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Abstract—Diffusion Tensor Magnetic Resonance Imaging
(DT-MRI) is an emerging technique that explores the structural
connectivity of the human brain. The probabilistic fiber trac-
tography based on DT-MRI data behaves more robustly than
deterministic approaches in the presence of fiber crossings, but
requires more prohibitive computational time. In this work
we present a GPU-based probabilistic framework for brain
fiber tractography. The framework includes two main steps:
1) Markov-Chain Monte-Carlo (MCMC) sampling, and 2)
probabilistic streamlining fiber tracking. We implement the
Metropolis-Hastings sampling for local parameter estimation
on GPU. In the probabilistic streamlining fiber tracking,
we find that fiber lengths are exponentially distributed, and
propose a novel segmenting strategy to improve the load
balance. On mid-range GPUs, we achieve performance gains
up to 34x and 50x over CPUs for the two steps respectively.

Keywords-GPU; Probabilistic fiber tractography; DT-MRI;
MCMC; Probabilistic Streamlining

I. INTRODUCTION

Diffusion Tensor Magnetic Resonance Imaging (DT-MRI)
is a non-invasive technique that measures the local diffusion
of water molecules in vivo [1]. Within the white matter
of the human brain, the random thermal movement of
water is restricted along the direction of fiber bundles,
imposing anisotropy on the molecular diffusion. DT-MRI
can characterize this anisotropy and provide information on
the presence and orientation of fibrous tissue. Based on this
information, researchers can locate the fiber pathways under-
lying the human brain using tractography algorithms [2] [3].
The reconstructed fibers are of great value in neuroscience
research and clinical applications such as surgical planning
and diagnosis of neurological disorders [4] [5] [6] [7].

Traditional deterministic tractography algorithms are anal-
ogous to the method for determining streamlines in fluid
dynamics. They draw fiber paths by repeatedly stepping in
the principal diffusion orientation [5]. Such methods succeed
in reconstructing the fiber bundles in clinically acceptable
time, but have several drawbacks. First, They are very
sensitive to noise, which may lead to large, accumulative
errors in the trajectory of fibers [8]. Second, they may be
disturbed by the presence of fiber crossings or bifurcations
[9] [7], which is rather common, since the diameter of

an axon is well beyond the resolution of a current MRI
scan [10]. Third, they do not provide the confidence in the
estimated fiber paths; and if not interpreted carefully, they
might even give an impression of false certainty [11](finding
”fibers” that do not exist at all).

In response, Behrens et al. proposed a probabilistic frame-
work for brain fiber tractography, which takes into account
the uncertainty stemming from noise and diffusion model
imperfections [12] [13]. Based on Bayesian estimation, they
estimate both the local probability density functions (pdf)
on parameters of interest in a diffusion model and the
global connectivity, i.e. the probability of the existence of a
connection between two voxels. This framework is adopted
in FMRIB Software Library (FSL), one of the most popular
open-source tools for brain imaging analysis [14] [15].

However, the probabilistic analysis of one brain at regular
spatial and angular resolution costs nearly one day on com-
mon CPUs. The intensive computation in the probabilistic
method inhibits the research and their application in rou-
tine clinical tasks [7]. The two most time-consuming steps
of probabilistic fiber tractography are iteratively drawing
samples from complicated and high dimensional pdfs using
Markov-Chain Monte-Carlo (MCMC), and the subsequent
probabilistic streamlining fiber tracking based on these ran-
dom samples.

