

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Ordered Index Seed Algorithm for Intensive DNA Sequence Comparison

Dominique Lavenier
IRISA / CNRS

Campus de Beaulieu
35042 Rennes, France

lavenier@irisa.fr

Abstract

This paper presents a seed-based algorithm for intensive
DNA sequence comparison. The novelty comes from the
way seeds are used to efficiently generate small ungapped
alignments – or HSPs (High Scoring Pairs) – in the first
stage of the search. W-nt words are first indexed and all
the 4W possible seeds are enumerated following a strict or-
der ensuring fast generation of unique HSPs. A prototype
– written in C – has been realized and tested on large DNA
banks. Speed-up compared to BLASTN range from 5 to 28
with comparable sensitivity.

1 Introduction

Comparing DNA sequences is one of the basic tasks
in computational biology, either for mining genomics
database, or for filtering mass of data involved in the first
steps of complex bioinformatics workflows. With the con-
tinuous increasing of genomic data, and the relative stag-
nation of microprocessor frequencies, faster algorithms for
manipulating huge volume of data, and especially DNA
banks, need to be investigated.

The first algorithm for comparing genomic sequences is
due to Needleman and Wunsch in 1970 [1]. It is based
on dynamic programming techniques and allows the user
to globally align two sequences. In 1981, Smith and Water-
man proposed a modified version for computing local align-
ments between two sequences [2]. The following year, this
famous algorithm has been improved by Gotoh to include
affine gap costs for better representing biological reality [3].
This family of algorithms is optimal: they provide the best
alignments.

However, their quadratic complexity constitutes a seri-
ous barrier when dealing with large volume of data, due
to the high computational power involved by dynamic pro-
gramming techniques. In the late 80’s, a powerful heuristic
based on seeds as been introduced and rapidly adopted by

the scientific community through the FASTA and BLAST
software [4] [5].

Basically, this heuristic assumes that the two sequences
(or part of the sequences) from which an alignment has been
found share a common word of W characters. Thus, instead
of scanning the whole search space (as it is done with dy-
namic programming), the search can only focus on these
specific anchoring points. The consequence is a drastic re-
duction of the computation time, allowing biologists to run
these algorithms on large DNA or protein banks. On an-
other hand, this heuristic doesn’t guaranty to detect the best
alignments. Practically, it reports most of the alignments
and satisfies common bioinformatics needs. In addition, the
heuristic can be tuned by modifying the length of the seed
according to a specified sensitivity.

To improve sensitivity, current research aims at selecting
the best seeds: instead of considering a seed as a word of W
contiguous characters, a word of W no necessarily consec-
utive characters may be considered. These seeds, referred
as spaced-seeds, significantly increase the sensitivity. They
have been implemented in software such as PatternHunter
[8] or, in a more elaborate form, by Yass [11]. The next
step is not only to consider one seed, by a set of several
seeds which can be of different length and possibly made of
different spaced-seeds (multiple seeds) [13]. Another seed
family (subset-seeds) group different characters in the same
set [12], still providing better expressiveness.

On this domain, the research activity is dynamic and con-
tributes to significantly increase the sensitivity and, conse-
quently, to narrow the gap with dynamic programming ap-
proach while offering short computation time.

This paper introduces a new way of manipulating seeds,
not foccusing on a better sensitivity, but targeting a faster
execution time. We address the problem of intensive DNA
sequence comparison, such as the comparison of two DNA
banks, or comparison of full genomes. Scans of DNA banks
are not considered since, in this situation, the computation
time is mostly determined by I/O capabilities of the system
(fast access to mass storage).

Basically, the algorithm follows the traditional scheme
of seed-based algorithms: hit detection, ungapped exten-
sion and gapped extension. The difference, compared to
other approaches, is that these operations are globally and
sequentially performed thanks to seed indexing and seed or-
dering techniques.

