
New Fast and Accurate Heuristics for Inference of Large Phylogenetic Trees �

Alexandros P. Stamatakis, Harald Meier
Technische Universität München, Department of Computer Science

Boltzmannstr. 3, D-85748 Garching b. München, Germany
�stamatak,meierh�@cs.tum.edu

Thomas Ludwig
Ruprecht-Karls-University, Department of Computer Science

Im Neuenheimer Feld 348, D-69120 Heidelberg, Germany
thomas.ludwig@informatik.uni-heidelberg.de

Abstract

Inference of phylogenetic trees comprising hundreds or
even thousands of organisms based on the maximum likeli-
hood method is computationally extremely expensive. We
present simple new heuristics which yield accurate trees
for synthetic (simulated) as well as real data and signifi-
cantly reduce execution time. The new heuristics have been
implemented in a program called RAxML which is freely
available as open source code. Furthermore, we present a
distributed version of our algorithm which is implemented
in an MPI-based prototype. This prototype is currently be-
ing used to implement an http-based seti@home-like ver-
sion of RAxML. We compare our program with PHYML
and MrBayes which to our best knowledge are currently the
fastest and most accurate programs for phylogenetic tree
inference based on statistical methods. Experiments are
conducted using 50 synthetic 100 taxon alignments as well
as real-world alignments comprising 101 up to 1000 se-
quences. RAxML outperforms MrBayes for real-world data
both in terms of speed and final likelihood values. Further-
more, for real data RAxML requires less time (factor 2–8)
than PHYML to reach PHYML’s final likelihood values and
yields better final trees due to its more exhaustive search
strategy. For synthetic data MrBayes is slightly more accu-
rate than RAxML and PHYML but significantly slower.

�This work is sponsored under the project ID ParBaum, within the
framework of the “Competence Network for Technical, Scientific High
Performance Computing in Bavaria”: Kompetenznetzwerk für Technisch-
Wissenschaftliches Hoch- und Höchstleistungsrechnen in Bayern (KON-
WIHR). KONWIHR is funded by means of “High-Tech-Offensive Bay-
ern”.

1. Introduction

Within the ParBaum (Parallel Tree) project at the Tech-
nical University of Munich (TUM), work is conducted on
phylogenetic tree inference based on the maximum likeli-
hood method by J. Felsenstein [1]. The overall aim of the
project is to develop novel systems and algorithms for the
computation of huge phylogenetic trees based on sequence
data from the ARB [7] database in distributed and parallel
environments. In previous work [16] we have introduced
Subtree Equality Vectors (SEVs) as a means to significantly
reduce topology evaluation time. Topology evaluation rep-
resents the by far most cost-intensive part of every phylo-
genetic tree inference process based on the maximum like-
lihood method irrespective of the tree building algorithm
deployed. We implemented our concept in parallel fastD-
NAml [8, 17] and named the resulting program PAxML
(Parallel Axelerated Maximum Likelihood). In tests with
alignments of 150 up to 500 sequences, we achieved global
run time improvements of 26% up to 65% compared to par-
allel fastDNAml.

In this paper we present very simple new heuristics
which significantly accelerate the tree optimization process
and yield accurate results. The heuristics have been imple-
mented in a sequential program called RAxML (Random-
ized Axelerated Maximum Likelihood) as well as in a paral-
lel MPI-based prototype for the distributed http-based ver-
sion of our code RAxML@home.

The new RAxML-release presented here is a signifi-
cantly changed and improved version of the initial RAxML
algorithm we describe in [14, 15].

The remainder of this paper is organized as follows:
In Section 2 we briefly describe related work with

a focus on current state-of-the-art programs for maxi-
mum likelihood-based and bayesian phylogenetic infer-

ence, which we use to assess the quality of RAxML. In the
following Section 3 we describe the new heuristics and al-
gorithm. The design of the distributed algorithm is outlined
in Section 4 whereas in Section 5 we summarize our experi-
mental results. Finally in Section 6 we conclude and briefly
address current and future issues of our work.