Recent advances in Graphic Processing Units (GPUs) pro-
vide a solution to such difficulties. The GPU, with massively
parallel processors, proves suitable for general-purpose data-
parallel scientific computation [16]. In this work, we propose
a GPU-based framework for probabilistic fiber tractography.
We test our GPU-based framework on two open datasets, and
achieve performance gains up to 34x and 50x for MCMC
sampling and probabilistic fiber tracking on mid-range GPU
over CPUs. The main contributions of our work are:
• We for the first time accelerate the Bayesian framework

for probabilistic brain fiber tractography on GPUs.
• We find that the fiber lengths in probabilistic tractogra-

phy are exponentially distributed. Based on this finding,
we propose a flexible segmentation strategy to balance
the load between GPU SIMD threads while maintaining
low communication overhead.
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The rest of our paper is organized as follows: we review
the related works in Section II, and describe the preliminary
methods in Section III. In Section IV, we present our
GPU-based framework. Experimental results are provided
in Section V. Section VI concludes the paper.

II. RELATED WORK

Most previous work on GPU-based fiber tractography
focuses on enhancing the visualization of the results [17]
[18] [19] [20] [21]. Besides, great efforts have been made
to improve the interactivity of the fiber tractography [22]
[23] [24] [8] [25]. All of them use deterministic streamlining
algorithms. Mittmann et al. presented a GPU acceleration for
deterministic streamlining method [26]. In their implementa-
tion, CPU performs a reduction step immediately after every
trajectory point calculation on the GPU. Thus the frequent
communication between CPU and GPU degrades the overall
performance.

Based on Behrens’ full Bayesian framework, Friman
et al. proposed an empirical Bayesian model [27]. They
replaced the MCMC sampling with point estimation for
computational tractability. However, the equivalence of these
two methods is still under investigation [11] [27]. McGraw
accelerated this modified method on the GPU [28].

The GPU-based MCMC technique has recently been used
in several other applications, such as high-dimensional opti-
mization [29], chemical kinetic models [30], signal detection
and pattern recognition [31], and network learning [32].
A package, cudaBayesreg, for Bayesian analysis based on
CUDA has been built with the Gibbs sampler [33]. But
Gibbs sampler does not fit our application, since it is hard
to obtain the conditional distribution for each parameter.
GPU-based Metropolis-Hastings sampler has not been fully
discussed in these works.

III. PRELIMINARY METHOD

In this section, we introduce the basic method for proba-
bilistic brain fiber tractography. This method is based on
Bayesian estimation, and can be divided into two steps:
the local parameter estimation and the global connectivity
estimation. Given the data from the DT-MRI scan, and the
parameterized diffusion model, the local parameter estima-
tion is to estimate the pdfs of the parameters in the diffusion
model of each voxel. Then based on these local pdfs, the
global connectivity estimation is to estimate the probability
of the existence of a connection between all voxel-pairs in
the brain.

A. Local Parameter Estimation

1) Diffusion Model: Diffusion models predict how the
local water diffusion profiles determine the voxel intensities
μi in the diffusion weighted images. Three models are listed
in Table I. The gradient directions r̂i and the b-value bi
are known experimental parameters. In fiber tractography,

Table I
THREE DIFFUSION MODELS

Tensor model μi = S0e
−bir

T
i Dri

Constrained model μi = S0e−αbie−βbi(r̂
T
i v̂)2

Compartment model μi = S0

[
(1 − f)e−bid + fe−bid(r̂

T
i v̂)2

]

the diffusion tensor D or the local fiber direction v̂ is the
parameter of interest. The direction of fiber v̂ can also be
expressed in spherical coordinate with (θ, φ).

Among the three models, the constrained model and
the compartment model (also called single partial volume
model) consider the effect of the underlying fiber tract. Yet
both of them only consider single underlying fiber tract.
Due to the relatively low spatial resolution of DTI data,
voxels may contain several different fiber tracts. To model
multiple fibers within a voxel, Behrens proposes the multiple
partial volume model [12], where a voxel can be divided
into several sub-voxels, and each of them has only one fiber
direction through it. It assumes that the MR signal μi from
a voxel is the sum of those from their sub-voxels,

μi =
∑

j∈sub−voxels

μij

So according to the compartment model, the predicted
signal for each diffusion-weighted measurement at each
voxel is:

μi = S0

⎡
⎣(1 −

N∑
j=1

fj)e
−bid +

N∑
j=1

fje
−bid(r̂

T
i v̂j)

2

⎤
⎦ (1)

In our work, we use this multiple partial volume model,
and let N = 2 to avoid over fitting. This model is also
adopted by FSL.

