

High Performance Biosequence Database Scanning on Reconfigurable Platforms

Timothy Oliver and Bertil Schmidt
School of Computer Engineering

Nanyang Technological University
Singapore 639798

Tim.oliver@pmail.ntu.edu.sg, asbschmidt@ntu.edu.sg

Abstract

Molecular biologists frequently compare an unknown
protein sequence with a set of other known sequences (a
database scan) to detect functional similarities. Even
though efficient dynamic programming algorithms exist
for the problem, the required scanning time is still very
high, and because of the rapid database growth finding
fast solutions is of highest importance to research in this
area. In this paper we present a new approach to
biosequence database scanning on reconfigurable
hardware platforms to gain high performance at low cost.
To derive an efficient mapping onto this type of
architecture, we have designed fine-grained parallel
processing elements (PEs). Since our solution is based on
reconfigurable hardware, we can design PEs that are
tailored towards the parameters of a query. This results
in an implementation with significant runtime savings on
a standard off-the-shelf FPGA.

1. Introduction

Scanning protein sequence databases is a common and
often repeated task in molecular biology. The need for
speeding up this treatment comes from the exponential
growth of the biosequence banks: every year their size
scaled by a factor 1.5 to 2. The scan operation consists of
finding similarities between a particular query sequence
and all sequences of a bank. This operation allows
biologists to point out sequences sharing common
subsequences. From a biological point of view, it leads to
identify similar functionality.

Comparison algorithms whose complexities are
quadratic with respect to the length of the sequences
detect similarities between the query sequence and a
subject sequence. One frequently used approach to speed
up this time consuming operation is to introduce
heuristics in the search algorithm [1]. The main drawback

of this solution is that the more time efficient the
heuristics, the worse is the quality of the result [17].

Another approach to get high quality results in a short
time is to use parallel processing. There are two basic
methods of mapping the scanning of sequence databases
to a parallel processor: one is based on the systolisation of
the sequence comparison algorithm, the other is based on
the distribution of the computation of pairwise
comparisons. Systolic array architectures have been
proven as a good candidate structure for the first
approach [5,12,18], while more expensive
supercomputers and networks of workstations are suitable
architectures for the second [7,15].

Special-purpose systolic arrays provide the best
area/performance ratio by means of running a particular
algorithm [14]. Their disadvantage is the lack of
flexibility with respect to the implementation of different
algorithms. Several massively parallel SIMD
architectures have been developed in order to combine
the speed and simplicity of systolic arrays with flexible
programmability [3,6,19]. However, because of the high
production costs involved, there are many cases where
announced second-generation architectures have not been
produced. The strategy to high performance sequence
database scanning used in this paper is based on FPGAs.
FPGAs provide a flexible platform for fine-grained
parallel computing based on reconfigurable hardware.
Since there is a large overall FPGA market, this approach
has a relatively small price/unit and also facilitates
upgrading to FPGAs based on state-of-the-art technology.
Taking full advantage of hardware reconfiguration, we
present PE designs that are tailored towards particular
query parameters. We will show how this leads to a high-
speed implementation on a Virtex II XC2V6000. The
implementation is also portable to other FPGAs.

This paper is organised as follows. In Section 2, we
introduce the basic sequence comparison algorithm for
database scanning. Section 3 highlights previous work in
parallel sequence comparison. The parallel algorithm and

its mapping onto a reconfigurable platform are explained
in Section 4. The performance is evaluated and compared
to previous implementations in Section 5. Section 6
concludes the paper.

2. Sequence Comparison Algorithm

Surprising relationships have been discovered between
protein sequences that have little overall similarity but in
which similar subsequences can be found. In that sense,
the identification of similar subsequences is probably the
most useful and practical method for comparing two
sequences. The Smith-Waterman algorithm [20] finds the
most similar subsequences of two sequences (the local
alignment) by dynamic programming.