2. Related Work

We limit our survey of related work to statistical methods
since they have shown to be the most accurate methods cur-
rently available. On the one hand there exist “traditional”
maximum likelihood methods and a large variety of pro-
grams implementing maximum likelihood searches. The
site maintained by J. Felsenstein [11] lists most available
programs. On the other hand there exist bayesian methods
which are relatively new compared to maximum likelihood
and have experienced great impact, especially through the
release of a program called MrBayes [5].

A thorough comparison of popular phylogeny programs
using statistical approaches such as fastDNAml, MrBayes,
PAUP [10], and treepuzzle [18] based on synthetic data has
been conducted by T.L. Williams et al [19]. The most im-
portant result of this paper is that MrBayes outperforms all
other phylogeny programs in terms of speed and tree qual-
ity.

MrBayes carries out bayesian inference of phylogenetic
trees using the Markov Chain Monte Carlo (MCMC) tech-
nique.

Recently, Guidon and Gascuel published an interest-
ing paper about their new program PHYML [2], which is
very fast and seems to be able to compete with MrBayes.
PHYML is a “traditional” maximum likelihood program
which seeks to find the optimal tree in respect to the likeli-
hood value and like MrBayes is also capable of optimizing
model parameters.

Thus, to our best knowledge MrBayes and PHYML are
currently the fastest and most accurate representatives of
bayesian and “traditional” approaches to phylogenetic tree
inference. Therefore, we focus on those two programs for
assessing performance of RAxML.

One should however be careful when comparing
bayesian with maximum likelihood methods due to sub-
tle differences in the statistical models (an introduction to
bayesian phylogenetic inference can be found in [4]). This
is due to the fact that bayesian methods tend to optimize
topologies in respect to a broader range of model param-
eters, whereas maximum likelihood methods optimize the
likelihood of topologies with usually fixed or restricted
model parameters. Thus, a bayesian analysis might not
yield the peak likelihood values as obtained from a maxi-
mum likelihood search.

3. New Heuristics

“Traditional” maximum likelihood searches can be im-
plemented in two ways: On the one hand they can start
from scratch and insert organisms progressively into the
tree such as the stepwise addition algorithm (implemented
e.g. in [1, 8, 21]). On the other hand they can start with an
initial tree already containing all organisms built by a sim-
pler method such as Neighbor Joining (NJ) or by random
(implemented in [2, 5]). The likelihood of such a starting
tree is then progressively optimized by application of minor
topological changes.

RAxML belongs to this second class of algorithms. The
first part of our heuristics consists in building a starting tree
using dnapars from PHYLIP [11] for two reasons:

Firstly, parsimony is related to maximum likelihood un-
der simple evolutionary models [20], such that we can ex-
pect to obtain a starting tree with a relatively good likeli-
hood value compared to random or NJ starting trees. For ex-
ample the 500 ZILLA parsimony starting tree had already a
better likelihood than the final tree of PHYML as depicted
in Section 5, Table 1.

Secondly, dnapars uses stepwise addition for tree build-
ing and is relatively fast. This enables the construction
of different starting trees by using a randomized input se-
quence ordering, since distinct input orderings produce dis-
tinct final trees. Thus, RAxML can be run several times
with different starting trees and the set of final trees may be
used for building a consensus tree and augment confidence
in the final result.

We removed however some optimization steps from the
dnapars algorithm to accelerate computations.

The second and most important part of our heuristics
is the tree optimization process. RAxML performs sim-
ple tree rearrangements by subsequently removing all pos-
sible subtrees from the present tree and inserting them into
neighbouring branches up to a specified distance of nodes.
RAxML inherited this optimization strategy from fastD-
NAml. One rearrangement step in fastDNAml consists of
moving all subtrees within the currently best tree by the
minimum up to the maximum distance of nodes specified
(rearrangement setting). This process is outlined for a sin-
gle subtree (ST5) and a distance of 1 in Figure 1 and for a
distance of 2 in Figure 2 (not all possible moves are shown).
The likelihood of the such generated topologies is evaluated
and the best tree is kept. If one alternative topology im-
proves the likelihood the process is repeated with the new
tree until no better topology is found.

