
A Case Study on Pattern-based Systems for High Performance
Computational Biology

Weiguo Liu and Bertil Schmidt
School of Computer Engineering, Nanyang Technological University

liuweiguo@pmail.ntu.edu.sg, asbschmidt@ntu.edu.sg

Abstract

Computational biology research is now faced with the
burgeoning number of genome data. The rigorous post-
processing of this data requires an increased role for high
performance computing (HPC). Because the development
of HPC applications for computational biology problems
is much more complex than the corresponding sequen-
tial applications, existing traditional programming tech-
niques have demonstrated their inadequacy. Many high
level programming techniques, such as skeleton and pattern
based programming, have therefore been designed to pro-
vide users new ways to get HPC applications without much
effort. However, most of them remain absent from the main-
stream practice for computational biology. In this paper, we
present a new parallel pattern-based system prototype for
computational biology. The underlying programming tech-
niques are based on generic programming, a programming
technique suited for the generic representation of abstract
concepts. This allows the system to be built in a generic
way at application level and thus provides good extensibil-
ity and flexibility. We show how this system can be used to
develop HPC applications for popular computational biol-
ogy algorithms and lead to significant runtime savings on
distributed memory architectures.

1. Introduction

Many computational biology (CB) applications are com-
pute intensive and suffer from long runtimes on sequential
architectures. High performance computing (HPC) on PC
clusters and computational grids can reduce this runtime
significantly. However, because an HPC application is more
complex than the corresponding sequential program, to re-
alize this increase in speed some challenges must be over-
come first and this daunting task usually falls on a few num-
ber of experts.

The development of HPC applications for CB problems
can be greatly improved by adopting suitable programming

techniques and tools. Recently, many high level technolo-
gies have been developed to facilitate the implementation
of HPC applications. Among them, parallel design patterns
have made a substantial impact on the mainstream prac-
tice in HPC programming [9]. Parallel patterns are based on
sequential program design patterns used in object-oriented
languages. Many parallel algorithms can be characterized
and classified by their adherence to a number of generic
patterns of computation and communication. By separating
the communication structure of a parallel algorithm from
the sequential application, parallel patterns allow for a rapid
development of HPC applications. As an important differ-
ence from the usage of design-level patterns in the object-
oriented domain, parallel patterns are often employed not
only at the design level but also at the implementation level.
That is, the design level patterns are often pre-implemented
as reusable components. In the past decade, many parallel
pattern-based systems have been developed to employ de-
sign patterns related concepts in the HPC domain. Some of
the systems based on similar ideas include Code [6], Frame-
works [25], Enterprise[23], HeNCE [7], Tracs [5], DPnDP
[26], and CO2P3S [4]. Unfortunately, most of these sys-
tems lack practical usability for the CB field because of the
following reasons:

1. Most systems only provide a limited set of parallel pat-
terns, such as pipeline and task farm [9, 18]. These pat-
terns can not meet the requirements of most CB appli-
cations.

2. The components of existing systems are not expressed
in a compact generic way. If new components are re-
quired, the users have to do tremendous work to imple-
ment these extensions.

3. They are not flexible enough for the user to reuse the
components of the systems at application level.

4. No computational grid oriented pattern-based systems
has been developed. With the increased availability
of grid computing platforms, grid-enabling of pattern-
based systems are of high importance.

Algorithms Applications References
Smith-Waterman algorithm with linear and affine gap penalty Genome local alignment [16, 27]

Syntenic alignment Generalized genome global alignment
Smith-Waterman algorithm with general gap penalty Genome local alignment [12, 27]

Nussinov algorithm RNA base pair maximization
Viterbi algorithm Gene sequence alignment using HMMs, [12]

Multiple sequence alignment
Double DP algorithm Protein threading [20]

Spliced alignment Gene finding [14]
Zuker algorithm RNA secondary structure prediction [32]
CYK algorithm RNA secondary structure alignment [12]

Table 1. Popular DP algorithms in computational biology.

In this paper, we present a new parallel pattern-based
system prototype and its application for the CB area. This
system has been developed using generic programming
techniques that are suited for the representation of abstract
concepts [29]. Because the system is built in a generic way
at the design and application level, it has good extensibil-
ity and flexibility. We demonstrate how this new system can
be used to develop HPC applications with substantial per-
formance gains for popular CB applications.

The rest of the paper is organized as follows: Section 2
describes the task partitioning and communication schemes
for several popular CB algorithms. Section 3 presents the
system overview. Section 4 shows performance results for
several HPC applications on PC clusters and computational
grids. Section 5 concludes this paper.

