

Phylogenetic Analysis using MapReduce Programming Model
Siddesh G M, K G Srinivasa*, Ishank Mishra, Abhinav Anurag, Eklavya Uppal,

 Department of Information Science & Engineering
 *Department of ComputerScience & Engineering

 M S Ramaiah Institute of Technology, Bangalore

Abstract- Phylogenetic analysis has become essential part of
research on the evolutionary tree of life. Distance-matrix
methods of phylogenetic analysis explicitly rely on a measure of
“genetic distance” between the sequences being classified, and
therefore they require multiple sequence alignments as an
input. Distance methods attempt to construct an all-to-all
matrix from the sequence query set describing the distance
between each sequence pair. Dynamic algorithms like
Needleman-Wunsch algorithm (NWA) and Smith-Waterman
algorithm (SWA) produce accurate alignments, but are
computation intensive and are limited to the number and size of
the sequences. The paper focuses towards optimizing
phylogenetic analysis of large quantities of data using the
hadoop Map/Reduce programming model. The proposed
approach depends on NWA to produce sequence alignments
and neighbor-joining methods, specifically UPGMA
(Unweighted Pair Group Method with Arithmetic mean) to
produce rooted trees. The experimental results demonstrate
that proposed solution achieve significant improvements with
respect to performance and throughput. The dynamic nature of
the NWA coupled with data and computational parallelism of
hadoop MapReduce programming model improves the
throughput and accuracy of sequence alignment. Hence the
proposed approach intends to carve out a new methodology
towards optimizing phylogenetic analysis by achieving
significant performance gain.

Keywords: Sequence Alignment, Phylogenetic analysis,
Needleman-Wunsch, UPGMA, Hadoop, MapReduce.

I. INTRODUCTION
Phylogenetics is the study of evolutionary relationships

among the genetically related group of species. Phylogenetic
analysis is the means of understanding the relationships
among different species during evolution. This study
provides the hypothesis regarding the evolutionary history of
taxonomic groups known as their phylogeny. This phylogeny
is generally depicted as tree diagrams, branching diagrams to
represent an evolutionary relationships among the species.
Distance-matrix based methods of phylogenetic analysis
depend on the measure of degree and distance among the
sequential pairs of a species. This genetic distance between
sequential pairs classified requires multiple sequence
alignments as an input. Such distances are required to build
the distance matrix which in turn depends on distance
methods to construct phylogenetic tree. Distance methods
aims towards the construction of a matrix from the sequence
query set explaining the distance between each sequence
pair. Distance matrix is an (m*m) matrix where m is the
number of sequences. Rows in the matrix represent a single

sequence and columns depict the distance between two
sequences. Provided a set of m sequences, with distance n
among the pair of sequences the distance matrix can be
represented as (here is the nij is the distance between ith and
jth sequences) [1] [2];

n11 …n1m
n12…..n2m
nm1….nmm

Dynamic programming algorithms like Needleman-

Wunsch and Smith-Waterman produce accurate alignments.
But these algorithms are computation intensive and are
limited to a small number of short sequences [3]. One such
idea is proposed in this paper for processing these enormous
quantities of data is the usage of hadoop Map/Reduce
programming model. The computation intensive algorithms
required for phylogenetic analysis can be fitted in the
Map/Reduce model and a time efficient approach can be
carved out. A MapReduce program is composed of a Map()
procedure that performs filtering and sorting (such as sorting
students by first name into queues, one queue for each name)
and a Reduce() procedure that performs a summary operation
(such as counting the number of students in each queue,
yielding name frequencies) [4] [5].