Given this model M , our mission is to obtain the pdfs
of the parameters from the observed signals Y. Following
the Bayes’ Theorem, it is proven in [12] that the marginal
posterior pdf of the parameter subset of interest ωI =
{f1, f2, θ1, θ2, φ1, φ2} can be calculated using the following
integral,

P (ωI |Y,M) =

∫
Ω−I

P (ω|Y,M)dω−I

∝
∫
Ω−I

P (Y|ω,M)P (ω|M)dω−I (2)

where ω¬I refers to all the other parameters.
2) MCMC Sampling: The integral in (2) is analytically

intractable. So we use MCMC method to obtain some
samples for our objective distribution. We first construct a
Markov chain with the target pdf as its stationary distribu-
tion. By taking samples from the Markov chain, we obtained
a estimation of P (ω|Y,M), from which we can obtain the
estimation of our target distribution P (ωI |Y ,M)
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Generally, there are two widely used MCMC algorithms:
the Gibbs Sampler and the Metroplis-Hastings (MH) Sam-
pler [34]. The Gibbs Sampler does not fit our problem since
it is not possible to obtain the full conditional distributions
for each parameter, which are essential for Gibbs Sampler
[35]. So we choose MH sampler.

The procedures of one MH step are as follows:

• Propose the candidate state ω′ from the current state
ω(t) with the proposal distribution P (ω(t), ω′).

• Compute the ratio

r =
P (ω′|Y,M)

P (ω(t)|Y,M)

• Decide whether to accept ω′. Accept ω′ as ω(t+1) with
probability min(r, 1). If ω′ is not accepted, ω(t+1) =
ω(t).

The proposal distribution P (ω(t), ω′) here is a zero mean
Gaussian distribution N(0, σ2). The variance parameter σ2

should be adjusted according to the acceptance rate to ensure
that the acceptance rate is neither too high nor too low
(somewhere between 25% and 50%).

B. Global Connectivity Estimation

In this subsection we introduce how to estimate the global
connectivity with the local pdfs at each voxel obtained from
local parameter estimation.

In the tracking process, single partial volume model
assumes only one fiber direction, and multiple partial volume
model allows for multiple fiber directions. In this study, we
adopt the multiple partial volume model to allow for the
presence of fiber crossings or bifurcations. There is only
a slight difference between the two models, so we first
introduce the single partial volume model, and then extend
it to the multiple partial volume model.

1) Single Local Fiber Direction: P (∃A→ B|Y) denotes
the probability of a connection existing between points A
and B, given data Y. According to Bayes’ theorem,

P (∃A→ B|Y) =

∫ 2π

0

∫ π

0

· · ·
∫ 2π

0

∫ π

0

P (∃A→ B|(θ, φ)x)

P ((θ, φ)x1 |Y) · · ·P ((θ, φ)xm |Y)dθx1dφx1 · · · dθxmdφxm

(3)
where the subscript x refers to every voxel in the brain.
Note that P (∃A → B|(θ, φ)x) can be simply calculated
using ”deterministic streamlining” algorithm, which will be
introduced in the next sub-section.

From Eq.3 we can see that P (∃A → B|Y) reduces to
P (∃A → B|(θ, φ)x) when the local pdfs on fiber direction
P ((θ, φ)x|Y) are delta functions. This means when there
is no uncertainty in the local fiber direction, Eq.3 reduces
to the deterministic streamlining solution. In our case, we
again need to compute these high dimensional integrals
using Monte Carlo methods. Since we have already obtained

the samples from the posterior pdfs P ((θ, φ)x|Y) at each
point in the previous MCMC step, all we need to do is to
construct the streamlines from A. This method is referred
to as ”probabilistic streamlining” [12]. The probabilistic
streamlining algorithm is done by invoking deterministic
streamlining for many times.