The rearrangement process of RAxML differs in two ma-
jor points:

In fastDNAml after each insertion of a subtree into an
alternative branch the branch lengths of the entire tree are
optimized. As depicted in Figure 1 with bold lines RAxML

only optimizes the three branches adjactent to the insertion
point before computing its likelihood value. Since the like-
lihood of the tree strongly depends on the topology per se
this fast pre-scoring can be used to establish a small list of
good alternative trees. RAxML uses a list of only size 20
to store the best trees obtained during one rearrengement
step. This list size proved to be a practical value in terms of
speed and thoroughness of the search. The algorithm per-
forms global branch length optimizations only on those 20
best trees after completion of each rearrangement step. Due
to the capability to analyze many more alternative topolo-
gies in less time higher rearrangements settings can be used
e.g. 1–5 or 1–10 which results in significantly improved fi-
nal trees.

ST4

ST1

ST2

ST3

ST5

ST4

ST1

ST2

ST3

ST4

ST1

ST2

ST3

ST4

ST1

ST2

ST3

ST4

ST1 ST3

ST5ST5

ST5ST5

ST2

Rearranging Subtree ST5
with a rearrangement setting
of 1

Figure 1. Rearrangments traversing one node
for subtree ST5, branches which are opti-
mized are indicated by bold lines

ST2 ST3

ST4

ST1 ST6

ST2 ST3

ST4

ST1 ST6

ST2 ST3

ST4

ST1

ST5

ST6

ST5ST5

Rearranging Subtree ST5
with a rearrangement setting
of 2

Figure 2. Example rearrangments traversing
two nodes for subtree ST5, branches which
are optimized are indicated by bold lines

Another important change especially for the initial opti-
mization phase, i.e the first 3-4 rearrangement steps, con-
sists in the subsequent application of topological improve-
ments during one rearrangement step. If during the insertion
of one specific subtree into an alternative branch a topology
with a better likelihood is found this tree is kept immediatly
and all subsequent subtree rearrangements are performed on
the improved topology. This enables rapid optimization of
random starting trees as depicted e.g. for two alignemnts
containing 150 taxa in Figures 9 and 10 (a description of
those data sets can be found in Section 5).

4. Distributed Algorithm

Our Motivation to build a distributed seti@home-
like [13] code is driven by the computation time require-
ments for trees containing more than 1000 organisms and
by the desire to provide inexpensive solutions for this prob-
lem which do not require supercomputers. The main de-
sign principle of our distributed code is to reduce com-
munication costs as far as possible and accept potentially
bad speedup-values. The protoype implementation is based
on a simple master-worker architecture and consists of two
phases.

In phase I our distributed algorithm starts by distribut-
ing the alignment file to all worker processes. The align-
ment data transfer is not critical since alignments show good
compression ratios with gzip which forms part of our http
communication library. We attained a compression by fac-
tor 31 for the 1000 taxa alignment mentioned in Section 5.
Thereafter, each worker independently computes a random-
ized parsimony starting tree and sends it to the master pro-
cess.

In phase II the master initiates the optimization process
for the best parsimony starting tree. Due to the high speed
of a single topology evaluation it is not feasible to distribute
work by topologies as e.g. in parallel fastDNAml. Instead
we distribute work by sending a span of subtree node num-
bers i.e. IDs for the subtrees which shall be moved along
with the currently best topology to the workers. At present
we generate � � �������� jobs for load-balancing. The
maximum amount of jobs that can be created in this way is
approximately equal to the number of taxa. The worker then
performs rearrangements for the specified subtrees within
its currently best tree and returns the best tree to the master.
The best topologies from this process are stored in a local
worker tree list with 20 entries. When all subtree rearrange-
ments of one rearrangement step have been calculated, each
worker performs a branch-length optimization of its local
list containing the 20 best trees. Finally each worker re-
turns its currently best tree to the master and the process
of subtree ID distribution and evaluation of local best lists
continues until no better tree is found.