The MapReduce System (also called infrastructure or
framework) orchestrates by marshalling the distributed
servers, running the various tasks in parallel, managing all
communications and data transfers between the various parts
of the system, and providing for redundancy and fault
tolerance. MapReduce is a framework for processing
parallelizable problems across huge datasets using a large
number of computers. Since its inception at Google,
MapReduce has found many adopters. Among them, the
prominent one is the apache software foundation, which has
developed an open source version of the MapReduce
framework called Hadoop. Hadoop boasts of a number of
large web-based corporate like Yahoo, Facebook, Amazon,
etc., that use it for various kinds of data-warehousing
purposes [6][7][8][9][10]. This paper proposes a optimized
solution for analysing the phylogenetics to produce a
phylogram using MapReduce programming model.

II. RELATED WORK
Next generation sequencing has led to the generation of

billions of sequence data, making it increasingly infeasible
for sequence alignment to be performed on standalone

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.57

350

machines. Hence algorithms capable of running in multi-
node clusters and deployable on cloud have been the subject
of investigation. The performance improvement offered by
these algorithms is not usually predictable since the cloud
implementation has many overheads which may sometimes
negatively affect the performance. A detailed study on the
performance of a canonical MapReduce implementation of
sequence alignment algorithm known as CloudBurst is
proposed in [11]. CloudBurst is highly sensitive short read
mapping with MapReduce. They have found that the
performance of sequence alignment algorithms depend upon
the configuration of the cluster in which it is executed.
Running the algorithm with a large input in a cloud
computing environment was more efficient than running in a
single node. [12] presented a report on application of
MapReduce, using its open source implementation Hadoop,
to two relevant algorithms: BLAST (Basic Local Alignment
and Search Tool) and GSEA (Gene Set Enrichment
Analysis). They found their results to be promising and
indicated that the framework could have a wide range of
bioinformatics applications while maintaining good
computational efficiency, scalability and ease of
maintenance. Analysis tools for next generation DNA
sequencing data using a structured programming framework
called the Genome Analysis Toolkit (GATK) is presented in
[13]. The framework was used to build genome analysis
tools easily and efficiently by using the functional
programming paradigm called MapReduce. The report also
describes hadoop, which is a software scheme for cloud
computing that provides MapReduce functionality for
computing clusters and Hadoop Distributed File System for
storing large data. The report illustrates the use of
MapReduce in Hadoop by running the simple WordCount
class and an application called Hadoop-bam. As a part of the
results of the report, she describe the execution of a simple
custom built example with GATK. A novel approach to
Multiple Sequence Alignment (MSA) using Hadoop
framework was presented in [14]. This methodology is uses
dynamic programming. They achieved parallelism in
conducting MSA by using multiple levels of data processing.
Their proposed method of MSA improved on the
computation time and also maintained the accuracy. They
were also able to maintain the accuracy of sequence
alignments.

The observations from the various solutions related to
analyzing phylogenetics using MapReduce model is that
their focus is to achieve either data or computational
parallelism. Further the solution does not consider
dynamicity of the algorithm to optimize the phylogenetic
analysis. The propose work is a time efficient approach to
phylogenetic analysis that produces a phylogram
(phylogenetic tree or evolutionary tree). It will be using
NWA to produce sequence alignments. Further it will be
using the neighbor-joining methods, specifically the
UPGMA method to produce rooted trees. The proposed
methodology will be exploiting the MapReduce

programming model using the hadoop framework. The
proposed approach is combines data and computational
parallelism of hadoop data grids by optimizing the
throughput, accuracy and response time of analyzing the
phylogenetics.

III. PROPOSED SYSTEM
With the enormous growth in bio-information, there is a

corresponding need for tools that enable fast and efficient
alignment job of sequences. Dynamic programming
algorithms like NWA and SWA produce accurate
alignments. But these algorithms are computation intensive
and are limited to a small number of short sequences. Hence
the concurrent execution of these algorithms will greatly
simplify the complexity of the alignment [9][10][15]. The
core objective is the design and implementation of parallel
approach to Phylogenetic analysis using Hadoop Data
Clusters to overcome the limitations of original NWA by
dividing the set of sequences into blocks and processing the
blocks in parallel. Also there is a need to carry out the
performance analysis for different sets of input as well as for
different number of nodes in the cluster.