The algorithm compares two sequences by computing
a distance that represents the minimal cost of
transforming one segment into another. Two elementary
operations are used: substitution and insertion/deletion
(also called a gap operation). Through series of such
elementary operations, any segments can be transformed
into any other segment. The smallest number of
operations required to change one segment into another
can be taken into as the measure of the distance between
the segments.

 ∅ A T C T C G T A T G A T G

∅ 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 2 1 0 0 2 1 0 2
T 0 0 2 1 2 1 1 4 3 2 1 1 3 2
C 0 0 1 4 3 4 3 3 3 2 1 0 2 2
T 0 0 2 3 6 5 4 5 4 5 4 3 2 1
A 0 2 2 2 5 5 4 4 7 6 5 6 5 4
T 0 1 4 3 4 4 4 6 5 9 8 7 8 7
C 0 0 3 6 5 6 5 5 5 8 8 7 7 7
A 0 2 2 5 5 5 5 4 7 7 7 10 9 8
C 0 1 1 4 4 7 6 5 6 6 6 9 9 8

Figure 1. Example of the Smith-Waterman
algorithm to compute the local alignment
between two DNA sequences ATCTCGTATGATG
and GTCTATCAC. The matrix H(i,j) is shown for
the linear gap cost α = 1, and a substitution cost
of +2 if the characters are identical and −1
otherwise. From the highest score (+10 in the
example), a traceback procedure delivers the
corresponding alignment (shaded cells), the two
subsequences TCGTATGA and TCTATCA.

Consider two strings S1 and S2 of length l1 and l2. To
identify common subsequences, the Smith-Waterman
algorithm computes the similarity H(i,j) of two sequences
ending at position i and j of the two sequences S1 and S2.
The computation of H(i,j) is given by the following
recurrences:

H(i,j) = max{0, E(i,j), F(i,j), H(i−1,j−1)+Sbt(S1i,S2j)},
for 1≤i≤l1, 1≤j≤l2.

E(i,j) = max{H(i,j−1)−α, E(i,j−1)−β}, 0≤i≤l1, 1≤j≤l2.
F(i,j) = max{H(i−1,j)−α, F(i−1,j)−β}, 1≤i≤l1, 0≤j≤l2.

where Sbt is a character substitution cost table.
Initialization of these values are given by H(i,0) = E(i,0)
= H(0,j) = F(0,j) = 0 for 0≤i≤l1, 0≤j≤l2. Multiple gap
costs are taken into account as follows: α is the cost of
the first gap; β is the cost of the following gaps. This type
of gap cost is known as affine gap penalty. Some
applications also use a linear gap penalty, i.e. α = β. For
linear gap penalties the above recurrence relations can be
simplified to:

H(i,j) = max{0, H(i,j−1)−α, H(i−1,j)−α, H(i−1,j−1) +
Sbt(S1i,S2j)}, for 1≤i≤l1, 1≤j≤l2.

H(i,0) = H(0,j) = 0 for 0≤i≤l1, 0≤j≤l2.

Each position of the matrix H is a similarity value. The
two segments of S1 and S2 producing this value can be
determined by a backtracking procedure. Fig. 1 illustrates
an example.

3. Previous Work

A number of parallel architectures have been
developed for sequence analysis. In addition to
architectures specifically designed for sequence analysis,
existing programmable sequential and parallel
architectures have been used for solving sequence
alignment problems.

Special-purpose hardware implementations can
provide the fastest means of running a particular
algorithm with very high PE density. However, they are
limited to one single algorithm, and thus cannot supply
the flexibility necessary to run a variety of algorithms
required analyzing DNA, RNA, and proteins. P-NAC was
the first such machine and computed edit distance over a
four-character alphabet [16]. More recent examples,
better tuned to the needs of computational biology,
include BioScan, BISP, and SAMBA [5,12,18].