Due to the required changes to the algorithm the dis-
tributed program does not yield exactly the same results as
the sequential program for a fixed starting tree. However,
we might expect slightly better results since a larger num-
ber of trees is branch-length optimized (�������� � ��).
Final results also depend on the number of workers and
might vary from run to run. Since the subsequent appli-
cation of topological improvements is closely coupled we
have to accept a slower convergence during the initial phase
of the computation. Our experiments have shown that mul-
tiple improved topologies are detected only during the first
3–4 rearrangement steps. Thereafter, only one alternative
topology per rearrangement step improves the likelihood.
This observation is illustrated in Figure 3 where we plot the
number of improved topologies per rearrangement step for
a 150 SC (a description of the data we used is provided in
Section 5) tree inference with a random and a parsimony
starting tree. When the number of improved topologies is
zero the improved tree has been obtained by optimizing a
toplogy of the best tree list.

An MPI-based parallel version of our program can easily
be derived from the distributed prototype by maintaining a
single, central tree list at the master process and distributing
the best 20 topologies for branch length optimization to the
workers.

parsimony inference ends at
step 12

100

150

200

250

0 5 10 15 20 25

nu
m

be
r

of
 im

pr
ov

ed
 to

po
lo

gi
es

rearrangement step

"random_tree"
"parsimony_tree"

50

0

Figure 3. Number of improved topologies per
rearrangement step for a SC 150 random and
parsimony starting tree

5. Results

For our experiments we extracted alignments comprising
150, 200, 250, 500 and 1000 taxa (150 ARB,...,1000 ARB)
from the ARB [7] small subunit ribosomal ribonu-
cleic acid (ssu rRNA) database containing organisms
from the domains Eucarya, Bacteria and Archaea. In
addition, we used the 101 and 150 sequence data

sets (101 SC, 150 SC [17]) which can be downloaded
at www.indiana.edu/˜rac/hpc/fastDNAml and
have proved to be very hard to compute, especially for
MrBayes. In addition we used two well-known real data
sets of 218 and 500 sequences (218 RDPII, 500 ZILLA).
Finally, we used 50 synthetic 100-taxon alignments with
500bp each and the respective true reference trees which
are available at www.lirmm.fr/w3ifa/MAAS. Details
on the generation of those data sets which use e.g. varying
sequence divergence rates can be found in [2]. To facil-
itate and accelerate testing we used the HKY (Hasegawa
et al. 1985) model of sequence evolution and a transi-
tion/transversion (Tr/Tv) ratio of 2.0 except for 150 SC
(1.24) and 101 SC (1.45). All alignments including the best
topologies are available together with the RAxML source
code at wwwbode.cs.tum.edu/˜stamatak.

Since the transition/transversion ratio is defined differ-
ently in PHYML we scaled it accordingly for the test runs
(the manual for PAML [9] contains a nice description of dif-
ferences in the Tr/Tv ratio definitions). MrBayes does not
provide a possibility to set the Tr/Tv ratio to a specific value
such that we had to let the program optimize this value. We
did however not observe differences in the order of final
RAxML, PHYML, and MrBayes likelihood values for dif-
ferent Tr/Tv settings. This is illustrated in Figure 4 for the
final 150 SC topologies.

-58000

-56000

-54000

-52000

-50000

-48000

-46000

-44000

1 2 3 4 5 6 7 8 9 10

lik
el

ih
oo

d

transition/transversion ratio

"RAxML"
"MrBayes"
"PHYML"

Figure 4. RAxML, PHYML, and MrBayes final
likelihood values over transition/transversion
ratios for 150 SC

For real data MrBayes was executed for 2.000.000 gen-
erations using 4 Metropolis-Coupled MCMC (MC�) chains
and the recommended random starting trees. Furthermore
we used a sample and print frequency of 5000. To enable
a fair comparison we evaluated all 400 output trees with
fastDNAml and we report the value of the topology with the
best likelihood and the execution time at that point. For syn-

thetic data we executed MrBayes for 100.000 generations
using 4 MCMC chains and random starting trees. We used
sample and print frequencies of 500 and built a majority-
rule consensus tree from the last 50 trees. Those signifi-
cantly faster settings proved to be sufficient since trees for
synthetic data converged much faster than trees for real data
in our experiments.

