
Parallelizing BLAST and SOM algorithms with MapReduce-MPI library

Seung-Jin Sul, Andrey Tovchigrechko
J. Craig Venter Institute

Rockville, MD
atovtchi@jcvi.org

Abstract—Most bioinformatics algorithms are developed in a serial form due to a fast pace of changes in the subject domain and the fact
that many bioinformatics tasks can be parallelized as collections of serial jobs communicating at the file system level (High-Throughput
Computing, HTC). Recently, a MapReduce-MPI library was made available by Sandia Lab to ease porting of a large class of serial ap-
plications to the High Performance Computing (HPC) architectures dominating large federated resources such as NSF TeraGrid. Using
this library, we have created two open-source bioinformatics applications. The first one addresses a problem of adapting existing com-
plex and highly optimized serial bioinformatics algorithm to HPC architecture in a minimally invasive way. We built a parallel BLAST
implementation that calls the high-level methods of unmodified NCBI C++ Toolkit. We demonstrated scaling for up to 1000 cores on
TACC Ranger cluster when processing the sufficiently large input datasets. Using unmodified NCBI Toolkit ensures that the results are
compatible across the multitude of settings in the original serial algorithm, and that future versions of the upstream code can be easily
integrated. The second application is a Self-Organizing Map (SOM) machine-learning algorithm, popular in bioinformatics applications
such as metagenomic binning. The nature of the SOM requires a global synchronization step with a frequency that necessitates the use
of an HPC environment. Our implementation of the “batch SOM” uses a mix of MapReduce-MPI and direct MPI calls and scales to
1000 cores as well. This allows easy processing of datasets with a size that is out of range of the serial SOM implementations. Both im-
plementations are available in the open source at http://andreyto.github.com/mgtaxa/.

Keywords - bioinformatics; parallel algorithms; map-reduce; high-performance computing

I. INTRODUCTION
The drastic drop in the cost of genomic sequencing in re-

cent years is changing the landscape of the field of bioinfor-
matics. Before, only the big sequencing centers needed com-
paratively large compute farms to annotate and analyze the
raw data. They could also easily afford to acquire the neces-
sary hardware because the cost of computations was only a
fraction of the cost of the sequencing itself. Now, a single
NextGen sequencing machine, affordable to even a separate
academic Lab, will produced a stream of data that can only
be processed in parallel using hundreds of cores even on the
latest generation of hardware. So far, the curve that measures
the amount of genomic sequence that can be produced for a
dollar is outpacing the Moore’s law.

Most of the bioinformatics algorithms have been de-
signed as sequential, or with a shared memory parallelism
with a limited scaling ability. There are two main reasons
behind this:

One is the nature of the bioinformatics processing. Bioin-
formatics can be loosely defined as the analysis of biological
sequences. Typically, many sequences have to be processed
independently, with some global but relatively inexpensive
step at the end. Examples are database searches, where mil-
lions of query sequences, such as metagenomic reads or pre-
dicted on such reads protein fragments have to be searched
against a database of characterized sequences that in turn
contains millions of entries. Even when a single completely
sequenced genome has to be annotated, the searches are done
for the protein sequences, which again are in the thousands
of entries.

Thus, many bioinformatics tasks are embarrassingly pa-
rallel by nature and easily lend themselves to the coarse
grained task-based parallelism where data are typically ex-
changed through the files on a shared file system.

The second reason is the fast pace of development in the
subject domain. Because the biological knowledge has been
expanding so fast, many concepts were appearing and under-
going substantial changes. New bioinformatics algorithms or
substantial modifications of the existing ones had to be con-
stantly developed. Creating or modifying a distributed paral-
lel algorithm carries a substantial effort overhead compared
to a serial version. Thus, even in cases where a more tightly
coupled parallel formulation could provide a significant
speed up compared to the file-based work splitting, the extra
effort was often not justified in the eyes of the developers.

Different sequential tools are often organized into com-
plex workflows, which is a typical mode of operation for the
High-Throughput Computing (HTC) clusters.

Although many organizations dealing with sequencing
have built their own local HTC clusters, with the mentioned
democratization of sequencing this approach is becoming
less affordable for smaller groups entering the sequencing
field. Using bigger federated resources would be a solution
providing better turn-around time while ensuring good utili-
zation of resources.

However, the public funding agencies have a very sub-
stantial investment into High-Performance Computing
(HPC) systems, designed primarily for the needs of physics,
earth science and molecular modeling communities. For ex-
ample, NSF TeraGrid is dominated by such clusters.