Having obtained the probabilistic streamlines from the
seed point A with all the samples, we may then get the
connectivity P (∃A→ B|Y) by simply counting the number
of streamlines passing through B, and dividing it by the total
number of the streamlines.

2) Multiple Local Fiber Directions: To make the above
procedure amenable to the multi-fibre case, the only needed
adaptation is that, at each step, a right direction should be
chosen. In this choice, we aim at maintaining the original
orientation of the streamline through crossing regions [13].

3) Deterministic Streamlining Tracking Algorithm: Now
we introduce the deterministic streamlining tracking algo-
rithm. Before the tracking, we must set a step length and
some termination criteria. Common termination criteria for
deterministic streamlining include:

• a lowest anisotropy (f ), to prevent the fiber from
stepping into an area with low signal-to-noise ratio;

• a maximum number of steps, to avoid dead loops;
• a maximum angle formed by two subsequent fiber

segments, to eliminate trajectories with sharp turns.

Since the probabilistic method is robust to noise, the lowest
anisotropy criterion is not a must [12]. Thus we only use
the last two criteria in our implementation.

The streamlining algorithm starts from a seed point A,
and iteratively steps in the current direction by the preset
step length, until one or more stop criteria are met. If B lies
on this path, we say that a connection exists from A to B,
and P (∃A→ B|(θ, φ)x) = 1.

IV. THE GPU-BASED FRAMEWORK

Fig.1 shows the overall workflow of our GPU-based
framework for probabilistic fiber tractography. The two
major steps are implemented on the GPU. The first step
is the MCMC sampling to draw samples from the pdfs of
the diffusion magnitude and directions of each voxel. The
inputs include a 4-D volume of the scanned DT-MRI data
of a brain, a vector of b-values and a vector of gradient
directions. By the MCMC sampling, we get several samples
of the six parameters of interest for each voxel in the brain.
The six parameters are the magnitudes and the directions
of the two principal local fibers (f1, f2, θ1, θ2, φ1, φ2). The
second step is the estimation of global connectivity by
probabilistic streamlining fiber tracking. In this step, the
deterministic streamlining tracking algorithm is performed
iteratively to all sample volumes. Each sample generates
a series of fiber paths from each voxels in the brain. We
can further get the connectivity matrix P , in which Pij
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represents the probability that there exist a connection from
i to j.

Y1, Yi, Yn

DimX

DimY

DimZ

b1, bi, bn

g1, gi, gn
+ +

Step 1:
Local Parameter

Estimation
(MCMC Sampling)

f1, f2, 1, 2, 2, 2

DimX
DimZ

DimY

NumSamples

Step 2:
Global Connectivity

Estimation
(Probabilistic Streamlining)

Connectivity
Matrix

NumVoxels

NumVoxels

Fibers from
every seed

NumSamples

Fibers from
every seed

Post-Process

Input data

Sampling result

Fiber Tracking result

Figure 1. The Overall Workflow of the GPU-based Framework. The inputs
include a 4-D volume (DimX × DimY × DimZ × n) of the scanned
DT-MRI data of a brain, a vector of b-values and a vector of gradient
directions. The step 1 generates six 4D volumes (DimX × DimY ×
DimZ × NumSamples) of the samples to illustrate the possible local
fiber directions in each voxel. In step 2, streamlining tracking algorithm is
performed to all sample volumes. The output can be fiber paths or/and the
connectivity matrix (NumV oxels×NumV oxels)

A. MCMC Sampling

The overall workflow of the MCMC process is shown in
Fig.2. We use one thread for the MCMC of one voxel, since
the MCMC processes for different voxels are completely
independent of each other.