2. Mapping of Computational Biology Appli-
cations onto Parallel Architectures

In very broad terms, we can identify two high-level cate-
gories of CB problems: those that can be addressed analyt-
ically, and those that cannot. These two categories are ad-
dressed in turn by two respective classes of algorithms: an-
alytical solution approaches and heuristic approaches.

2.1. Task Partitioning Schemes for Parallel Dy-
namic Programming Algorithms

Dynamic programming (DP) is an important analytical
solution approach in CB. Several popular DP algorithms are
shown in Table 1.

DP views a problem as a set of interdependent sub-
problems. It solves sub-problems and uses the result to solve
larger sub-problems until the entire problem is solved. In
general, the solution to a DP problem is expressed as a min-
imum (or maximum) of possible alternative solutions. Each
of these alternative solutions is constructed by composing
one or more sub-problems. If r represents the cost of a solu-

tion composed of sub-problems x1, x2,. . . ,xl, then r can be
written as:

r = g(f(x1), f(x2), . . . , f(xl)) (1)

The function g() in Eq. (1) is called the composition
function, and its nature depends on the problem described.
If the optimal solution to each problem is determined by
composing optimal solutions to the sub-problems and se-
lecting the minimum (or maximum), Eq. (1) is then said to
be a dynamic programming formulation [19].

(b)

Mij

(a) (c)

Mij
M

ij

Figure 1. The dependency relationship and
the distribution of computational load den-
sity along the computation shift direction for
regular DP algorithm (a) and irregular DP al-
gorithms (b) and (c).

DP algorithms can be divided into regular and irregular
categories according to the dependency relationship of each
cell on the matrix [13]. Figure 1 shows the dependency re-
lationship and the change of computational load density for
some DP algorithms. The change of load density is indi-
cated by using increasingly blacking shades along the com-
putation shift direction.

In order to balance the workload among processors for ir-
regular DP algorithms, we introduce a tunable block-cyclic
based task partitioning and communication scheme. The

concept is illustrated in Figure 2. The parameter division
is used to implement a cyclic distribution of columns to
processors. The parameter rowwidth is used to control the
size of messages that processor Pi sends to processor Pi+1.
Increasing the number of cyclic divisions and decreasing
the size of messages can lead to a better load balancing.
Of course, doing this also increases the communication
overhead. Thus, the choice of the parameter division and
rowwidth is a trade-off between load balancing and com-
munication time.

rowwidth

division=2

P1 P2
P

3
P

4
P1 P2 P3 P4

Inter-process communication

Figure 2. The tunable block-cyclic partition-
ing and communication scheme for irregular
DP algorithms

2.2. Communication Schemes for Hierarchi-
cal Parallel Genetic Algorithms

If we can address a CB problem analytically, this gener-
ally means that we know enough about the structure of the
search space to reliably guide a search towards the best so-
lution. The more typical situation is that we do not have
enough analytical knowledge to do this. Perhaps even more
commonly, we can analyze the structure of the problem to
a small extent, but not enough to be able to use the knowl-
edge to reliably find the best solution. This type of CB prob-
lems fall into the heuristic category.

Genetic algorithms (GAs) are an efficient heuris-
tic search method based on Darwinian evolution. They
have powerful characteristics of robustness and flexibil-
ity to capture global solutions for complex problems. GAs
have been widely used in CB, such as pairwise and mul-
tiple sequence alignment[21], protein structure prediction
[22], microarray data clustering [10], and feature selec-
tion methods for in-silico drug design [31].

Because of their inherent parallelism, GAs are suitable
candidates for mapping onto parallel and distributed archi-
tectures. Generally, from the point of view of basic com-

munication structures, parallel GAs can be categorized into
three main types [8]:

1. Global single-population master-slave GAs;

2. Single-population fine-grained GAs;

3. Multiple-population coarse-grained GAs.

In (1) there is a single panmictic population, but the eval-
uation of fitness is distributed among several processors. A
single master processor does the supervision of the whole
population and also does the selection. Slave processors
receive the individuals that are recombined to create off-
springs. Fine-grained GAs are suited for massively parallel
computers and consist of one spatially-structured popula-
tion. Selection and mating are restricted to a small neigh-
borhood. Multiple-population GAs consist of several sub-
populations which exchange individuals occasionally. This
exchange of individuals is called migration. In this paper,
we mainly focus on the multiple-population coarse-grained
GAs since it is the most popular GA used in computational
biology.