This work was sponsored by NSF grant DBI-0850256

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.180

480

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.180

476

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.180

476

Although having ability to run bioinformatics algorithms
on HPC systems would be beneficial, their scheduling poli-
cies are geared towards allocating large parallel jobs using
hundreds or thousands of cores.

There are several execution engines that through the con-
cepts of so called “glide-ins” emulate a serial execution envi-
ronment (examples are SWIFT [1] and GlideinWMS [2]).
They work through a two-level scheduling: allocating rela-
tively large MPI jobs at the local resource manager on the
cluster, and then having each processor rank act as an execu-
tion daemon that starts sequential tasks farmed out from the
scheduler in a load-balancing mode.

Such systems allow running existing sequential
workflows with minimal modifications. The glide-in sys-
tems, however, need either direct connections from compute
nodes to the scheduler (typically running at external user’s
host) or having an intermediate proxy running on the cluster
gateway node. Both of these options might be disallowed by
the cluster policies. They also need to perform the fork() call
on the compute nodes, which is not always available on
some HPC platforms.

In this work, we demonstrate an approach to porting bio-
informatics algorithms to HPC architectures that aims to find
a middle ground between a deep re-design of an existing
sequential algorithm with MPI calls, and an attempt at farm-
ing out execution of unmodified sequential programs. This
approach will work even without fork() availability when the
original algorithm can be compiled from source within an
MPI program. With fork(), external compiled binaries can
also be wrapped.

Specifically, we use the MapReduce framework imple-
mented as a regular MPI program (as available from Sandia
Lab [3]) to parallelize two applications.

One is NCBI BLAST [4], which is a de-facto standard
tool for the database sequence similarity search and is the
program consuming 80-90% of compute cycles in bioinfor-
matics overall, based on our experience at the J. Craig Venter
Institute as well as informal communication with other large
centers. This is an example of a highly optimized and very
complex existing sequential implementation. By the nature
of the search, it also demonstrates a very irregular and un-
predictable execution time for a given query sequence.

Another one is the Self Organizing Map (SOM) dimen-
sionality reduction and clustering algorithm. In the bioin-
formatics domain, SOM is a popular tool for unsupervised
clustering and semi-supervised classification of metagenomic
sequences in a multi-dimensional sequence composition
space due to its robustness to noise that is inevitable in real
biological data, as well as easy visual presentation of results.
The algorithm itself is simple. In its so-called “batch” formu-
lation it maps very well to the coarse-grained parallelism
model of the MapReduce. We further optimize the imple-
mentation with a little direct MPI programming in critical
spots.

II. BACKGROUND AND SEQUENTIAL ALGORITHMS

A. MapReduce-MPI framework
MapReduce is a parallel processing pattern that can fit

well many bioinformatics computations. It has been popula-
rized by Google in the implementation that uses a distributed
file system to exchange data [5]. Since then, other implemen-
tations have appeared that target different architectures and
communication channels, such as multi-core systems with
shared memory or distributed systems with only in-core
communications.

In this work, we are using MPI implementation called
MapReduce-MPI [3]. As the name suggests, it is imple-
mented with standard MPI calls. Because this is a C++ li-
brary that is compiled into a regular MPI program, it does
not require any special administrative support on the HPC
cluster system. Thus, the application behaves as a normal
MPI process.

Additionally, the programmer can always take advantage
of using MPI calls directly. This is important for situations
where fairly restrictive MapReduce programming paradigm
creates friction with the required communication patterns,
such as in all-against-all computations. The price for this
extra flexibility and portability is a lack of fault-tolerance
inherent in the underlying MPI execution model.

B. BLAST
Because the task of searching for similarity in sequence

databases has such a central role in the bioinformatics,
BLAST algorithm has undergone multiple rounds of im-
provements and deep optimizations. The algorithm is quite
complex, both in its statistical foundations, as well as in the
implementation. It has been described in a series of publica-
tions over many years, where the latest one is probably a
good starting point [6].

In a very short narrative, the algorithm is optimized to
find statistically significant pairwise similarities between any
number of query sequences and potentially very large collec-
tions of database sequences. It does it by breaking the search
into three stages, with each stage discarding progressively
larger numbers of candidate matches by applying progres-
sively more expensive filters.

The first stage scans for matches between fixed size
words; the second stage extends each matching word as an
ungapped alignment on the condition that there is another
word match nearby, and the third stage performs gapped
alignment for those matches that passed the second stage.