One of the challenges in GPU implementation of MCMC
sampling is to generate a large number of pseudorandom
numbers. Since it takes number of runs (burn-in period)
until the Markov chain approaches stationary, we begin to
draw samples after NumBurnin steps. To decrease the
dependence between samples of the chain, we take samples

Figure 2. The MCMC sampling workflow. In each loop, the MH step
is repeated NumParameters times. For each K loops, the acceptance
rates are calculated and the proposal distribution is updated. We begin to
take samples after NumBurnin steps. There are totally NumLoops in
the MCMC sampling process.

with an interval of L steps. Thus, the total number of loops
is

NumLoops = NumBurnIn+NumSamples× L

In each loop of Metroplis-Hastings sampling, we need two
random numbers. One is for proposing the new candidate
ω′, and should meet the Gaussian distribution. The other
is for calculating the acceptance rate, and should meet
the uniform distribution. We get the Gaussian distributed
random number by box-muller transformation [36] using
two uniformly random number. Thus the total number of
all random numbers needed is

NumV oxels×NumLoops×NumParameters× 3

In our method, there are 9 parameters in ω to be estimated.
Let NumBurnIn be 500, L be 2, and NumSamples
be 250 as an example. In the two datasets we use, the
NumV oxels can be very huge, over 200,000. Hence the
total memory needed for random numbers easily exceeds
20GB.

Thus, it is impractical to transfer the pre-generated ran-
dom number from CPU to CPU. Instead, we use the com-
bined Tausworthe algorithm described in [37] to efficiently
generate pseudorandom numbers on the GPU.

B. Probabilistic Streamlining Fiber Tracking

The probabilistic streamlining fiber tracking algorithm
(Algorithm 1) is a triple-nested loop. The innermost loop is
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Algorithm 1 Probabilistic Streamlining Fiber Tracking Al-
gorithm on GPUs
Require: NumIterations[NumSegments]

InitializeGPU();
for Every sample volume do

Copy3DImagesToGPU();
for i = 0 to NumSegments do

SendStartPointsToGPU();
NumThreads = NumStartPoints;
LaunchGPUKernel(NumThreads,
NumIterations[i])
GPU kernel:
for j = 0 to NumThreads in Parallel do

GetStartPoint();
for k = 0 to NumIterations[i] do

Interpolation();
StepToNextPoint();
if Meet the Stop Criteria then

break
end if

end for
SetEndPoint();

end for
end GPU kernel
ReadEndPointFromGPU();
Reduction();

end for
end for

the deterministic streamlining algorithm, which sequentially
locates the fiber pathway from one single seed using one
sample. The processing for different samples or different
seed points are independent of each other and can be
parallelized. We parallelize the tracking tasks of different
seed points, and serialize the tasks of different samples,
to reduce the memory requirement. Each fiber pathway is
located by a single thread in GPU, and the sample volume
is shared by all the threads as read-only 3D images .

The greatest challenge is to improve the loadbalance on
GPUs. In GPUs, a group of consecutive threads (referred
to as a wavefront or a warp) execute instructions in a
SIMD manner, which means that their running time is
that of the slowest thread. Unfortunately, the fiber lengths
(i.e. the number of steps) vary greatly in our problem. We
depict the load of each thread in Fig. 6(a). We can see
that it is very likely that consecutive SIMD threads have
quite imbalanced workload. This greatly inhibits the full
utilization of hardware resources.

Therefore, we propose dividing a streamlining into several
segments to improve the loadbalance between GPU threads.
Specifically, instead of finding a whole fiber pathway, a
GPU kernel only locates a number of points from the given
seed point and direction. Then a new kernel is launched to
continue the streamlining only for those unfinished paths.
We express the segmentation strategy with a segmentation
array: NumIteration[NumSegments], in which element
NumIteration[i] is the number of tracking iterations in

the ith GPU kernel launch. The sum of segmentation array
determines the maximum number of steps (MaxStep) in
the streamlining tracking algorithm.