An approach presented in [19] is based on instruction
systolic arrays (ISAs). ISAs combine the speed and
simplicity of systolic arrays with flexible
programmability. Several other approaches are based on
the SIMD concept, e.g. MGAP [3], Kestrel [6], and
Fuzion [19]. SIMD and ISA architectures are
programmable and can be used for a wider range of
applications, such as image processing and scientific
computing. Since these architectures contain more
general-purpose parallel processors, their PE density is
less than the density of special-purpose ASICs.
Nevertheless, SIMD solutions can still achieve significant
runtime savings. However, the costs involved in

designing and producing SIMD architectures are quite
high. As a consequence, none of the above solutions has a
successor generation, making upgrading impossible.

Reconfigurable systems are based on programmable
logic such as field-programmable gate arrays (FPGAs) or
custom-designed arrays. They are generally slower and
have lower PE densities than special-purpose
architectures. They are flexible, but the configuration
must be changed for each algorithm, which is generally
more complicated than writing new code for a
programmable architecture. Several solutions including
Splash-2 [13] and Decipher [21] are based on FPGAs
while PIM has its own reconfigurable design [8].
Solutions based on FPGAs have the additional advantage
that they can be regularly upgraded to state-of-the-art-
technology. This makes FPGAs a very attractive
alternative to special-purpose and SIMD architectures.

Compared to the previously published FPGA
solutions, we are using a new partitioning technique for
varying query sequence lengths. The design presented in
[22] is closest to our approach since it also uses a linear
array of PEs on a reconfigurable platform. Unfortunately,
it only allows for linear gap penalties and global
alignment, while our implementation considers both
linear and affine gap penalties and is able to compute
local alignments.

4. Mapping of Sequence Comparison on a
Reconfigurable Platform

The dynamic programming calculation presented in
Section 2 can be efficiently mapped to a linear array of
PEs. A common mapping is to assign one PE to each
character of the query string, and then to shift a subject
sequence systolically through the linear chain of PEs (see
Figure 2). If M is the length of the first sequence and K is
the length of the second, the comparison is performed in
M+K−1 steps on M PEs, instead of M×K steps required on
a sequential processor. In each step the computation for
dynamic programming cells along a single diagonal in
Figure 1 is performed in parallel.

A C G T

� T G A C

subject sequence
query sequence

Figure 2. Sequence comparison on a linear
processor array: the query sequence is loaded
into the processor array (one character per PE)
and a subject sequence flows from left to right
through the array. During each step, one
elementary matrix computation is performed in
each PE.

M
X

lws2_in lw
s2_out

LUT

SX

0
1

first column

dwh_in

sw

dw
h_left_d

s2_out

h_diag

+α

+β

dw

h_left

dw

M
X

f_above_d
1
0

top row

f_above

dw

dw

+α

+β

M
X

dw

0
1

first column

dwe_in

e_left_d

M
X

dw
e_out

dw
h_out

dwmax_in
M
X M

X
max_out

dw
max_out

h_above

M
X

lws2_in lw
s2_out

LUT

SX

0
1

first column

dwh_in

sw

dw
h_left_d

s2_out

h_diag

+α

dw

h_left

dw

dw

dw

dw
h_out

dwmax_in
M
X M

X
max_out

dw
max_out

h_above

M
X

(a)

(b)

Figure 3. (a) Shows linear gap penalty PE. (b)
Shows affine gap penalty PE. Data width (dw) is
scaled to the required precision (usually dw=16
is sufficient). The LUT depth is scaled to hold the
required number of substitution table rows.
Substitution width (sw) is scaled to
accommodate the dynamic range required by the
substitution table. Look-up address width (lw) is
scaled in relation to the LUT depth. Each PE has
local memory to store H(i,j−1), H(i−1,j) and
H(i−1,j−1). The PE holds a column of the
substitution table in its LUT. The look-up of
Sbt(S1i,S2j) and addition to H(i−1,j−1) is done in
one cycle. The score is calculated in the next
cycle and passed to the next PE in the array. The
PE keeps track of the maximum score computed
so far and passes it to the next PE in the array.
The affine gap penalty PE has additional storage
for E(i,j−1) and F(i−1,j) and additional score

computation circuitry. Additions are performed
using saturation arithmetic.