At each stage, the remaining candidates have to pass the
test for statistical significance, typically controlled by the
user through the E-value cutoff parameter, which limits the
absolute number of alignments that can be found for a given
query sequence in the current database strictly by chance.

The implementation iteratively loads the next concate-
nated subset of query sequences, builds a word lookup table
out of them, and streams the database past this lookup table,
storing the positions of matches. After selecting the candi-
date set of matches, it loads the corresponding database se-
quences again to perform the final alignment.

481477477

Where supported by the platform, the database access is
implemented by caching memory-mapped regions of the DB
while trying to keep the total resident memory under an op-
timal limit.

The current de-facto standard implementation is the one
maintained by NCBI. Recently, it has undergone a deep re-
factoring as part of moving to the NCBI C++ Toolkit. Now,
the core is implemented in C, with the higher-level interfaces
and the default sequence database module implemented in
C++. The legacy NCBI C Toolkit is now in the maintenance
mode, but it uses this new BLAST C core. The new C++
implementation called BLAST+ [6] has important improve-
ments as well as new options to control its behavior.

The NCBI implementation is optimized for shared mem-
ory machines with limited thread parallelism. Node-level
parallelism is achieved by splitting the query set and parti-
tioning the database, and running the resulting matrix of seri-
al jobs across a cluster of hosts, with one or more combiner
jobs at the end merging results for each query across differ-
ent database partitions.

C. Existing parallel or hardware accelerated
implementations of BLAST
We found two available MPI-parallelized ports of NCBI

BLAST: mpiBLAST [7] and ScalaBLAST [8]. Initially, we
intended to use nucleotide mpiBLAST in the context of our
metagenomic taxonomic classification study. It has been
already installed on TACC Ranger system where we had a
TeraGrid allocation. Despite going through a matrix of
(compiler / MPI library / mpiBLAST source version / run-
time options), we were not able to make it run reliably on
Ranger. We were getting interminent crashes or empty out-
put files in some but not all runs with identical or nearly
identical inputs. Following the advice obtained from the de-
velopers still did not help.

The mpiBLAST is a very efficient and optimized imple-
mentation that has demonstrated excellent scaling in a num-
ber of publications by its authors. We think that this degree
of optimization is also a source of our problems in using it.
In order to integrate the existing complex native BLAST
codes, mpiBLAST goes on patching the upstream BLAST
code and even the standard OS library. For example, it rep-
laces the CLIB open() function call, in order to introduce
virtual file access to DB partitions distributed through MPI
calls in a way that is transparent to the NCBI BLAST DB
module. It also separates the scanning stage code from the
gapped extension stage code in order to achieve superlinear
speed-ups compared to the matrix-split task-level paralleliza-
tion.

We suspect that these efforts make mpiBLAST sensitive
to site-specific changes such as either OS or networking
stack updates.

We concluded that there is an inherent contradiction in an
approach that tries a deep optimization on top of software
that is already thoroughly optimized for a very different kind
of execution environment.

Additionally, it makes it difficult to keep up with changes
in an upstream NCBI code. mpiBLAST still integrates and
patches the legacy NCBI C BLAST source instead of the
current BLAST+ that is now used by NCBI itself.

Instead of trying our luck with similarly structured Sca-
laBLAST and learning the peculiarities of the latter, we de-
cided to use MapReduce-MPI library to wrap pristine
BLAST+ through its high-level NCBI C++ Toolkit API li-
brary calls. The advantages of this approach are: 1) it is trivi-
al to keep up with upstream code updates 2) it is easy to sup-
port any of the multitudes of options implemented by the
upstream algorithm 3) the implementation is simple and
serves as an example of wrapping any other serial bioinfor-
matics algorithm that is amenable to a matrix-split paralleli-
zation.

Aside from the MPI versions, we also had access to a
TimeLogic DeCypherBLAST [9] that is a commercial
(closed-source) ground-up re-implementation of BLAST
algorithm. It accelerates the scan stage on FPGA card. How-
ever, we found out that its acceleration strategy targets main-
ly protein BLAST, and even that with a setting to search for
only exact seed matches during the scan stage (“threshold”
parameter is off by default).