Segmentation of the task can better utilize GPU hardware,
but introduce the overhead of CPU reduction and CPU-GPU
communication. Finer-grained segmentation strategy defi-
nitely results in less wasted hardware resources and higher
overhead. The length m and values of the segmentation
array are both to be determined. Thus it seems impossible to
find a theoretically optimal strategy, given so many variables.
Instead, we first get some insights by studying the following
extreme cases, and then propose a heuristic strategy to
approximate the optimal solution.

Extreme case 1: Minimize the Segment
One extreme segmentation strategy is no actual segment-

ing at all, equivalently NumIteration[0] = MaxStep and
NumIteration[i] = 0 for i = 1, · · · ,m. In this strategy,
SIMD threads suffer from extremely imbalanced workloads.
This straightforward implementation is shown in Fig. 3.
In the figure, time advances along the vertical axis. The
data needed and returned by GPU is transferred through
PCI express bus. The width of the rectangle denotes the
number of seed voxels, which is also the number of threads
in the GPU kernel. The length of the rectangle denotes the
number of steps. Thus the area of the rectangle represents
the execution time.

Sorting the Load
One plausible solution for load imbalance is to predict and

sort the load according to previous executions. In this way,
consecutive SIMD threads are more likely to have similar
loads. However, the effectiveness of this method depends on
the similarity of fiber lengths from different samples of one
seed. Unfortunately, experiments show that this method does

CPU GPU

Initialize

Tracking

NumThreads[0]

NumTotal
Iterations

Sample1

Sample2

Data
Transfer

PCIe

Figure 3. The Straightforward GPU Implementation of Probabilistic Fiber
Tracking. Each thread track a whole fiber. Time advances vertically while
CPU thread and parallel GPU threads are stacked horizontally. On the GPU
side, the area of rectangles reflects the execution time.
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Figure 4. Work Loads before and after sorting.

not bring any notable improvement at all. Fig.4(a) shows the
loads of all threads in the original sequence and Fig.4(b)
shows the loads in the sorted sequence. When applying this
sequence to another sample, we can see in Fig.4(c) that
although the general trends match, there still exists high
variance between the loads of neighboring threads.

Extreme case 2: Maximize the Segments
Another extreme segmentation strategy is that CPU reduc-

tion is performed at every advance of the trajectory, or equiv-
alently NumIteration[i] = 1 for all i = 0, 1, ..., n. This
strategy is adopted in [26]. In this strategy, all the threads
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(a) The distribution of fiber lengths
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(c) The semi-log distribution of fiber lengths

Figure 5. Fiber Lengths Distributions. Figure (c) shows that the fiber
length is exponentially distributed.

enjoy perfect loadbalance, and no GPU hardware resources
are wasted, but CPU-GPU transfer time is maximized. In
Section V, we will demonstrate that in this extreme case,
the communication overhead overwhelm the benefit of GPU
loadbalance.

Our strategy: Segments with Increasing Intervals
By investigating the histogram of the lengths of all fibers

tracked from one sample, we find that the fiber lengths
follow an exponential distribution, which is mathematically
defined as:

p(x;λ) = λe−λx (4)

where x is the length of fiber. In [26] and experiments on
three other data sets, similar distribution of fiber length is
observed. Fig.5(a) and Fig.5(b) show the distribution and
”cumulative” distribution P (L > x) of actual fiber lengths
respectively. Fig.5(c) is the semi-log plot of the distribution,
which clearly indicates the exponential distribution.

We use the cumulative distribution figure to illustrate
the load of GPUs and the resources that are wasted due
to the load imbalance. In Fig.6(a), the minimize segments
strategy is adopted. In this case, the maximum of fiber length
reflects the actual number of iterations. The area beneath the
cumulative function curve is the necessary workload.

If all threads execute in a SIMD manner, the total exe-
cution time can be measured as the area of the rectangle in
Fig.6(a), where most of the resources are wasted. However
in GPUs, only 32 or 64 threads behave in a SIMD manner,
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Total 
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MaxStep

Wasted Resource

Work Load

(a) Minimize the segments

NumThreads[1]

NumIterations[1]

Wasted Resource

Segments

(b) Segments with equal iterations

Wasted Resource

Segments

(c) Segments with Increasing iterations

Figure 6. The Load and the Utilization. The cumulative distribution is from
tracking the smaller dataset, with step length = 0.1, and angular threshold
= 0.7

so the total execution time is far less than what the rectangle
represents. Despite this, we can still use Fig.6 to illustrate
some guidance for choosing better segmentation strategies.