Taking advantage of having a reconfigurable hardware

platform, we can tailor the individual PE design towards
different gap penalty functions. This approach allows us
to include only as much computational hardware and
local memory as required. Figure 3 shows our designs for
linear gap penalties and for affine gap penalties.

Assuming, we are aligning the sequences A =
a1a2�aM and B = b1b2�bK, on a linear processor array of
size M with affine gap penalties, where A is the query
sequence and B is a subject sequence of the database. As
a preprocessing step, symbol ai, is loaded into PE i,
1≤i≤M. After that the row of the substitution table
corresponding to the respective character is loaded into
each PE as well as the gap penalties α and β. B is then
completely shifted through the array in M+K−1 steps as
displayed in Figure 2. In iteration step k, 1≤k≤M+K−1,
the values H(i,j), E(i,j), and F(i,j) for all i, j with 1≤i≤M,
1≤j≤K and k=i+j−1 are computed in parallel in all PEs
1≤i≤M, within a single clock cycle. For this calculation
PE i, 2≤i≤M, receives the values H(i,j−1), E(i,j−1), and bj
from its left neighbour i−1, while the values H(i−1,j−1),
H(i−1,j), F(i−1,j), ai, α, β, and Sbt(ai,bj) are stored
locally. PE 0 receives bj in steps j with 1≤j≤K.
Computation for linear gap penalties is similar.

Thus, it takes M+K−1 steps to compute the alignment
score of the two sequences with the SW algorithm.
However, notice that after the last character of B enters
the array, the first character of a new subject sequence
can be input for the next iteration step. Thus, all subject
sequences of the database can be pipelined with only one
step delay between two different sequences.

Because of the very limited memory of each PE, only
the highest score of matrix H is computed on the FPGA
for each pairwise comparison. Ranking the compared
sequences and reconstructing the alignments are carried
out by the front end PC. Because this last operation is
only performed for very few subject sequences, its
computation time is negligible.

Our PE design incorporates the maximum computation
of the matrix H with only a constant time penalty as
follows: After each iteration step all PEs compute a new
value max by taking the maximum of the newly computed
H-value and the old value of max from its left neighbor.
After the last character of a subject sequence has been
processed in PE M, the maximum of matrix H is stored in
PE M, which is then written into the off-chip memory.

So far we have assumed a processor array equal in
size of the query sequence length. In practice, this rarely
happens. Since the length of the sequences may vary
(several thousands in some cases, however commonly the
length is only in hundreds), the computation must be

partitioned on the fixed size processor array. The query
sequence is usually larger than the processor array. For
sake of clarity we firstly assume a query sequence of
length M and a processor array of size N where M is a
multiple of N, i.e. M=k⋅N where k≥1 is an integer. A
possible solution is to split the computation into k passes:

The first N characters of the query sequence are
loaded into the processor array together with the
corresponding substitution table columns. The entire
database then crosses the array; the H-value and E-value
computed in PE N in each iteration step are output. In the
next pass the following N characters of the query
sequence are loaded into the array. The data stored
previously is loaded together with the corresponding
subject sequences and sent again through the processor
array. The process is iterated until the end of the query
sequence is reached.

Unfortunately, this solution requires a large amount of
off-chip memory (assuming 16-bit accuracy for
intermediate results, four times database size bytes per
pass are needed). The memory requirement can be
reduced by factor p by splitting the database into p equal-
sized pieces and computing the alignment scores of all
subject sequences within each piece. However, this
approach also increases the loading time of substitution
table columns by factor p.