We decided to assess performance only for those three
programs since results in [19] indicate that MrBayes is the
fastest and most accurate method for phylogenetic tree re-
construction, i.e. the method to beat. Furthermore, the more
recently published program PHYML is, to our best knowl-
edge, the fastest available sequential code for “traditional”
maximum likelihood-based tree inference.

We stress the importance of using several real data
alignements since differences between phylogeny programs
can often only be observed with real data.

Sequential Tests: All sequential tests were performed on
an Intel Xeon 2.4 GHz Processor. We compiled the pro-
grams using icc -O3 (native Intel compiler).

In Table 1 we summarize the final likelihood values and
execution times in seconds obtained with PHYML, Mr-
Bayes, and RAxML. The results listed for RAxML corre-
spond to the best of 10 runs with different randomized par-
simony starting trees. For sake of completeness we also in-
dicate the number of base pairs (bp), worst results and worst
execution times obtained with RAxML for each data set in
a seperate Table 2.

In addition, since execution times of RAxML might
seem long compared to PHYML in column � � ���

we indicate the likelihood and the time at which RAxML
passed the final likelihood obtained by PHYML for a dis-
tinct series of RAxML runs. Finally, in the last two columns
we list the final likelihood values and execution times in
hours (!) obtained with PAxML (exactly equivalent to par-
allel fastDNAml, but faster by � 50%). The results were
obtained from parallel runs on the HeLiCs [3] PC cluster
and the highest feasible rearrangement setting, in terms of
acceptable computation times. The enormous improvement
of execution times illsutrates the progress in the field over
the last two years.

The long overall execution times of RAxML compared
to PHYML are due to the asymptotic convergence of like-
lihood over time which is typical for the tree optimiza-
tion process. A particularly extreme example for this type
of convergence behaviour is illustrated in Figure 5 for
500 ZILLA. Therefore, the comparatively small differences
in final likelihood values wich are usually below 1% should
not be underestimated, in terms of the computational effort
required to obtain those values.

Finally, in Figure 6 we plot the topological accuracy
(Robinson-Foulds rate) of PHYML, RAxML, and MrBayes

data bp RAxML secs
101 SC 1858 -73982.42 1021
150 SC 1269 -44159.89 467

150 ARB 3188 -77198.98 305
200 ARB 3270 -104743.32 1236
250 ARB 3638 -131513.04 1758
500 ARB 4030 -252631.93 26124

1000 ARB 5547 -401006.52 66902
218 RDPII 4182 -157580.21 7432
500 ZILLA 759 -21087.46 29916

Table 2. Worst execution times and likelihood
values for real data from 10 RAxML runs

-22000

-21800

-21600

-21400

-21200

-21000

0 5000 10000 15000 20000 25000 30000

lik
el

ih
oo

d

time (secs)

"500_zilla"

Figure 5. Likelihood improvement over time
of RAxML for 500 ZILLA

for 50 100-taxon trees which are enumerated on the x-axis.
The average R-F rate for PHYML is 0.0796, 0.0808 for
RAxML, 0.0818 for RAxML with a less exhaustive search
and 0.0741 for MrBayes. The average execution time of
RAxML was 131.05 seconds and 29.27 seconds for the less
exhaustive search. PHYML required an average of 35.21
seconds and MrBayes 945.32 seconds.

The experiments illustrate that there seems to be no sig-
nificant difference between PHYML and RAxML for syn-
thetic data in contrast to the results obtained with real data.
Thus, real as well as synthetic data should be used to per-
form comparative analyses of phylogeny programs.