More precisely, seeds of the two banks are first indexed,
allowing an immediate anchoring of there positions. From
these seed positions, and following a seed criteria ordering
(lowest to highest), an ungapped extension is started. Dur-
ing this process, if a seed smaller than the starting one is en-
countered, the process immediately stops. It means that this
ungapped alignment has already been detected and doesn’t
need to be processed again.

Compared to usual seed-based algorithms, this approach
provides shorter execution times. Reasons are:

• It extensively uses cache memory of processors: all the
portions of sequence having the same seed are implic-
itly and simultaneously moved into the cache memory
to perform fast pairwise comparisons (computation of
ungapped alignments – or HSPs);

• Index ordered seed technique delivers unique HSPs
avoiding complex data structure to be manipulated and
saving time of search functions.

Compared to NCBI BLASTN, speed-up from 5 to 28 are
obtained with comparable sensitivity. These results have
been measured on a standard 3Ghz Cpre 2 Duo Intel proces-
sor with 2 Gbytes of memory when processing DNA banks
ranging from 5 to 130 Mbp.

The rest of the paper is organized as follows: Sec-
tion 2 describes the ordered index seed algorithm. Sec-
tion 3 presents results from a C prototype software, named
SCORIS-N. Section 4 concludes and gives perspectives of
this work.

2 Algorithm principles

The Ordered Index Seed algorithm (ORIS) proceeds in 4
successive steps as shown figure in 1. Step 1 indexes the two
banks, step 2 performs hit extensions, step 3 computes gap
alignments and step 4 displays alignments. Each step of the
ORIS algorithm is now detailed in the following sections.

2.1 Step 1: Bank indexing

Bank indexing is directly performed from FASTA format
input files. DNA sequences are stored together with an in-
dexing structure to rapidly locate W character seeds. Figure
2 represents this structure.

A dictionary of 4W entries stores the position of the first
occurrence of each seed in both an integer array (INDEX)

ORIS Algorithm

0 begin algorithm
1 – step 1
2 index1 = index(bank1,W)
3 index2 = index(bank2,W)
4 – step 2
5 for all 4W possible seed s
6 for each seed s=s1 of index1
7 for each seed s=s2 of index2
8 hsp = extend(s1,s2)
9 if score(hsp) > S1

10 store hsp in T HSP
11 – step 3
12 T ALIGN = ∅
13 for each hsp of T HSP
14 if hsp /∈ T ALIGN
15 align = extend gap(hsp)
16 if score(align) > S2
17 store align in T ALIGN
18 – step 4
19 sort T ALIGN
20 for each align of T ALIGN
21 display(align)
21
21 end algorithm

Figure 1. Structure of the ORdered Index
Seed (ORIS) algorithm. It proceeds in four
separate steps: (1) indexing, (2) ungapped
extension, (3) gapped extension, and (4) dis-
play of sorted alignments

and a char array (SEQ). The SEQ array is filled with the
bank of DNA sequences. The INDEX array is a structure
linking the positions of identical seeds.

A seed S of W characters is simply encoded into an in-
teger as follows:

codeSEED(S) =
i<W∑

i=0

4i × codeNT (Si)

where Si is the ith character of the seed S. The function
codeNT provides the following 2-bit nucleotide code:

A C G T
00 01 11 10

This encoding allows the seed to be ordered in a
non ambiguous way. SA will be lower than SB if
codeSEED(SA) < codeSEED(SB).

C A G

A A A A AT T TC C CGG G G G GC C C

W4

seed dictionary

char *SEQ

int *INDEX

Figure 2. structure of the bank index

To eliminate non interesting alignments made of small
repeats, a low complexity filter can be activated before in-
dexing. In that case, W character words belonging to low-
complexity regions are discarded from the index.

2.2 Step 2: Hit extensions

The goal of this step is to find all the HSPs (ungapped
alignments) between two banks. It is done by considering
all possible seeds, starting from the lowest one.

For a particular seed S, all the positions where it occurs
in bank1 and in bank2 are examined. If X1 and X2 are
respectively the number of occurrences in bank1 and bank2,
then there are X1 × X2 hit extensions to compute.