D. SOM
The SOM is a neural network of K neurons that are orga-

nized into a 2-D grid. Each neuron is defined by its X,Y posi-
tion in the map and by an n-dimensional vector assigned to it
(“weight vector” or “code-vector”). The matrix of all K
weight-vectors forms the complete description of the SOM
called the codebook. To train the SOM in the original “on-
line” SOM formulation, an input pattern vector �(�) is pre-
sented to the network at time � and the weight vectors ��(�)
are updated as a result. Initially all weight vectors are either
assigned random values or linearly generated from the first
two PCA eigen-vectors. First, the distances between the pre-
sented input vector and all weight vectors are computed us-
ing the following Euclidean distance metric equation:

 ��(�) = ‖�(�) − ��(�)‖� (1)

Then one neuron called the Best Matching Unit (BMU) is
selected according to the criterion below:

 �	(�) = min� ��(�) (2)

Ties are broken with a random selection. Next the weight
vector of the BMU and its neighbors are adjusted toward the
input pattern according to the following equation:

 ��(� + 1) = ��(�) +
(�)ℎ	�(�)[x(t) − ��(�)], (3)

482478478

where 0 <
(�) < 1 is the learning-rate factor that de-
creases monotonically with time. The neighborhood function
ℎ	�(�) is a kernel function that rapidly decreases for neurons
far away from the BMU in grid coordinates. Often the Gaus-
sian is used for defining the neighborhood function:

 ℎ	�(�) = �
������

�

�(�)� , (4)

where �� and �	 stand for the coordinates of the nodes, �
and � in the SOM map. The width �(�) of the neighborhood
function monotonically decreases as iteration goes from a
value no less than half of the largest diagonal of the map to a
value equal to the width of a single cell.

In an alternative “batch” SOM training, the weight vec-
tors are updated all at once at the end of a learning period
after seeing a set of training vectors. The new weights are
calculated using:

 ������ =
∑ �������!(��)

��"�#
��"�$

∑ ���(��)
��"�#
��"�$

, (5)

where �% and �� represent the beginning and the end of
the current epoch, respectively. The BMU is selected based
on ��(�%).

Thus, unlike the online version, the batch algorithm is not
influenced by the order in which the input vectors are pre-
sented.

E. Existing parallel implementations of SOM
Parallelizing SOM in a batch formulation is fairly

straightforward. The right side in Eq. 5 can be computed in
parallel by either splitting the work along the input patterns,
or the weight vectors, or both. Several publications exist that
look at various aspects of doing it, such as [10], [11]. How-
ever, we could not find an actual parallel implementation that
would have been made available for public use.

The time needed to train an SOM grows linearly with the
dataset size. It also grows linearly with the number of neu-
rons in the SOM. Although various spatial indexing data
structures can significantly speed up the search for BMU in
low-dimensional cases, no efficient solution exists for high-
dimensional inputs such as our bioinformatics application of
polynucleotide frequency vectors. PCA transformation of
input vectors have been reported to help in stopping the dis-
tance comparisons earlier for each pair of vectors, but PCA is
itself expensive for large datasets.

Thus, the sequential algorithm quickly becomes prohibi-
tively slow for large input datasets that often arise in biologi-
cal applications. This is especially true when large SOMs
(more that 50x50 code vectors) are trained, which has been

shown to be important to observe SOMs with the “emergent”
properties [12].

III. PARALLEL IMPLEMENTATIONS WITH MAPREDUCE-
MPI

A. BLAST
Within a fairly flexible MapReduce-MPI library, there

are multiple ways for a programmer to structure the compu-
tation. In the very general terms, the user has to first define
map() function as well as the work units that will be passed
to map(), one unit per each invocation. The MPI process
ranks make a collective call to a method of the MapReduce
global object, that takes care of splitting all work units
among ranks, delivering the work units to each rank and lo-
cally calling map() on them.

Each map() call emits key-value pairs, which are grouped
into key-multivalue pairs with unique keys, and re-
distributed in a balanced way between ranks by a collective
collate() call implemented by the library.

After that, a user-defined reduce() function can be called
locally on each rank once for each key-multivalue pair, and
can again emit key-value or key-multivalue pairs. Multiple
iterations of MapReduce can be executed with the same or
different mappers and reducers.

In our implementation of BLAST, we define a work item
as a tuple that combines several query sequences (“query
blocks”) with one database partition (Fig. 1). The database
partitions are created by running the standard NCBI BLAST
tool formatdb on the entire database in FASTA format. For-
matdb creates the DB partitions in a two-bit encoded format
that is optimized for scanning with NCBI BLAST.

The query blocks are created before executing our MPI
process by splitting the entire query set into multiple FASTA
files of a specified target size each. The work items then be-
come pairs <query file name, DB partition name>.