Two examples which underline this argument are de-
picted in Figures 7 and 8 for the 101 SC and 500 ARB
alignments respectively. We plot the MrBayes likelihood
values over generation numbers for runs with RAxML and
random starting trees. Figures 7 and 8 also illustrate the
main problem of MCMC analysis which is also pointed out
by Huelsenbeck in [6]: When to stop the chain? In both
examples the run with random starting trees seems to have

data PHYML secs MrBayes secs RAxML secs R � PHY secs PAxML hrs
101 SC -74097.6 153 -77191.5 40527 -73919.3 617 -74046.9 31 -73975.9 47
150 SC -44298.1 158 -52028.4 49427 -44142.6 390 -44262.9 33 -44146.9 164

150 ARB -77219.7 313 -77196.7 29383 -77189.7 178 -77197.6 67 -77189.8 300
200 ARB -104826.5 477 -104856.4 156419 -104742.6 272 -104809.0 99 -104743.3 775
250 ARB -131560.3 787 -133238.3 158418 -131468.0 1067 -131549.4 249 -131469.0 1947
500 ARB -253354.2 2235 -263217.8 366496 -252499.4 26124 -252986.4 493 -252588.1 7372

1000 ARB -402215.0 16594 -459392.4 509148 -400925.3 50729 -401571.9 1893 -402282.1 9898
218 RDPII -157923.1 403 -158911.6 138453 -157526.0 6774 -157807.9 244 n/a n/a
500 ZILLA -22186.8 2400 -22259.0 96557 -21033.9 29916 -22036.9 67 n/a n/a

Table 1. PHYML, MrBayes, RAxML execution times and likelihood values for real data sets

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35 40 45 50

to
po

lo
gi

ca
l a

cc
ur

ac
y

tree number

"RAxML.sim"
"PHYML.sim"

"MrBayes.sim"

Figure 6. Topological accuracy of PHYML,
RAxML and MrBayes for 50 100-taxon trees

reached apparent stationarity. Furthermore, they show that
“good” user trees can be very useful both as reference and
starting trees as well as to significantly accelerate computa-
tions. This justifies the work on fast “traditional” maximum
likelihood methods after the emergence and great impact of
bayesian methods. Thus, we do not see RAxML as con-
currence to MrBayes, but rather as useful tool to improve
bayesian inference and vice versa. Therefore, in order to
facilitate the analysis process RAxML produces an output
file containing the alignment and the final tree in MrBayes
input format.

Finally, in order to demonstrate the rapid tree otimization
capabilities of RAxML in Figures 9 and 10 we plot the
likelihood improvement over time of RAxML and MrBayes
for the same 150 SC and 150 ARB random starting trees.
The final likelihood values obtained by RAxML for those
runs were -44149.18 (150 SC) and -77189.78 (150 ARB)
respectively.

-110000

-105000

-100000

-95000

-90000

-85000

-80000

-75000

-70000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Ln
 L

h

Generations

’101_RANDOM.p’
’101_USER.p’

Figure 7. Convergence behaviour of MrBayes
for 101 SC with user and random starting
trees over 3.000.000 generations

-110000

-105000

-100000

-95000

-90000

-85000

-80000

-75000

-70000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Ln
 L

h

Generations

’101_RANDOM.p’
’101_USER.p’

Figure 8. Convergence behaviour of MrBayes
for 500 ARB with user and random starting
trees

-75000

-70000

-65000

-60000

-55000

-50000

-45000

-40000

0 500 1000 1500 2000 2500 3000 3500

lik
el

ih
oo

d

time (secs)

"150_SC_RAxML"
"150_SC_MrBayes"

Figure 9. 150 SC likelihood improvement over
time of RAxML and MrBayes for the same ran-
dom starting tree

-200000

-180000

-160000

-140000

-120000

-100000

-80000

-60000

0 1000 2000 3000 4000 5000

lik
el

ih
oo

d

time (secs)

"150_ARB_RAxML"
"150_ARB_MrBayes"

Figure 10. 150 ARB likelihood improvement
over time of RAxML and MrBayes for the same
random starting tree

Processor Architecture: Since our laboratory tradition-
ally focuses on hardware architectures we used RAxML
among several other applications to benchmark various PC
processors. We executed RAxML with 150 SC for the same
restart tree on the CPUs which are listed in Table 3 together
with the respective compilers. The compiler optimization
flag was set to -O3. We evaluated the effect of several ad-
vanced compiler options such as e.g. loop unrolling, frame
pointer omission or higher -O values but did not observe any
notable improvement of execution times. The most interest-
ing result is that RAxML executes best on the AMD proces-
sor although the program has only been compiled with gcc.