As we globally compute all the ungapped alignments be-
fore extending them with gap, we don’t want multiple de-
tections of the same ungapped alignment. As an example,
consider the following ungapped alignment generated from
the seed AACTGTAA:

... ATATGATGTGC AACTGTAA TTGCTCAGATTCTATG ...
||||||||||| |||||||| ||||||||||||| ||

... ATATGATGTGC AACTGTAA TTGCTCAGGTTCTCTG ...

Latter on, when the seed AATTGCTC is considered, the
same ungapped alignment will be generated:

... ATATGATGTGCAACTGT AATTGCTC AGATTCTATG ...
||||||||||||||||| |||||||| ||||||| ||

... ATATGATGTGCAACTGT AATTGCTC AGGTTCTCTG ...

To avoid this situation (generating and storing many
times the same alignment), the extension process compares
the code of each potential seed able to produce a hit with
the code of the originate seed. If a seed with a lower code is
encountered the process stops and no alignment is reported.
The ungapped extension algorithm (left side only) is given
below:

1 int extend left(char *s1, char *s2, int length)
2 {
3 int maxi = SIZE SEED;
4 int score = SIZE SEED;
5 int L = SIZE SEED;
6 char *ss1 = s1-1;
7 char *ss2 = s2-1;
8 int l = 0;
9

10 while ((maxi-score<XDROP)&&(l<length))
11 {
12 if (*ss1==*ss2)
13 {
14 score = score + MATCH;
15 maxi = max(score,maxi);
16 L++;
17 if ((L≥SIZE SEED)
18 &&(codeSEED(ss1)≤codeSEED(s1)))
19 return -1
20 }
21 else {
22 score = score - MISMATCH;
23 L=0;
24 }
25 s1–; s2–; l++;
26 }
28 return maxi;
29 }

The extend_left function takes as input two char
pointers (s1) and (s2) which are supposed to point to the
first character of the seed on both sequences, and one inte-
ger value (length) specifying the maximum search space.
The while loop computes a score and has three exiting pos-
sibilities:

1. the search space has been fully explored
(l>=length);

2. the XDROP threshold has been reached
(maxi-score>=XDROP);

3. the current seed code is lower than the strating seed
code (line 18).

The two first conditions allow the function to return the
maximun value of the score. The third condition is based on
the comparison of a current seed value (codeSD(ss1))
with the code of the seed hit (codeSEED(s1)). A current
seed code is valid only if a hit exists at that position: the
previous SIZE_SEED characters must be identical on both
sequences. This condition is tested thanks to the L variable
which counts the number of identical successive characters
(line 16). This variable is reset to zero when a mismatch
occurs (line 23). The same type of function is applied to
perform the right extension.

This simple test (comparison of the starting seed with a
current potential seed) ensures that unique HSPs are gener-
ated. This is the key point of the ORIS algorithm. Without
such a condition the same HSP would be produced in mul-
tiple copies, leading to add a costly procedure to suppress
all the duplicates.

For large DNA banks, step 2 represents a high volume of
computation. However, the way data are computed limits
the execution time, mainly for two reasons:

• Even if the index structure represents hundred of mega
bytes of data, the nested loops provide a very high data
re-used, allowing the processor memory cache to be
fully exploited. In that case, ALUs are fed with data at
a very high rate, without latency due to cache misses.

• The ungapped extension procedure is fast since it is
aborted as soon as the seed order condition becomes
false.

Finally, step 2 stores all the HSPs overpassing a thresh-
old value (figure 1, line 10). Actually, the storage is made
by sorting the HSPs by diagonal number to optimize data
access of the next step.

2.3 Step 3: Gapped alignments

From the set of HSPs computed during step 2, the goal
of step 3 is to build gapped alignments. Such alignments
are constructed starting from the middle of an HSP and per-
forming an extension on both extremities by dynamic pro-
gramming techniques. The extension is controlled by an
XDROP value in order to stop when the score of the align-
ment significantly decrease. The final alignment consists in
merging the right and left gapped extensions. Alignments
are stored in the T ALIGN structure and also sorted by di-
agonal number.