We use a run-time option of MapReduce-MPI that in-
structs it to use the process with rank 0 as a master that dis-
tributes work units to the remaining ranks (“workers”) in a
load-balanced way, such that each worker is kept occupied as
long as there are remaining work units. This is especially
important for an algorithm like BLAST which is characte-
rized by a highly non-uniform and unpredictable execution
time depending on each query.

The map() function uses high-level NCBI C++ Toolkit
API calls to initialize both the query input and the DB input
objects and to execute BLAST search for sequences from a
given query block against a given DB partition. The DB ob-
ject is cached between map() invocations on a given rank,
and only re-initialized if the different DB partition is re-
quired.

As it is usually done in the DB-split BLAST computa-
tions, the DB length is overridden in the BLAST call to be
the entire length of the DB instead of the length of the cur-
rent partition.

483479479

The map() calls emit key-value pairs where keys are the
query IDs, and values are High-Scoring Pairs (HSPs, or
“hits”) found for the query in the given DB partition.

The collate() call results in hits from all DB partitions
grouped together for each key (query ID). The library uses a
hash value computed on each key to assign keys to the
process ranks, and to group the values by keys. This takes
advantage of the large communication bandwidth available
on HPC clusters.

The local reduce() call sorts each query hits by the E-
value, selects the requested number of top hits if such cutoff
is specified by the user and appends hits to the file that is
owned by each rank.

Thus, the results of the computations are in a set of files,
one per each MPI rank, with the hits for each query located
in only one file, maintaining the original order of the queries
and sorted by the E-value within each query.

In our experience, it is rarely needed for the practical
downstream analysis of the large-scale BLAST searches to
have the results merged into a single file.

In order to process arbitrarily large collections of the que-
ries, we employ multiple iterations of the above MapReduce
protocol within the same MPI process by looping over the
consecutive subsets of the entire query set. This is done to
control the size of the intermediate key-value dataset that has
to be kept in the collective memory of the process ranks dur-
ing each MapReduce cycle. Although the MapReduce-MPI
library will transparently use file system paging when the
working set size grows beyond a pre-defined limit (“out-of-
core processing”), the performance will suffer, especially on
typical cluster architecture that has no locally attached user
scratch space on the compute nodes.

We used the release of the MapReduce-MPI library from
August 26th 2010, and the release of NCBI C++ Toolkit from
June 15th 2010 (both packages did not employ the version
numbering).

Complexity analysis. The behavior of the implementation
is primarily defined by the underlying NCBI BLAST algo-
rithm, which is O(N×M) where N is the DB size and M is the
combined query size. In the case when the limit K on the
number of output hits per query is requested by the user, our
matrix-split parallelization has to perform extra work at the
alignment extension stages compared to a sequential version,
because we need to pass K hits from each DB partition, and
then discard all but top K from a combined set after collate().
The mpiBLAST essentially does collate() of the candidate
hits after the seed scan stage, and only does the extension for
top N hits overall. However, in many practical applications
of BLAST, a user is interested in all hits that satisfy a given
E-value cutoff. The maximum number of hits is then set to
some large value to limit the output from a few exceptional
cases when the query matches some highly redundant DB
sequence fragments. Additionally, the low-complexity filter-
ing is usually requested. Thus, in most cases the extra work
built into our implementation has to be done only for a very
small subset of query sequences and does not present an
overall performance issue.

B. SOM
The control flow diagram of our parallel SOM implemen-

tation is presented on Fig. 2. Here the work unit for the
map() call is a block of input vectors. We are again using the
master-worker execution mode, although in the case of SOM
this is not as critical as it is for BLAST. The copy of the co-
debook is distributed with MPI_Broadcast() from the master
to all worker nodes at the start of each epoch.

Additionally, each worker has its own copy of a new co-
debook, initialized to zero at the start of an epoch, plus a
matrix of floating point scalars with the same shape as the
codebook.

Each map() call uses these two arrays to accumulate con-
tributions from the input vectors to both numerator and de-
nominator of Eq. 5.

At the end of the epoch, a collective MPI_Reduce() call
is used to sum all newly computed numerators and denomi-
nators, and the new codebook is computed as per Eq. 5, after
which the new epoch begins. No reduce() stage is used in
this program.

The program takes the input vectors as a dense matrix

saved on disk in the platform floating point representation,
and uses memory mapped files to access them on the worker
nodes, under an assumption that there is a shared file system
mounted on the workers. Each work unit is thus described by

Figure 1. Control flow of the MR-MPI BLAST

484480480

a pair of offsets in that memory mapped file. This allows
processing input datasets larger than the available RAM size.