CPU compiler secs
AMD Opteron 244 gcc-3.3.1 335
Intel Xeon 2.4 GHz gcc-3.3.1 559
Intel Xeon 2.4 GHz icc-7.1 465

Intel Itanium 1.3 GHz (64bit code) icc-7.1 512

Table 3. RAxML execution times on PC pro-
cessors

Distributed & Parallel Tests: In order to test our dis-
tributed and parallel prototypes we executed our code for
a fixed starting tree on 4, 8, and 16 processors of the 82-
node Xeon 2.66GHz Linux cluster at the RRZE [12] with
the 1000 ARB alignment. Due to the design of the dis-
tributed implementation as described in Section 4 we can
not expect near-optimal speedups and exactly equivalent re-
sults for runs with distinct numbers of processors. The se-
quential execution required 53002 seconds and yielded a fi-
nal likelihood value of -400970.31 (this is not the run which
produced the best result). The times at which the distributed
and parallel program passed the likelihood of the sequential
one as well as the final likelihood values of the distributed
code and speedups are listed in Table 4. For calculating
the speedup we do not count the one processor on which
the master process runs, since it does hardly produce any
CPU load. The slightly superlinear speedups obtained by
the parallel code are achieved due to the non-determinism
of the algorithm.

procs. likelihood secs dist. par.
speedup speedup

1 (1) -400970.31 53002 1 1
4 (3) -400945.43 17871 2.97 2.19
8 (7) -400950.58 10693 4.96 8.18

16 (15) -400947.24 7542 7.03 15.31

Table 4. Distributed performance of RAxML

6. Conclusion, Current & Future Work

We have presented very simple heuristics for phyloge-
netic tree inference which outperform the currently, to the
best of our knowledge, fastest and most accurate programs
for phylogenetic tree inference for real-world data. Tree in-
ference for synthetic data sets using RAxML is equally ac-
curate as with PHYML. MrBayes has shown to be slightly
more accurate for synthetic data than RAxML and PHYML
but is significantly slower. The sequential code of RAxML
including all test data sets and final tree topologies is freely
available at: wwwbode.cs.tum.edu/˜stamatak. In

addition we present a distributed version of our algorithm
which enables seti@home-like computations of large phy-
logenetic trees due to its low communication costs. Further-
more, we have shown that for some real data sets MrBayes
does not converge in reasonable times or has reached appar-
ent stationarity while the likelihood values of the chain are
significantly inferior to those obtained by “traditional” max-
imum likelihood searches. To conclude we want to stress
two major points within that context: Firstly, it seems to be
important to assess performance of programs for phyloge-
netic tree inference with synthetic as well as real data sets,
since the differences in program behaviour became apparent
only with real data sets in our experiments. Secondly, we
believe that bayesian and traditional approaches to phylo-
genetic inference should be combined in experimental prac-
tice, in order to exploit the advantages of both approaches.

Future work will mainly cover the execution of large
parallel and distributed production runs in order to explore
the maximum size of trees which can be computed using
RAxML.

Finally, we plan to integrate our dnapars component as
well as the fast tree optimization function into PHYML.
We believe that this will improve PHYML since it lacks
an option to generate distinct starting trees and perform
more exhaustive optimizations. Moreover, in contrast to
PHYML the RAxML optimization process is relatively
straight-forward to parallelize. PHYML on the other hand
offers a larger variety of evolutionary models, is able to han-
dle protein data and includes some advanced features for
model parameter optimization.

7. Acknowledgements

We would especially like to thank Stephane Guindon for
his useful comments which greatly helped to improve the
final manuscript, as well as for providing us the PHYML
source code. Furthermore, we would like to thank the
RRZE and HeLiCS HPC-teams for providing us access and
support for their PC clusters. Finally, we are grateful to
Martin Mairandres and Tobias Klug from the Lehrstuhl für
Rechnertechnik und Rechnerorganisation for providing us
access to our local PC cluster and testing RAxML with var-
ious processor/compiler combinations.