As a gapped alignment may contain several HSPs, in-
cluding HSPs detected during the step 2, a test is done be-
fore starting an extension (line 14, fig 1). A gapped ex-
tension will be done only if an HSP does not belong to a
gapped alignment previously computed and stored in the
T ALIGN structure. This test is fast since both HSPs and
gapped alignments are sorted using the same criteria (diag-
onal number). To compute gapped alignments, HSPs are
serially taken by increasing order of their diagonal number,
leading to product alignments having the same increasing
order, and nearly the same diagonal numbers. Thus, testing
this condition does not involve time consuming search on
the data structure due to the locality of the data (HSPs and
gapped alignments).

At the end of this step, the T ALIGN structure contains
a complete set of the gapped alignments found between two
DNA banks.

2.4 Step 4: Alignment display

The last step consists in producing an output file to dis-
play the results. The alignments are first sorted on the
T ALIGN structure according to a chosen criteria, for ex-
ample the expected value attached to each alignment.

3 Experiments

The ORIS algorithm has been prototyped in C language
for comparing two DNA banks ranging from short DNA se-
quences (such as EST) to full chromosomes of a few tens
of Mbp. This section briefly presents the ORIS implemen-
tation, then compares performances with the NCBI BLAST
software both on sensitivity and execution time.

3.1 ORIS Implementation

In the following, the ORIS implementation for compar-
ing DNA sequences will be referred as SCORIS-N (Se-
quence Comparison using ORIS algorithm on Nucleotides).
As we target intensive sequence comparison, the SCORIS-
N program takes as input two DNA banks (FASTA format).
A bank can either be a large set of DNA sequences or a
single DNA sequence representing a full chromosome. The
size of the bank which depends of the size of the available
memory on the computer. The index structure required for
storing a bank of size N (N is the number of nucleotides) is
approximately equal to 5×N bytes. Comparing, for exam-
ple, two chromosomes of 40 MBytes will require, at least, a
free memory space of 400 MBytes.

An expected value is attached to each alignment in order
to sort the results according to this criterion. The SCORIS-
N program considers the size of the first bank and the size
of the sequence from which the alignment is found in the
second bank as parameters to compute the expected value.

As intensive sequence comparison is targeted, the out-
put format – in the current version – does not report full the
alignments. It only displays the alignment features as it is
done in the -m 8 option of BLASTN. Moreover, this out-
put format is better suited for further automatic processing
than the standard BLASTN output.

The program has been written in standard ANSI C, com-
piled with the gcc standard options and tested on a LINUX
environment on a 3 GHz Core 2 duo Intel processor with 2
GBytes of memory (Dell Precision 390).

3.2 Data set

The following table gives the characteristics of the DNA
banks we have used for testing SCORIS-N:

Bank Origin nb. seq nb. nt
Name (Mbp)

EST1 ESTs from GenBank 13013 6.44
EST2 ESTs from GenBank 11220 6.65
EST3 ESTs from GenBank 37483 14.64
EST4 ESTs from GenBank 34902 14.87
EST5 ESTs from GenBank 50537 25.48
EST6 ESTs from GenBank 53550 25.20
EST7 ESTs from GenBank 88452 40.08
VRL Genbank gbvrl1 72113 65.84
BCT misc. bacteria genomes 59 98.10
H10 Human chromosome 10 19 131.73
H19 Human chromosome 19 6 56.03

EST banks are made by randomly sampling the Gen-
Bank EST division.

3.3 Execution time

Execution times have been measured using the LINUX
command time and by extracting the user time. To com-
pare performance with the NCBI BLAST software (release
2.2.17, nov. 2007), blastall has been run as follows:

blastall -p blastn -d A -i B -o R -m 8 -e 0.001 -S 1

A and B are the two DNA banks. R is the output file stor-
ing the alignment features using the m8BLAST format. The
expected value has been set to 10−3 which is a reasonable
value in the context of intensive DNA sequence compari-
son. The -S 1 option indicates that the search is done on
a single strand only. Currently, the SCORIS-N prototype
doesn’t perform search on the complementary strand. The
priority was first to demonstrate the efficiency of the algo-
rithm. This option will come later, in a new release.