 Complexity analysis. The complexity is O(N×K×M×L)
where N is the number of the input vectors, K is the dimen-
sionality of the vectors, M is the number of cells (codebook
vectors) in the SOM and L is the number of training itera-
tions (epochs).

IV. PERFORMANCE ANALYSIS
We benchmarked both algorithms on TACC Ranger sys-

tem. Each node has 16 AMD cores and 32 GB of RAM. The
shared file system is Lustre, and no locally attached storage
is available to the user programs. We used OpenMPI in-
stalled on the site with the default Infiniband networking
transport and GNU C++ compiler.

Because the cluster always allocates entire nodes to the
MPI job, our total core counts were always multiples of 16.

A. BLAST
We benchmarked our parallel BLAST implementation in

the nucleotide searches. Other types of searches such as
BLASTP should not exhibit a fundamentally different beha-
vior.

We downloaded the following nucleotide BLAST DBs
from the NCBI FTP site in Jul 2010: RefSeq, NT, WGS and
HTGS. The combined formatted DB had 109 partitions with
on-disk size of 1GB each, and contained a total of 364 Gbp
(Giga base-pairs) in 62 M sequences.

We have built the query dataset from those RefSeq se-
quences that belonged to bacteria, archaea, viruses, and un-
icellular eukaryotes, and shredded them into 400 bp frag-
ments overlapping by 200 bp. This procedure simulated se-
quencing reads per our primary BLAST use case of the me-
tagenomic taxonomic classification.

From 42M generated queries, we randomly selected 12K,
40K and 80K subsets for the performance benchmarking
runs, the results of which are presented on Fig. 3.

The program was modified to exclude the hits of the
RefSeq fragments against themselves from the output.

In the log-log scale used on the chart, the ideal scaling
would be represented by a straight line. The results primarily
show that the actual scaling behavior is sensitive to the total
number and the size of the work units.

Specifically, the large core counts are only efficient for
large input datasets, as it would be expected.

On Fig. 4 we present an alternative view of the scaling
behavior for the two runs that used the largest dataset of
80,000 query sequences, but split into blocks of different size
to form the work units.

For smaller core counts, the larger work units are more
efficient. This is because the DB partitions have to be re-
loaded less often per single query sequence when larger
chunks are used.

Figure 3. Scaling chart for MR-MPI BLAST showing process wall clock
time at different total core counts in MPI job. Each data series corresponds
to an indicated total number of query sequences split into blocks of 1000
sequences each, except for the series marked with blue rectangles that has
2000 sequences in each block. Each block, when combined with one DB
partition, forms a sequential work unit for the MapReduce algorithm. The
data point labels represent time in minutes.

For larger core counts, smaller query blocks lead to better
performance because they result in more work units which is
essential for better load balancing. This is because in that
case we have less relative idling of cores at the end of each

Figure 2. Control flow of MR-MPI Batch SOM

485481481

processing stage when number of remaining work units be-
comes less than the number of cores.

Although for 1024 cores the efficiency is 95% of the effi-
ciency observed for 32 cores, the efficiency is 167% for 128
cores (for 80,000 sequences in 80 blocks). This “superlinear”
speed up at the medium core counts probably appears be-
cause all 109 1GB DB partitions begin to fit entirely into the
combined RAM of the MPI process ranks (32 cores only
have 64 GB of combined RAM). Thus, the memory mapped
DB partitions stay cached in RAM after being loaded upon
the first read access. The DB partitions still have to be re-
loaded occasionally to maintain the load balancing among
ranks even at the larger core counts.

As the core counts grow larger, this speed-up due to
RAM caching is eventually overwhelmed at a fixed query
dataset size due to the idling of the cores. Specifically, for
the series with 80 query blocks, the total number of work
items is 80 query blocks × 109 DB partitions = 8720, which
is 8.5 times the number of cores when 1024 core are used. If
every work item was taking exactly the same amount of time
to process, we could lose 15% of efficiency due to core idl-
ing at the end.

However, the BLAST search time can vary widely for
specific query and DB sequences. Although mpiBLAST, for
instance, uses a modified formatdb program to randomize the
distribution of original DB sequences between partitions, we
did not use this approach because we were interested in ex-
ploring the limits of the load balancing execution.