In order to eliminate this loading time we have slightly
extended our PE design. Each PE now stores k columns
of the substitution table instead of only one. Although this
increases the area per PE a bit (see Section 5 for details),
it allows for alignment of each database sequence with
the complete query sequence without additional delays. It
also reduced the required off-chip memory for storing
intermediate results to four times longest database
sequence size (again assuming 16-bit accuracy). Figure 4
illustrates our solution. We can again take advantage of
reconfiguration and design different configurations for
different values of k. This allows us to load a particular
configuration that is suited for a range of query sequence
lengths.

So far we have assumed that the query sequence
length M is a multiple of the processor array size N, i.e. M
= k⋅N where k is an integer. If this is not the case, we can
still use our design by filling substitution table columns in
the remaining PEs with zeros.

lws2_in

dw
max_outoffset

1
0

first

dwh_in

psap_n

dwe_in

max_in

rst
we
re
firstcontrol

lw + 2dw + 1

dw

dw

lw + 1

dw

dw

lw + 1

s2 and
control

FIFO

FIFO

dw
dw

max
write

max
read

Figure 4. System Implementation: The linear array of PEs is encapsulated in psap_n. The database
sequences are passed in from the host one by one through a FIFO to the S2 interface. The database
sequences have been pre-converted to LUT addresses. For query lengths longer than the PE array the
intermediate results are stored in a FIFO of width 2×dw + lw + 1 for affine gap penalty. For linear gap
penalty the FIFO width is dw + lw + 1. The FIFO depth is sized to hold the longest sequence in the
database. The database sequence is also stored in the FIFO. On each consecutive pass an LUT offset
is added to address the next column of the substitution table stored within the PEs. The maximum
score on each pass is compared with those from all other passes and the absolute maximum is
returned to the host.

Table 1. Achieved number of PEs and clock frequencies of our different designs on a Virtex II
XC2V6000. The maximal query sequence lengths and performance (in Giga CUPS) for each design is
also reported.

Design Number of PEs Clock frequency Max. query length Performance
Linear, k=3 252 55 MHz 756 13.9 GCUPS
Linear, k=12 168 55 MHz 2016 9.2 GCUPS
Affine, k=3 168 45 MHz 504 7.6 GCUPS
Affine, k=12 126 45 MHz 1512 5.7 GCUPS

5. Performance Evaluation

We have described the PE design in Verilog and
targeted it to the Xilinx Virtex II architecture. The size of
a linear gap penalty PE is 3×10 CLBs and the size of an
affine gap penalty PE is 6×8 CLBs. Figure 5 shows the
layout plans. We have implemented a linear array of these
PEs. Using a Virtex II XC2V6000 we are able to
accommodate 252 linear PEs or 168 affine PEs using k=3.
This allows handling of query sequence lengths up to 756
and 504 respectively, which is sufficient in most cases
(74% of sequences in Swiss-Prot are ≤ 500 [2]). For
longer queries we have implemented a design with k = 12,
which can accommodate 168 linear PEs or 126 affine
PEs. The corresponding clock frequencies are 55 MHz
for linear and 45 MHz for affine.

A performance measure commonly used in
computational biology is cell updates per second (CUPS).
A CUPS represents the time for a complete computation

of one entry of the matrix H, including all comparisons,
additions and maxima computations. The CUPS
performance of our implementations can be measured by
multiplying number of PEs times clock frequency. Table
1 summarizes our results.

Since CUPS does not consider data transfer time,
query length and initialization time, it is often a weak
measure that does not reflect the behavior of the complete
system. Therefore, we will use database scans for
different query lengths in our evaluation. Table 2 reports
the performance for scanning the Swiss-Prot protein
databank (release 42.5, which contains 138�922
sequences comprising 51�131�444 amino acids [2]) for
query sequences of various lengths using our design on
an RC2000 FPGA Mezzanine PCI-board with a Virtex II
XC2V6000 from Celoxica [4].

(a) (b)

Figure 5. Layout plans for a single affine gap penalty PE (a) and for a single linear gap penalty PE (b)
on the Virtex II architecture using k=3.