Figure 3 shows the execution time of BLASTN and
SCORIS-N, when EST banks are compared to each other.
It can be seen that SCORIS-N is much faster, and that the
difference grows with the size of the banks.

The two following tables give speed-up as a function of
the search space determined as the product of the size of
two banks (in Mbp).

search SCORIS-N BLASTN
banks space exec. time exec. time speed up

(Mbp) (sec) (sec)

EST1 vs EST2 42.82 7.3 73.4 10.0
EST1 vs EST3 94.28 9.6 155.4 16.2
EST1 vs EST5 164.09 15.2 260.2 17.1
EST3 vs EST4 217.69 19.9 369.4 18.5
EST1 vs EST7 258.11 26.3 420.6 16.0
EST4 vs EST5 378.88 24.4 586.3 24.0
EST5 vs EST6 642.09 34.5 981.7 28.4
EST5 vs EST7 1021.23 54.3 1563.5 28.8
H19 vs VRL 3689 90 558 6.2
BCT vs EST7 3931 62 537 8.6
H19 vs BCT 5496 80 439 5.5
BCT vs VRL 6458 80 741 9.2
H10 vs VRL 8673 146 1266 8.6
H10 vs BCT 12922 145 965 6.6

When comparing large sequences, speed-up is less im-
pressive, mostly because in that situation BLASTN per-
forms well.

3.4 Sensitivity

Both SCORIS-N and BLASTN programs generate align-
ments using the same output format (-m 8 option). This
format provides the main characteristics of an alignment on
a single text line such as its coordinates, its identity percent-
age, its length, its score, its expected value, etc. From this
basic information, it is straightforward to compare two dif-
ferent output files to detect if identical alignments are gen-
erated or not.

We consider that two alignments are equivalent if they
overlap of more than 80 %. Based on this metric, we define
the following values:

• SCtotal = number of alignments found by SCORIS-N

• BLtotal = number of alignments found by BLASTN

• SCmiss = number of alignment missed by SCORIS-N
compared to BLASTN

• BLmiss = number of alignment missed by BLASTN
compared to SCORIS-N

These values are computed as follows: SCtotal and
BLtotal are the number of alignments generated respec-
tively by the programs SCORIS-N and BLASTN. If an
alignment found by BLASTN is not found by SCORIS-N,
then SCmiss is incremented. In the same way, if an align-
ment found by SCORIS-N is not found by BLASTN, then
BLmiss is incremented.

We can then deduced the percentage of missed align-
ments according to a reference program:

SCORISmiss =
SCmiss

BLtotal
× 100

BLASTmiss =
BLmiss

SCtotal
× 100

The two following tables report the percentage of missed
alignments for various EST bank comparisons:

banks BLtotal SCmiss SCORISmiss

EST1 vs EST2 34286 1137 3.31 %
EST1 vs EST3 34865 931 2.67 %
EST1 vs EST5 53426 1920 3.59 %
EST3 vs EST4 172325 4986 2.89 %
EST1 vs EST7 134170 4129 3.07 %
EST5 vs EST6 247533 9669 3.90 %
EST5 vs EST7 436635 15682 3.56 %

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200

tim
e

(s
ec

)

Search Space (Mbp x Mbp)

SCORIS-N
BLASTN

Figure 3. Execution time of SCORIS-N and BLASTN on the EST banks. The X axe is the search space
determined as the the product of the size of each bank (in Mbp)

banks SCtotal BLmiss BLASTmiss

EST1 vs EST2 34412 952 2.76 %
EST1 vs EST3 34660 1050 3.02 %
EST1 vs EST5 52873 1625 3.07 %
EST3 vs EST4 173605 5892 3.39 %
EST1 vs EST7 138281 3816 2.74 %
EST5 vs EST6 248167 11733 4.72 %
EST5 vs EST7 438359 18124 4.13 %