Algorithm 1: Proposed algorithm for phylogentic analysis using MapReduce

The proposed system uses a parallel approach to

Phylogenetic analysis using Hadoop Data Clusters to
overcome the limitations of original NWS by dividing the set
of sequences into blocks and processing the blocks in
parallel. The fig.1 shows the various stages of

Input: Set of Sequences
Output: Dendrogram representing clustering of sequences

MapReduce Stage 1:
Step 1: Read the input set of Records
Step 2: Identify the set of Sequences using logical delimiter
Step 3: Identify the description tags of the Sequences
Step 4: Create a custom record for each of the input sequence
Step 5: Write the record in an intermediate output

MapReduce Stage 2:
Step 1: Read the records from the output of earlier Mapreduce Stage
Step 2: Form two identical sets of Records using the same set of
 records
Step 3: Make a Cartesian product of the two set of records
Step 4: Create a custom record for each pair in the Cartesian product
Step 5: Write the record in an intermediate output

MapReduce Stage 3:
Step 1: Read the records from the output of earlier Mapreduce Stage
Step 2: Identify the two set of sequences and their respective tags
Step 3: Align the two sequence using Needleman-Wunsch Algorithm
Step 4: Create a custom record using the pair of tags and alignment
 scores
Step 5: Write the record in an intermediate output

Hierarchical clustering using UPGMA:
Step 1: Read the records from the output of earlier Mapreduce Stage
Step 2: Perform Hierarchical clustering using UPGMA
Step 3: Create a dendrogram using the clustered results

351

MapReduce carried out in the process of making
Phylogenetic analysis. Further, it also shows how the
dendrogram would look like. The whole process is carried
out in Three MapReduce stages followed by hierarchical
clustering using UPGMA which produces a dendrogram.
The process of making phylogenetic analysis requires a
certain amount of data pre-processing. Hence even before the
MapReduce job of sequence alignment is carried out using
NWA; two stages of MapReduce are carried out in order to
pre-process the data. The system takes the input data in
FASTA format. Then a MapReduce stage is run for data pre-
processing. What follows is another stage of MapReduce
which produces a cartesian product of the records generated
by the earlier MapReduce phase. The output of this stage is
fed into the NWA which makes the corresponding sequence
alignments. The result of the third stage of MapReduce is fed
to the UPGMA clustering algorithm which produces a
phylogenetic tree in Newick format. This tree in Newick
format [16] then used to build a dendrogram using the D3.js

library of JavaScript. Algorithm 1 explains the process of
phylogentic analysis in an efficient and robust manner. It
highlights the three MapReduce stages followed by
hierarchical clustering using UPGMA to produce a
dendrogram.

IV. IMPLEMENTATION
The fig.2 shows the activity diagram for the system. The
input for the system is a set of sequences in FASTA format.
The input sequences are split into blocks and submitted for a
MapReduce job. The Job tracker is responsible for assigning
tasks to the slave nodes which have a task tracker running.
The slave node process the block by producing a sequence
alignment. The results are then written to the HDFS.

Fig 1. Stages in the proposed system in optimizing phylogenetic analysis

Fig. 1. Stages in the proposed system in optimizing phylogenetic analysis

352

Fig.2. Contextual Activity Diagram for the proposed system

InputFormat
The proposed system uses the input data in FASTA format.
It is a text-based sequential representation of peptides or
nucleotides, which are represented using single-letter codes.
Further the format permits for sequence names and
comments to follow the sequences. The FASTA format is
has become a defacto standard in the area of bioinformatics.
A FASTA sequence format begins with a single-line
depiction, followed by stripes of sequence data. The
description strip is differentiated from the sequence data strip
by a greater-than symbol (">") in the first column. The
identifier of the sequence is the word followed by ">"
symbol and rest of the line is the description. Between the
">" and the first character of the identifier there should not
be any spacing. It is suggested that all strips of text be
shorter than 80 characters. The sequence terminates if
another strip starting with a ">" appears; which signifies the
start of another sequence [2]. A simple example of one
sequence in FASTA format is shown in the fig.3.