Table 2. Performance evaluation for various query sequence length ranges of our implementation (for
both linear and affine gap penalties) on a Virtex II XC2V6000 FPGA. Mean performance indicates the
performance for the mean value of the corresponding query length range.

Query length
range

Mean performance
(linear)

Query length
range

Mean performance
(affine)

1 � 252 5.6 GCUPS 1 � 168 3.2 GCUPS
253 � 504 9.2 GCUPS 169 � 336 5.1 GCUPS
505 � 756 10.6 GCUPS 337 � 504 5.8 GCUPS
757 � 840 8.3 GCUPS 505 � 630 4.8 GCUPS

841 � 1004 8.0 GCUPS 631 � 756 5.0 GCUPS

For the same application an optimized C-program on a
Pentium IV 1.6 GHz has a performance of 52 MCUPS for
linear gap penalties and 40 MCUPS for affine gap
penalties. Hence, our FPGA implementation achieves a
speedup of approximately 170 for linear gap penalties and
125 for affine gap penalties.

For the comparison of different massively parallel
machines, we have taken data from [6,12,19,22] for a
database search with the SW algorithm for different query
lengths. The Virtex II XC2V6000 is around ten times
faster than the much larger 16K-PE MasPar. Kestrel,
Fuzion and Systola 1024 are one-board SIMD solutions.
Kestrel is 12 times slower [6], Fuzion is two to three
times slower [19], and Systola is around 50 times slower
[19] than our solution. All these boards reach a lower
performance, because they have been built with older
CMOS technology (Kestrel: 0.5-µm, Fuzion: 0.25-µm,
Systola 1024: 1.0-µm) than the Virtex II XC2V6000
(0.15-µm). Extrapolating to this technology both SIMD
and reconfigurable FPGA platforms have approximately
equal performance. However, the difference between both
approaches is that FPGAs allow easy upgrading, e.g.
targeting our design to a Virtex II XC2V8000 would
improve the performance by around 30%.

Our implementation is slower than the FPGA
implementations described in [9,13,23]. However, all
these designs only implement edit distance. This greatly
simplifies the PE design and therefore achieves a higher
PE density as well as a higher clock frequency. Although
of theoretical interest, edit distance is not used in practice
because it does not allow for different gap penalties and
substitution tables. The FPGA implementation presented
in [22] on a Virtex XCV2000E is around three times
slower than our solution. Unfortunately, the design only
implements global alignment.

6. Conclusions

In this paper we have demonstrated that reconfigurable
hardware platforms provide a cost-effective solution to
high performance biosequence database scanning. PE
designs for linear gap penalties and for affine gap
penalties have been presented. We have described a
partitioning strategy to implement database scans with a
fixed-size processor array and varying query sequence
lengths. Using our PE design and our partitioning strategy
we can achieve supercomputer performance at low cost
on an off-the-shelf FPGA.

The exponential growth of genomic databases
demands even more powerful parallel solutions in the
future. Because comparison and alignment algorithms
that are favoured by biologists are not fixed,

programmable parallel solutions are required to speed up
these tasks. As an alternative to inflexible special-purpose
systems, hard-to-upgrade SIMD systems, and expensive
supercomputers, we advocate the use of reconfigurable
hardware platforms based on FPGAs.

Our future work includes extending our design to
database scanning with hidden Markov Models using the
Viterbi algorithm and making our implementation
available as a special resource in a computational grid.
We will be making the design more flexible at run-time.
This requires the processors to be described using a
language like Xilinx�s RTPCore [10] specification which,
in turn, uses the JBits API [11].

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W, Lipman,

D.J.: Basic local alignment search tool, Journal of
Molecular Biology 215 (1990) 403-410.

[2] Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C.,
Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K.,
O'Donovan, C., Phan, I., Pilbout, S., Schneider, M.:
The SWISS-PROT protein knowledgebase and its
supplement TrEMBL in 2003
Nucleic Acids Research 31(2003) 365-370.