We observe that the fiber tracking starts with short it-
erations and huge number of threads, and ends with long
iterations and few threads. Knowing the distribution, we
come to the strategy that fill the SegmentationArray with
increasing integers, shown in Fig.7 and Fig.6(c). The wasted
resource of this strategy is less than that in Fig.6(b).

CPU-GPU Overlap

CPU GPU

Initialize

Reduction

Reduction

Tracking

Tracking

Tracking

NumThreads[0]

NumIterations[0]

NumIterations[1]

Sample1

Sample2

NumThreads[1]

Data
Transfer

PCIe

Figure 7. The segmentation method of Probabilistic Fiber Tracking on the
GPU. The tracking task is segmented into many kernels. CPU compacts the
unfinished pathways and launches new kernel.

To further reduce the overhead of CPU-GPU communi-
cation, we can overlap the tasks of CPU and GPU. Fig.8
demonstrates this method. Since the next tracking segment
cannot be launched until the reduction of current segment is
completed, overlapping the different segments in one sample
is infeasible. Instead, we can track from two samples at the
same time in a interleaving way. Meanwhile, the sample
volume on the GPU also doubles. We leave this as future
work.

Tracking1

CPU GPU

Initialize

Reduction1

Tracking1

NumThreads[0]

NumIterations[0]

Sample1
&

Sample2

PCIe

Tracking2

Tracking2

Reduction2

Reduction1

Figure 8. The Overlapped Sectional GPU Implementation of Probabilistic
Fiber Tracking. The task of CPU and GPU can be overlapped.

V. RESULTS

A. Experimental Setups

Our testing platform comprises a desktop PC featuring
AMD Phenom X4 965 3.4GHz CPU and 8GB RAM, and
AMD Radeon 5870 GPU. The C/C++ implementation is
compiled using MS VC10.0 compiler with the O2 option,
and the GPU implementation uses OpenCL with AMD APP
SDK 2.0.
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Table II
THE SPEEDUP OF PROBABILISTIC STREAMLINING

Dataset Step Agular Longest fiber Total fiber Kernel Reduction Transfer CPU Speedup
length threshold length length time(s) time(s) time(s) time(s)

1 0.1 0.9 453 113,822,762 3.02 0.78 2.94 289.6 43.0
0.2 0.8 304 102,796,526 2.73 0.92 2.32 271.7 45.5
0.3 0.85 286 109,408,821 2.71 0.78 2.33 306.6 52.7

2 0.1 0.9 777 305,396,623 6.78 3.77 4.29 739.6 52.0
0.2 0.85 476 272,836,940 6.42 3.35 4.38 702.8 49.7
0.3 0.8 517 2,913,939,11 6.63 3.38 4.37 784.5 54.5

The two testing data sets are downloaded from
http://www.cabiatl.com/CABI/resources/dti-analysis/. The
first dataset is 48 × 96 × 96 in size with a resolution of
2.5mm × 2.5mm × 2.5mm. The second dataset is 60 ×
102 × 102 in size with a resolution of 2mm × 2mm ×
2mm.

B. Performance

1) MCMC sampling: The performance of MCMC sam-
pling is shown in Table.III. For each valid (white matter)
voxel, we obtain 50 samples. The sample interval L is 2.
The number of valid voxels are also provided in Table.III.
For both the two data sets, GPU programs show about 34x
speedup compared with CPU programs.