Fig.3. Input sequence data set in FASTA format

Output Format
The output format used is of custom type. It consists of

records separated by newline character. Each record has
three fields. The first and second fields indicate the names of
sequences that are aligned. The third field indicates the final
score of the aligned sequences. A simple example of the
custom output format is shown in the fig.4.

Fig.4. Custom output format

To create a dendrogram the output of this format is provided
as an input for the UPGMA clustering program. This in turn
produces a tree in Newick format. Newick tree format (or
Newick notation or New Hampshire tree format) is a way of
representing graph-theoretical trees with edge lengths using
parentheses and commas as seen in fig.5.

Fig.5. Tree in Newick format and its corresponding dendrogram

MapReduce Job -1: Data Pre-processing
This is first of the three stages of MapReduces that are to

be implemented. This stage takes the input in FASTA format
which a text based format for storing sequences. A sequence
in FASTA format begins with a single-line description,
followed by lines of sequence data. The output of this stage
is a customized format suitable for the next MapReduce
stage. To start with the input set of Records are read. Then
the set of Sequences are identified using logical delimiter
(which in this case is '>' as FASTA format is being used).
Then the description tags of the Sequences are identified. A
custom record for each of the input sequence is created. It
starts with the description tag followed by a tab and the input
sequences stitched together. Finally the records are written in
an intermediate output.

MapReduce Job -2: Cartesian product
This MapReduce stage takes the input from the earlier

MapReduce phase which was responsible for data pre-
processing. The stage is responsible for generating the
Cartesian product of the input sequence which will help in
making sequence alignments using NWA in the next
MapReduce stage. First the records from the output of earlier
MapReduce Stage i.e, data pre-processing stage is read. Then
two identical sets of Records using the same set of records

>gi|5524211|gb|AAD44166.1| cytochrome b [Elephas maximus
maximus]

LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLP
WGQMSFWGATVITNLFSAIPYIGTNLVEWIWGGFSVDKATLN
RFFAFHFILPFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPF
HPYYTIKDFLGLLILILLLLLLALLSPDMLGDPDNHMPADPLNT
PLHIKPEWYFLFAYAILRSVPNKLGGVLALFLSIVILGLMPFLHT
SKHRSMMLRPLSQALFWTLTMDLLTLTWIGSQPVEYPYTIIGQ
MASILYFSIILAFLPIAGXIENY

>sequence1 >sequence2 0.67843
>sequence1 >sequence3 0.57852
>sequence1 >sequence4 0.44349
>sequence1 >sequence5 0.98640
>sequence1 >sequence6 0.14802

353

are formed. Cartesian product of the two set of records is
carried out. Then a custom record for each pair in the
cartesian product s created. Finally the records are written in
an intermediate output. The record has the description tag of
a record from the first set followed by its sequence which is
followed by the description tag of a record from second set
and its corresponding sequence. Each field in the record are
tab separated.

MapReduce Job -3: Sequence Alignment
The stage takes the input from the second MapReduce

stage which produces the Cartesian product of input
sequences. This stage unlike the other stages does not require
a custom Input or Output format. It uses the
TextInputFormat class for both Map and Reduce phases. The
Mapper class does the very basic job of tokenization. It read
each record from the input file by using newline character as
a delimiter. It then just tunnels the record to the reduce
phase. The Reducer class takes each record and breaks it into
a string array. The records contain fields which are tab
separated. Since the position of the corresponding sequences
is known, the two sequences are used for making the
sequence alignment. To start with the records from the
output of earlier Mapreduce Stage are read. Then the two set
of sequences and their respective tags are identified. The two
identified sequences are aligned using NWA. Then a custom
record is created using the pair of tags and alignment scores.
Finally the records are written in an intermediate output.

