nucleotides).  

The search was performed using the blastn variant of 
blastall, and it was run on a group of IBM Netfinity PCs, 
each containing a single 500-Megahertz Pentium III 
processor, 512 Kilobytes of cache memory, and 256 
Megabytes of main memory.  The PCs were connected 
via a switched 100-Megabit Ethernet network. The serial 
run required 2131.8 second (wall-clock time) on one of 
the machines. With 11 Workers, only 130.0 seconds was 
required, representing a speedup of more than a factor of 
16. Times and speedup factors for runs with varying 
numbers of Workers are shown in Figures 1a and 1b. 
Clearly the superlinear speedup here is due to the 
elimination of the paging overhead discussed earlier, 
rather than to a superlinear reduction in actual 
computation time. This is an excellent example of a case 
where the overhead dominates the tblastall computation 
time, since the TurboBLAST time achieved with just one 
worker was just over 1000 seconds, nearly twice as fast as 
serial blastall.   

As a second example, we used the blastx variant of 
blastall to perform a search in which the input queries 
were chromosomes 1, 2, and 4 from the Arabidopsis 
genome, and the database was the Swiss-Prot protein 
database. In this case the database contained roughly 12.8 
million peptides. The search was run on the same set of 
machines as in the first example, and TurboBLAST was 
able to achieve a speedup of nearly 10.8 using 11 
Workers, reducing the serial time of 5 days, 19 hours, and 
13 minutes to a parallel time of 12 hours, 54 minutes. 

Finally, our third example involves the use of the 
blastn variant to perform a search in which the input 
queries were 500 mouse ESTs of containing 200-400 
nucleotides each, and the database was a version of the 
NT database from NCBI that contained at total of 
1,681,522,266 nucleotides. In this case, the benchmarks 
were run on an IBM Linux cluster containing 8 dual-
processor workstations connected via 100-Megabit 
Ethernet. Each workstation contained two 996-Megahertz 
Pentium III processors and 2 Gigabytes of physical 
memory. The serial blastall run required 4945 seconds, 
and the parallel results are tabulated in Table 1. With 
Workers running on each of the 8 workstations (using 16 
CPUs), the speedup was nearly a factor of 14, 
representing nearly 90% parallel efficiency, despite the 
fact that one of two of the workstations were also serving 
as the Client and the Master, respectively. 
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Figure 1a: Times for Example 1 

 
 
 
 

Number of 
Worker Processors 

Time 
(Secs.) 

Parallel 
Speedup 

2 2534.38 1.95 
4 1277.19 3.87 
6 862.90 5.73 
8 658.78 7.51 

10 520.67 9.50 
12 460.69 10.74 
14 403.64 12.25 
16 357.03 13.85 

 
Table 1: Results for Example 3 
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Figure 1b: Parallel Speedups for Example 1 
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