Table III
SPEEDUP OF DIFFUSION PARAMETER SAMPLING

Dataset # of Voxels CPU time(s) GPU time(s) Speedup
1 205,082 1383 41.3 33.6
2 402,194 2724 80.1 34.0

2) Probabilistic Streamlining: Table II shows the per-
formance of probabilistic streamlining algorithm. The total
work load is shown by the column Totalfiberlength. For
GPU program, we list the GPU kernel time, CPU reduction
time, CPU-GPU transfer time, and total running time. The
test is preformed to the two datasets under varies step lengths
and thresholds of turn angular (measured by the dot product
of the two regular direction). The number of samples is
50. The overall speedups are listed in the right column.
The segmentation strategy adopted here is our proposed
increasing-interval strategy, where NumIteration[ ]={1, 2,
5, 10, 20, 50, 100, 200, 500, 1000}.

We then compare the performance of different segmen-
tation strategies in Table IV. We denote the strategy with
NumIteration[i] = k for all i = 0, 1, ..., MaxStep

k − 1 as
Ak, the strategy with NumIteration[ ]={1, 2, 5, 10, 20,
50, 100, 200, 500} as B, NumIteration[ ]={1, 1, 2, 2,
5, 5, 10, 10, 20, 20, 50, 50, 100, 100, 200, 200} as C.
We can see that the CPU-GPU transfer costs a lot of time
in finer-grained segmentation strategies, such as A1∼A10.
When there are more steps in each segment, GPU kernel
time generally becomes longer, because more GPU hardware
recourses are wasted due to the imbalance load. AMaxStep

represents that there is only one segment. Our proposed
increasing-interval strategies (Strategy B and C) achieve the
best performance. In these two strategies, both GPU kernel
time and data transfer time are relatively short.

Table IV
THE COMPARISON OF DIFFERENT SEGMENTATION STRATEGIES (UNIT:

SECOND)

Strategy Kernel Reduction Transfer Total
time time time time

A1 9.16 8.21 41.21 58.6
A2 7.84 4.18 21.14 33.3
A5 6.91 3.78 11.35 22.0
A10 7.81 3.29 7.86 19.0
A20 9.46 2.37 5.17 17.0
A50 14.42 1.65 2.27 18.3
A100 23.27 1.52 1.62 26.4
A200 39.45 1.63 1.14 42.2

AMaxStep 58.52 0 0 58.5
B 7.06 3.33 4.09 14.5
C 6.55 3.38 4.73 14.7

C. Biological results

In this section we demonstrate some examples of the
tracking results. All results are generated from Dataset 2,
and we select several long fibers. The A, B and C in Fig.9
shows part of the reconstructed corpus callosum, which
is the largest white matter structure in the human brain,
and connects the left and right cerebral hemispheres. These
results are in accordance with the results of previous neu-
roscience studies [28], shown in Fig.10. Fig.11 and Fig.12
shows the final tracking result. CPU and GPU results are
substantially the same.

VI. DISCUSSION AND CONCLUSION

We present a GPU-based Bayesian framework for proba-
bilistic brain fiber tractography. We accelerate the two main
steps: MCMC sampling and probabilistic fiber tracking by
34x and 50x, respectively. We find that the reconstructed
fiber lengths are exponentially distributed, and propose a
novel strategy for segmenting the tracking process to im-
prove loadbalance while maintaining low communication
overhead. The reconstructed fiber pathways are in accor-
dance with previous studies. An open biological question is
whether the observed exponential distribution of predicted
fiber lengths has some implications for real fibers, or merely
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an artifact of the modeling procedure. More data set should
be involved to investigate this problem.

Our GPU-based framework has considerable scalability,
since the communication of parallel threads is negligible.
Little adaptation is needed to extend the current implementa-
tion to the multi-GPU version, and proportional performance
gains can be expected. The great speedups are partly because
this application involves massive data-parallel computation,
which is favorable for GPU architecture.

Figure 9. Reconstructed Fiber Pathways: corpus callosum

Figure 10. Biological results from similar studies for reference [28]

Figure 11. Result: Fibers whose length > 100, from dataset 2.
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