Fig 6. Dendrograms representing the clustered results

Hierarchical clustering using UPGMA
The output from the third MapReduce stage produces an

output which could be interpreted as a distance matrix. The
distance matrix is necessary for the clustering algorithm. To
start with the records from the output of earlier Mapreduce
Stage i.e. Sequence alignment stage is read. Then the
corresponding distance matrix is constructed. Hierarchical
clustering using UPGMA is performed. Finally a
dendrogram is created using the clustered results.The
external interface is created using D3.js (D3 for Data-Driven
Documents). The D3.js is used to build a dendrogram which
is a form of phylogenetic tree. The UPGMA clustering
algorithm produces a tree in the Newick format. Fig. 6
represents the dendrograms representing the clustered results
for the given input.

Implementation of the algorithm an object of UPGMA
class is created. The class has three methods. First,
clusterTwoNode() which combines those two nodes that
have the smallest distance. Second, clustertwoMatrix() which
regenerates the distance matrix after two closest nodes are
clustered. Third, checkMatrixToTerminateIterate() which
determines when to terminate the clustering process.
Algorithm 2 depicts the process of Hierarchical clustering
using UPGMA.

Algorithm 2: Hierarchical clustering using UPGMA

It is made sure that as the nodes are clustered they are in

Newick format. Algorithm 3 shows how to build the Newick
format which is used to build dendrograms using D3.js
library.

Algorithm 3: Node in Newick format

Input: Set of Sequences
Output: Dendrogram representing clustering of sequences

UPGMA upgma = new UPGMA();
while(!upgma.checkMatrixToTerminateIterate(matrix)){
point point = MatrixAction.findPointMinValueInMatrix(matrix);
nodeList=
upgma.clusterTwoNode(nodeList,matrix[point.getRow()][point.getCol(

 point.getRow(), point.getCol());
matrix = upgma.clusterTwoMatrix(matrix, point.getRow(),
point.getCol());
for(int i=0;i<nodeList.length;i++)

System.out.println(nodeList[i].getNameNode());
}

Node node =
new
Node("("+sequences[firstNode].getNameNode()+":"+distance/2+ ","
+ sequences[secondNode].getNameNode()+":"+distance/2+")");

354

V. PERFORMANCE ANALYSIS

The programs were run on single node cluster, two node

cluster as well as four node cluster. Various metrics such as
run time, number of sequences, input size and output sizes
were used to test the performance of the system.

A. Execution Time with varying load
A total of five sequences of varying lengths were taken for

sequence alignment. The first one comprised of 40 sequences
and the ones that followed had sequences in increasing order
by 20 sequences. The sequences were first run on a single
node cluster, followed by a two node cluster and four node
cluster. Then a multi-node cluster was setup and the same set
of sequences were aligned and the corresponding results
were noted. The results are depicted in fig.7, it can be noted
that initially when the number of sequences were less (in this
case 40) the difference in time taken to align the sequences
were insignificant. The expected reason was the network
overhead. But as the number of sequences were increased, a
significant improvement was noted. As we see in the graph
increasing the number of nodes does not significantly
improve the performance significantly because of network
overheads, communication overhead incurred during
execution.

Fig.7. Execution time of sequence alignments

B. Execution time in different MapReduce phases of
proposed system

The set of sequences in proposed system are to be aligned
go through three MapReduce stages. The first two stages
custom record reader and cartesian product have almost
similar time as their input sizes are small. But the third stage
sequence alignment requires a much larger input and hence a
large amount of time is required for the third stage. Fig.8
shows the comparison of execution times of different
MapReduce phases in the proposed system shown in fig.1.
The reason why the third stage requires a large amount of
time is because the input size grows by a quadratic time. This
is due to the second MapReduce stage which makes a
cartesian product of the input sequence set. The time taken

for this Cartesian product of input sequences is due to time
needed by NW algorithm.