Figure 4. Scaling chart for MR-MPI BLAST showing the average number
of wall clock core minutes spent per a single query sequence at different
total core counts in MPI job

Thus, some combinations of the query blocks and DB
partitions take much longer than others when all other work
units have already been distributed in the map() stage. The
entire MPI program then has to wait for that longest unit of
work to finish, resulting in a delay above the above estimated
15%. This conclusion is supported by the fact the slowdown
is more pronounced in the 40-blocks series, despite the fact
that both series generate the same amount of key-value pairs,

which then have to be exchanged in collate() and processed
in reduce().

We also benchmarked our application on a protein
BLAST search. The query was represented by a subset of
NCBI non-redundant environmental sequences (env_nr) con-
taining 139846 proteins. The database was Uniref100 set
from the UniProt collection, formatted into 58 partitions of
200,000 sequences each. The search was executed with the
E-value cutoff of 10e-4.

As expected, the protein search demonstrated a very good
scaling due to the considerably more CPU-bound nature of
the protein search compared to the nucleotide search. This is
because BLAST is able to detect the more remote homolo-
gies in protein space, and thus has to examine many more
candidate matches per a given database set compared to the
nucleotide space search. For example, the 1024 core run used
only 6% more core*min per query compared to the 512 core
run (294 min absolute wall clock time using 1024 cores).

On Fig.5, we show the average “useful” CPU utilization
per core during the course of a protein BLAST run using
1024 cores. We define as the useful CPU utilization the ratio
of user CPU time (as obtained with OS getrusage() call) to
the wall clock time, both spend within each call to the NCBI
BLAST search procedure. These values are summed over all
calls taking place at any given moment and divided by the
total core count allocated to the MPI program. The resulting
value reflects the amount of time spent doing BLAST com-
putations as opposed to either waiting for IO within the
BLAST call or doing MapReduce book-keeping outside of
that call. Ideal value of 1.0 would reflect running of the
BLAST algorithm without the overheads of both BLAST IO
and our parallel framework.

As we can see from Fig.5, protein BLAST scales very
well. The tapering off at the end of the computation is due to
cores idling without more workloads available to them. This
is always compounded by the fact that BLAST search time
for a given query sequence is highly variable and unpredicta-
ble.

Figure 5. "Useful" CPU utilization per core during the course of the
computation for the protein BLAST MPI run with 1024 cores. CPU user
time used at any given moment within a BLAST call was divided by the

486482482

corresponding wall clock time, summed over all concurrent calls, and
divided by a total number of cores allocated to the MPI program.

We executed the same protein BLAST search on a HTC
cluster at the Venter Institute (JCVI). The search was con-
trolled by a VICS workflow execution engine (unpublished
internal software) that executed a matrix-split computation as
a collection of 960 serial BLAST jobs followed by a few
merge-sort and formatting jobs. The data files and interme-
diate results were stored on a shared Isilon storage cluster
system.

Although a direct comparison of the absolute run-time is
difficult, as the hardware at the JCVI is about two years
younger than the hardware on Ranger, the user CPU utiliza-
tion was similar to what we saw on Ranger with our own
implementation. The longest VICS job took about the same
wall clock time as our run at 1024 cores.

B. SOM
For benchmarking the performance of our parallel SOM

implementation, we generated 81,920 random vectors (the
multiple of our core counts) of 256 dimensions each. Then,
we trained a 50×50 SOM with different core counts in each
MPI job (Fig. 6).

The implementation exhibited excellent linear scaling
across all core counts with 96% efficiency at 1024 cores rela-
tive to the 32 core run.

Fig. 7 demonstrates that the implementation correctly
clusters random RGB vectors, a visual test often used in eva-
luating the correctness of the SOM algorithm.

Fig. 8 as well demonstrates a well-defined U-matrix ob-
tained by clustering 500-D random vectors.

Figure 6. Scaling chart of MR-MPI Batch SOM algorithm with the input
dataset of 81,920 random vectors of 256 dimensions. The work units for the
MapReduce algorithm were blocks of 40 vectors. Work units of 80 vectors
each produced the identical timings. The data point labels represent time in
minutes.

I. CONCLUSIONS AND DISCUSSION
We demonstrated that the MapReduce-MPI library can

be successfully used to quickly parallelize a wide range of

sequential algorithms in a way that is portable across typical
HPC clusters. This ease of use is especially important in the
domain of the bioinformatics applications.

Figure 7. Clustering of input vectors viewed as RGB colors and U-Matrix
of 50x50 SOM trained with 100 RGB feature vectors.