[3] Borah, M., Bajwa, R.S., Hannenhalli, S., Irwin, M.J.: A
SIMD solution to the sequence comparison problem on the
MGAP, in Proc. ASAP�94, IEEE CS (1994) 144-160.

[4] Celoxica Corporation, www.celoxica.com
[5] Chow, E., Hunkapiller, T., Peterson, J., Waterman, M.S.:

Biological Information Signal Processor, Proc. ASAP�91,
IEEE CS (1991) 144-160.

[6] Dahle, D., Grate L., Rice, E., Hughey, R.: The UCSC
Kestrel general purpose parallel processor, Proc. Int. Conf.
Parallel and Distributed Processing Techniques and
Appilcations (1999) 1243-1249.

[7] Glemet, E., Codani, J.J.: LASSAP, a Large Scale Sequence
compArison Package, CABIOS 13 (2) (1997) 145-150.

[8] Gokhale, M. et al.: Processing in memory: The Terasys
massively parallel PIM array, Computer 28 (4) (1995) 23-
31.

[9] Guccione, S.A., Keller, E.: Gene Matching using JBits,
Proc. 12th Int. Workshop on Field-Programmable Logic
and Applications (FPL�02), Springer, LNCS 2438 (2002)
1168-1171.

[10] Guccione, S.A., Levi, D.: Run-Time Parameterizable
Cores, Proc. 9th Int. Workshop on Field Programmable
Logic and Applications (FPL'99), Springer, LNCS 1673,
(1999) 215-222.

[11] Guccione, S.A., Levi, D., Sundararajan, P.: JBits: A Java-
based Interface for Reconfigurable Computing, 2nd Annual
Military and Aerospace Applications of Programmable
Devices and Technologies Conference (MAPLD Con�99)

[12] Guerdoux-Jamet, P., Lavenier, D.: SAMBA: hardware
accelerator for biological sequence comparison, CABIOS
12 (6) (1997) 609-615.

[13] Hoang, D.T.: Searching genetic databases on Splash 2, in
Proc. IEEE Workshop on FPGAs for Custom Computing
Machines, IEEE CS, (1993) 185-191.

[14] Hughey, R.: Parallel Hardware for Sequence Comparison
and Alignment, CABIOS 12 (6) (1996) 473-479.

[15] Lavenier, D., Pacherie, J.-L.: Parallel Processing for
Scanning Genomic Data-Bases, Proc. PARCO�97, Elseiver
(1998) 81-88.

[16] Lopresti, D.P.: P-NAC: A systolic array for comparing
nucleic acid sequences, Computer 20 (7) (1987) 98-99.

[17] Pearson, W.R.: Comparison of methods for searching
protein sequence databases, Protein Science 4 (6) (1995)
1145-1160.

[18] Singh, R.K. et al.: BIOSCAN: a network sharable
computational resource for searching biosequence
databases, CABIOS, 12 (3) (1996) 191-196.

[19] Schmidt, B., Schröder, H., Schimmler, M: Massively
Parallel Solutions for Molecular Sequence Analysis, Proc.
1st IEEE Int. Workshop on High Performance
Computational Biology, Ft. Lauderdale, Florida, 2002.

[20] Smith, T.F., Waterman, M.S.: Identification of common
molecular subsequences, Journal of Molecular Biology 147
(1981) 195-197.

[21] TimeLogic Corporation, http://www.timelogic.com.
[22] Yamaguchi, Y., Maruyama, T., Konagaya, A.: High Speed

Homology Search with FPGAs,
Proc. Pacific Symposium on Biocomputing�02, pp.271-
282, (2002).

[23] Yu, C.W., Kwong, K.H., Lee, K.H., Leong, P.H.W.: A
Smith-Waterman Systolic Cell, Proc. 13th Int. Workshop on
Field Programmable Logic and Applications (FPL'03),
Springer, LNCS 2778, (2003) 375-384.