C. Throughput of sequences aligned time per sequence
The throughput here is number of sequence alignments

made per second. As usual a total of five sequence sets were
taken that have increasing number of sequences. Throughput
was calculated in case of both single node and two node
cluster. From the fig.9 it can be observed that the throughput
has gradually increased as size of sequence set increases.
Also the difference between the throughputs of a single node
cluster and two-node cluster also increase gradually. The
difference was initially low due the parallelizing overheads
and network overheads.

Fig. 8. Comparison of MapReduce phases in proposed system

Fig. 9. Throughput of sequences aligned time per sequence

355

VI. CONCLUSIONS

Dynamic programming algorithms like NWA and SWA

produce accurate alignments, but these algorithms are
computation intensive and are limited to a small number of
short sequences. The aim of the proposed solution is the
design and implementation of parallel approach to
phylogenetic analysis using hadoop data clusters to
overcome the limitations of original NWA by dividing the
set of sequences into blocks and processing the blocks in
parallel. Further, there is a need to carry out the performance
analysis for different sets of input as well as for different
number of nodes in the cluster. The proposed solution is a
time efficient approach to phylogenetic analysis that
produces a phylogram. It used the neighbor-joining methods,
specifically the UPGMA method to produce rooted trees. It
also used the NWA to produce sequence alignments. The
proposed methodology also exploited the Map/Reduce
model using the hadoop framework. The dynamic nature of
the proposed solution couples the data and computational
parallelism of hadoop data grids by improving the accuracy
and speed of sequence alignment. Further due to the
scalability of hadoop framework, the proposed method for
phylogenetic analysis is also highly suited for large scale
problems.

REFERENCES

[1]Baxevanis, Andreas D., and BF Francis
Ouellette. Bioinformatics: a practical guide to the
analysis of genes and proteins. Vol. 43. John Wiley &
Sons, 2004.

[2]National Center for Biotechnology Information (NCBI),

http://www.ncbi.nlm.nih.gov/

[3] Needleman, Saul B., and Christian D. Wunsch. "A

general method applicable to the search for similarities in
the amino acid sequence of two proteins." Journal of
molecular biology 48.3 (1970): 443-453.

[4] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:

simplified data processing on large
clusters." Communications of the ACM 51.1 (2008): 107-
113.

[5] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: a

flexible data processing tool." Communications of the
ACM 53.1 (2010): 72-77.

[6]Apache Hadoop Mapreduce,

http://hadoop.apache.org/Mapreduce

[7] White, Tom. Hadoop: The definitive guide. " O'Reilly

Media, Inc.", 2012.

[8]HDFS, http://Hadoop.apache.org/hdfs

[9] Ekanayake, Jaliya, Shrideep Pallickara, and Geoffrey

Fox. "Mapreduce for data intensive scientific
analyses." eScience, 2008. eScience'08. IEEE Fourth
International Conference on. IEEE, 2008.

[10] Taylor, Ronald C. "An overview of the

Hadoop/MapReduce/HBase framework and its current
applications in bioinformatics." BMC
bioinformatics 11.Suppl 12 (2010): S1.

[11] Schatz, Michael C. "CloudBurst: highly sensitive read

mapping with MapReduce." Bioinformatics 25.11 (2009):
1363-1369.

[12] Gaggero, Massimo, et al. "Parallelizing bioinformatics

applications with MapReduce." Cloud Computing and Its
Applications (2008): 22-23.

[13] Maharjan, Merina. "Genome Analysis with

MapReduce". June 15 (2011): 3-4.

[14] Sadasivam, G. Sudha, and G. Baktavatchalam. "A novel

approach to multiple sequence alignment using hadoop
data grids." Proceedings of the 2010 Workshop on
Massive Data Analytics on the Cloud. ACM, 2010.

[15] Batzer, Mark A., and Prescott L. Deininger. "Alu

repeats and human genomic diversity." Nature Reviews
Genetics 3.5 (2002): 370-379.

[16] Trooskens, Geert, et al. "Phylogenetic trees: visualizing,

customizing and detecting
incongruence." Bioinformatics 21.19 (2005): 3801-3802.

356