References

[1] J. Felsenstein. Evolutionary Trees from DNA Sequences: A
Maximum Likelihood Approach. J. Mol. Evol., 17:368–376,
1981.

[2] S. Guindon and O. Gascuel. A Simple, Fast, and Accu-
rate Algorithm to Estimate Large Phylogenies by Maximum
Likelihood. Syst. Biol., 52(5):696–704, 2003.

[3] HeLiCS: HEidelberg Linux Cluster System.
HELICS.UNI-HD.DE, visited Jul 2003.

[4] M.T. Holder and P.O. Lewis. Phylogeny Estimation: Tradi-
tional and Bayesian Approaches. Nature Reviews Genetics,
4:275–284, 2003.

[5] J.P. Huelsenbeck and F. Ronquist. MRBAYES: Bayesian
inference of phylogenetic trees. Bioinformatics 17(8):754-
5, 2001.

[6] J.P. Huelsenbeck, B. Larget, R.E. Miller, and F. Ronquist.
Potential Applications and Pitfalls of Bayesian Inference of
Phylogeny. Syst. Biol., 51(5):673–688, 2002.

[7] W. Ludwig et al. ARB: A Software Environment for Se-
quence Data. Nucl. Acids Res., in press, 2003.

[8] G. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek.
fastdnaml: A Tool for Construction of Phylogenetic Trees
of DNA Sequences using Maximum Likelihood. Comput.
Appl. Biosci., 10:41–48, 1994.

[9] PAML Manual (Information on Tr/Tv definitions: page 20)
BCR.MUSC.EDU/MANUALS/PAMLDOC.PDF, visited Nov
2003.

[10] PAUP project site.
PAUP.CSIT.FSU.EDU, visited May 2003.

[11] PHYLIP downlaod site and list of phylogeny software.
EVOLUTION.GENETICS.WASHINGTON.EDU, visited Nov
2003.

[12] Regionales Rechenzentrum Erlangen: HPC services.
WWW.RRZE.UNI-ERLANGEN.DE, visited Oct 2003.

[13] Seti@home project site.
SETIATHOME.SSL.BERKELEY.EDU, visited Jul 2003.

[14] A. P. Stamatakis, T. Ludwig, and H. Meier. A Fast Program
for Maximum Likelihood-based Inference of Large Phylo-
genetic Trees In Proceedings of ACM Symposium on Ap-
plied Computing ’04, to be published.

[15] A. P. Stamatakis, T. Ludwig, and H. Meier. RAxML: A Par-
allel Program for Phlogenetic Tree Inference. Poster abstract
in Proceedings of ECCB2003, September 2003.

[16] A. P. Stamatakis, T. Ludwig, H. Meier, and M. J. Wolf.
Accelerating Parallel Maximum Likelihood-based Phyloge-
netic Tree Computations using Subtree Equality Vectors. In
Proceedings of SC2002, November 2002.

[17] C. Stewart, D. Hart, D. Berry, G. Olsen, E. Wernert, and
W. Fischer. Parallel Implementation and Performance of
fastdnaml - a Program for Maximum Likelihood Phyloge-
netic Inference. In Proceedings of SC2001, November 2001.

[18] K. Strimmer, A.v. Haeseler. Quartet Puzzling: A Maximum-
Likelihood Method for Reconstructing Tree Topologies.
Mol. Biol. Evol. 13:964-969, 1996.

[19] T.L. Williams, B.M.E. Moret. An Investigation of Phyloge-
netic Likelihood Methods. In Proceedings of 3rd IEEE Sym-
posium on Bioinformatics and Bioengineering (BIBE’03),
2003.

[20] C. Tuffley, M. Steel. Links between Maximum Likelihood
and Maximum Parsimony under a Simple Sodel of Site Sub-
stitution. Bull Math Biol 59(3):581-607, 1997.

[21] M. Wolf, S. Easteal, M. Kahn, B. McKay, and L. Jer-
miin. TrExML: A Maximum Likelihood Program for Ex-
tensive Tree-space Exploration. Bioinformatics, 16(4):383–
394, 2000.