The number of alignments generated by both programs
are similar and missed alignments represent a small fraction
of the total number of found alignments. A closer look to
the missing alignments shows that they predominantly rep-
resent alignments with low score, with an expected value
very close to the threshold value given by the user. There
are probably slight differences in the computation of this
information, leading to reject borderline alignments. Other
causes of differences may come from:

• the complexity filter: the SCORIS-N low complexity
filter presents some difference [14] with the dust filter
included in BLASTN;

• the gapped and ungapped extension procedures have
been rewritten and tuned for maximal performances.
Small differences exist, especially for deciding if it is
worth to continue the extension.

However, there are some alignments of interest found
by BLASTN and not reported by SCORIS-N. These align-

ments both include a significant number of gaps near the an-
choring seed and many substitution errors forbidding other
11-nt seeds to occur. In that specific cases, SCORIS-N is
unable to generate valid HSPs.

To partially remedy this problem, an asymmetric index-
ing is done on 10-nt words. Asymmetric means that for one
of the two input bank, only half words are considered. From
a sensitivity point of view, this is a little bit more efficient
than a 11-nt indexing. All 11-nt seeds are detected together
with an average of 50% of the 10-nt seed anchoring.

The next tables compare sensitivity for large DNA se-
quences

banks BLtotal SCmiss SCORISmiss

BCT vs EST7 2017 16 0.79 %
BCT vs VRL 1293 10 0.77 %
H10 vs VRL 490107 626 0.12 %
H19 vs VRL 530650 563 0.10 %
H10 vs BCT 0 0 -
H19 vs BCT 11 0 0.00 %

banks SCtotal BLmiss BLASTmiss

BCT vs EST7 1823 26 1.42 %
BCT vs VRL 1240 7 0.56 %
H10 vs VRL 503550 75 0.01 %
H19 vs VRL 543170 5 0.00 %
H10 vs BCT 0 0 -
H19 vs BCT 11 0 0.00 %

For this type of treatment, the difference between
SCORIS-N and BLASTN is small. Again, the difference

mainly comes from short alignments having an expected
value closed to the threshold value.

4 Conclusion and Perspectives

A new algorithm, called ORIS (ORdered Index Seed),
targetting intensive DNA sequence comparison has been
presented. It requires the banks to be indexed into the main
memory of the computer before enumerating all the pos-
sible seeds in a well defined order. Ungapped extensions
directly benefit of this scheme avoiding unecessary com-
putations. The locality of the computation allows an inten-
sive use of the memory cache, fastening the data access and,
consequently the whole execution time.

A program, called SCORIS-N, has been prototyped in C
to evaluate performances compared to the standard NCBI
BLASTN program. Speed-up from 5 to 28 has been mea-
sured for comparable sensitivity. Next step is to provide a
new version to minimize the difference between BLASTN
and SCORIS-N. This is important since BLASTN is today
the reference when comparing DNA sequences.

The SCORIS-N algorithm still need more investigation,
such as:

• Comparing SCORIS-N with other programs which
have also been designed for dealing with large DNA
sequences and which also handle sequence indexing
into main memory (BLAT [9], FLASH [6], BLASTZ
[10]);

• Considering bigger treatments involving pairwise
comparisons on larger sequences (full genomes) for
monitoring the way the SCORIS-N algorithm behave.
However, testing such computation will require sys-
tems having large memory;

• Testing SCORIS-N on genomes having a large num-
ber of repeat sequences. Generally, algorithm perfor-
mances are not so good when dealing with these spe-
cific sequences.

The structure of the algorithm is also well suited for fine
grained parallelism, especially step 2 and step 3. As a mat-
ter of fact, the outer loop of step 2 which considers all the
possible 4W seeds can be run in parallel since seed order
prevents identical HSPs to be generated. The two inner
loops can also be highly parallelized as the ungapped ex-
tensions refer to independent computations. There is then a
very high potential of parallelism which can be exploited on
the new generation of processors, especially on the multi-
core architectures.