Figure 8. U-Matrix of 50x50 SOM trained by 10,000 random feature
vectors with 500 dimensions.

Because NCBI BLAST is a highly complex application
with a diverse range of use modes, fairly demanding I/O and
non-uniform execution patterns, the efficiency of our paralle-
lized implementation on high core counts requires sufficient-
ly large input datasets as well as some tuning of the work
distribution parameters.

The MapReduce framework takes care of a substantial
part of the necessary book-keeping and data handling tasks.
This leads to a very short and easily maintainable code that
we have to implement.

We are currently working on improving the load-
balancing properties of the implementation.

First, we are improving the location-aware work unit
scheduler in order to distribute the work unit tuples to those
ranks that have already been processing the same DB parti-
tions in as many cases as possible. Improving the DB locality
will in turn allow us to improve the load balancing by using
smaller query blocks.

Second, we are eliminating the need to pre-partition the
query dataset by building an index of sequence offsets in the

487483483

input FASTA file. This will allow selecting the size of the
query blocks dynamically after the start of the program based
on a small timing iteration at the beginning, thus eliminating
the need for tuning by the user. This can be also used to
make progressively smaller query chunks toward the end of
each iteration and have a more uniform filling of the cores.

The really ground breaking parallel implementation of
BLAST would be based on a global distributed index of the
DB seeds, thus improving upon the linear complexity of the
current implementations relative to the DB size. So far, this
has been very challenging for the protein BLAST due to a
large number of seeds that have to be checked in the index
when a substitution matrix similarity threshold is employed.
Recent efforts related to the use of the reduced protein al-
phabet in sequential BLAST searches [1] promise to over-
come this problem. This would require a fairly deep re-
implementation of the algorithm and break the compatibility
with NCBI BLAST.

The SOM algorithm, on the other hand, is simple and
maps very well to the coarse-grained parallelization model of
the MapReduce when the direct MPI calls are used to distri-
bute and combine the codebook updates. We intend to use
our SOM implementation to visually explore the relationship
between the metagenomic sequences and the universe of
taxonomically characterized database sequences in the tetra-
nucleotide composition space with the dataset sizes that so
far have been out of reach.

REFERENCES
[1] “SWIFT.” [Online]. Available:

http://omics.informatics.indiana.edu/SWIFT/. [Ac-
cessed: 24-Dec-2010].

[2] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar,
S. Padhi, and F. Würthwein, “The Pilot Way to Grid
Resources Using glideinWMS,” in Computer Science
and Information Engineering, World Congress on, vol.
2, pp. 428-432, 2009.

[3] S. Plimpton and K. Devine, “MapReduce-MPI Li-
brary.” [Online]. Available:
http://www.sandia.gov/~sjplimp/mapreduce.html.
[Accessed: 29-Nov-2010].

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman, “Basic local alignment search tool,”
Journal of Molecular Biology, vol. 215, no. 3, pp. 403-
410, Oct. 1990.

[5] J. Dean and S. Ghemawat, “MapReduce: simplified
data processing on large clusters,” Commun. ACM,
vol. 51, no. 1, pp. 107-113, 2008.

[6] C. Camacho et al., “BLAST+: architecture and appli-
cations,” BMC Bioinformatics, vol. 10, no. 1, p. 421,
2009.

[7] O. Thorsen et al., “Parallel genomic sequence-search
on a massively parallel system,” in Proceedings of the
4th international conference on Computing frontiers,
pp. 59-68, 2007.

[8] C. Oehmen and J. Nieplocha, “ScalaBLAST: A Scala-
ble Implementation of BLAST for High-Performance
Data-Intensive Bioinformatics Analysis,” IEEE

Transactions on Parallel and Distributed Systems, vol.
17, no. 8, pp. 740-749, 2006.

[9] “DeCypherBLAST Solution.” [Online]. Available:
http://www.timelogic.com/decypher_blast.html. [Ac-
cessed: 24-Dec-2010].

[10] B. Silva and N. Marques, “A Hybrid Parallel SOM
Algorithm for Large Maps in Data-Mining.”

[11] I. Valova, D. Beaton, D. MacLean, and J. Hammond,
“NIPSOM: Parallel Architecture and Implementation
of a Growing SOM,” The Computer Journal, vol. 53,
no. 6, pp. 753 -771, Jul. 2010.

[12] A. Ultsch, “Emergence in Self Organizing Feature
Maps,” University Library of Bielefeld, 2007.

488484484