Other possibilities is to deport step 2 and/or step 3 to
dedicated hardware such as FPGA boards or GPU of new
generations (Graphical Processing Units) which can now

be programmed for general purpose computing (GP-GPU).
Compared to the standard NCBI BLASTN program, the
structure of SCORIS-N, composed of several distinct steps,
makes it suitable for hardware accelerators: each step, and
especially, step 2 and step 3, refers to very specific and
highly parallel treatments.

Even if the first prototype of the SCORIS-N program
provide significant speed-up on today processors, there are
still plenty of room for further investigations on the new
generations of processors. Particularly, we think that we
can highly parallelize the ORIS algorithm with a very high
scalability on various platforms ranging from multi-core ar-
chitectures to stream processing paradigm (GP-GPU).

References

[1] S. Needleman, C. Wunsch, A general method applica-
ble to the search for similarities in the amino acid se-
quence of two proteins, J Mol Biol. 1970 48(3):443-53.

[2] T.F. Smith, M.S. Waterman. Identification of com-
mon molecular subsequences. J Mol Biol. 1981 Mar
25;147(1):195-7.

[3] O. Gotoh. An improved algorithm for matching biolog-
ical sequences. J. Mol. Biol. 1982 162:705-708.

[4] W.R. Pearson, D.J. Lipman. Improved tools for biolog-
ical sequence comparison. Proc Natl Acad Sci U S A.
1988 Apr;85(8):2444-8.

[5] S.F. Altschul, W. Gish W, W. Miller. E.W. Myers, D.J. ,
Lipman. Basic local alignment search tool, J Mol Biol.
1990 Oct 5;215(3):403-10.

[6] A. Califano, I. Rigoustsos, FLASH: A Fast Look-up Al-
gorithm for String Homology, In Proc. of the 1st Int’l
Conference on Intelligent Systems for Molecular Biol-
ogy, Bethesda, MD, 1993.

[7] S.F. Altschul, T.L. Madden, A.A. Schffer, J. Zhang,
Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST
and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 1997 Sep
1;25(17):3389-402.

[8] M. Li, B. Ma, D. Kisman, J. Tromp. PatternHunterII :
Highly Sensitive and Fast Homology Search Bioinfor-
matics, March 2002 18(3):440-445.

[9] W.J. Kent, BLAT: The BLAST-Like Alignment Too,
Genome Research, 12 (4) 2002

[10] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R.
Baertsch, R. C. Hardison, D. Haussler, W. Miller,
Human-Mouse Alignments with BLASTZ, Genome
Res., Jan 2003; 13:103-107

[11] L. Noe, G. Kucherov. Yass: enhencing the sensitivity
of DNA similarity search. Nucl. Acids Res, 2005, vol
33, Web Server Issue W540-W543.

[12] G. Kucherov, L. No, M. Roytberg. A unifying frame-
work for seed sensitivity and its application to subset
seeds. J. Bioinf. Comp. Biology, 4(2) 2006.

[13] J. Xu, D. Brown, M. Li, B. Ma. Optimizing multiple
spaced seeds for homology search. Journal of compu-
tational biology : a journal of computational molecular
cell biology, 13(7):1355-1358. 2006.

[14] A. Morgulis, E. M. gertz, A.A. Schaffer, R. Agarwala,
A fast ans dymetric DUST implementation to mask
low-complexity DNA sequences, Journal of Computa-
tional Biology, 13(5):1028-1040, 2006.

[15] P. Peterlongo, L. Noe, D. Lavenier, G. Georges, J.
Jacques, G. Kucherov, M. Giraud. Protein similarity
search with subset seeds on a dedicated reconfigurable
hardware Workshop on Parallel Computational Biol-
ogy, Gdansk, Poland, September 9-12, 2007