Subpopulation

Migration path;
every island sends
to every other island

Subpopulation

Limited migration path

Figure 3. Migration models for multiple popu-
lation GAs: (a) The island model (b) the step-
ping stone model

There are two popular approaches for modelling migra-
tion in multiple-population GAs: the island model and the
stepping stone model. In the island model, individuals are
allowed to be sent to any other subpopulations (see Figure
3a). It places no restrictions on where an individual may mi-
grate. In the stepping stone model, migration is limited by
allowing emigrants to move only to neighboring subpopu-
lations (see Figure 3b). The stepping stone model reduces
communication overhead by limiting the number of desti-
nations to which emigrants may travel, and thereby limit-
ing the number of messages. The island model allows more
freedom, and in some ways represents a better model of na-
ture. However, there is significantly more communication
overhead and delay when implementing such a model [30].

A few researchers have tried to combine two of the
methods to parallelize GAs, producing hierarchical paral-
lel GAs (HPGAs). HPGAs combine the benefits of its com-
ponents, and it promises better performance than any of
them alone [8]. Figure 4 shows two communication archi-
tectures for HPGAs. The grid architecture considered in

this paper consists of a cluster of PC clusters. Comput-
ing resources located in geographically distributed sites are
shared in this environment. The grid infrastructures, such as
Globus Toolkits [1], are installed on the head nodes of these
resources. Inside each site, the resource is managed by the
local resource management system. A typical characteristic
of this computational grid architecture is the large gap be-
tween the fast connection inside a cluster and the slow con-
nection between clusters. Thus applications designed for
uniform speed interconnections will lead to performance
degradation on the computational grid environment. In or-
der to map HPGAs onto computational grids efficiently, the
high level part of an HPGA is mapped onto the grid layer
and the low level part is mapped onto the cluster layer (see
Figure 5). Different MPI libraries are linked in the two lay-
ers. In the grid layer, MPICH-G2 [17] based processes run
on the head nodes. They migrate the subpopulations in the
local cluster to other clusters within the grid environment.
Inside the cluster, MPICH-P4 [2] is used to transfer data be-
tween different nodes. Figures 4 and 5 show that HPGAs are
very suitable for mapping onto the computational grid ar-
chitecture. Subpopulations can be exchanged between the
grid layer and the cluster layer by reading and writing to
two shared memory blocks on the head node of each clus-
ter.

(a) (b)

Subpopulation

Migration path

Figure 4. (a) Hierarchical parallel GA with the
stepping stone model at the higher level and
the island model at the lower level, (b) hierar-
chical parallel GA with the island model at the
higher level and the stepping stone model at
the lower level.

In this section, we have analyzed the characteristics of
some popular CB algorithms. In order to map these algo-
rithms onto parallel architectures efficiently, we have pro-
vided the corresponding task partitioning methods and com-
munication schemes . In practice, in order to develop HPC
applications conveniently using the described partitioning
and communication schemes, we need to integrate them
into a system in a generic way. In the next section, we will
demonstrate the implementation details of a generic pattern-

Node 1 Node m

Cluster 1

...... Node 1 Node m

Message Passing (MPICH−P4)

Cluster

......

Shared Memory
for receiving data

Shared Memory
for sending data

Shared Memory
for sending data

Shared Memory
for receiving data

n

node 1
Head Head

node n

......

Message Passing (MPICH−P4)

Message Passing (MPICH−G2)

......

......

Figure 5. Communication schemes for HP-
GAs on the computational grid environment

based system prototype for the described algorithms.

3. The Generic Pattern-based System Proto-
type

In this section, we will demonstrate the framework of
a generic pattern-based HPC system prototype for the two
categories of CB algorithms presented in Section 2. The un-
derlying programming technique is based on generic pro-
gramming which is a program design technique that deals
with finding abstract representations of algorithms, data
structures, and other software concepts [29]. It can use both
the traditional objected-oriented techniques (such as inher-
itance and virtual functions) and templates. Because of its
good flexibility, extensibility and security, generic program-
ming techniques are very suitable for the development of
pattern based system. The STL (the Standard Template Li-
brary, which later was adapted and incorporated into the
C++ standard library) and Janus [15] are two examples of
generic programming applications.

3.1. System Overview

The code in Figure 6 shows the general structure of the
system framework. Concrete parallel applications can be
implemented by extending and instantiating the template
parameters (lines 1, 2, 3, 4) of GenericPattern. These
parameters encapsulate the abstract structure and behavior
of a set of parallel patterns in an application independent
manner. The parameter AlgorithmIni initializes some
parameters and defines the data structure of the commu-
nication message. SequentialComp processes the se-
quential computation. ParallelCommu consists of the

template<class datatype,
class AlgorithmIni,
class SequentialComp,
class ParallelCommu,

class GenericPattern{
void HpcComputing(){

AlgorithmIni::PreProcess();
while the cyclic loop is not
completed{

/*For parallel DP applications,
SequentialComp is invoked in the
following method*/

ParallelCommu::Launch();

/*For parallel GAs applications,
ParallelCommu is invoked in the
following method*/

SequentialComp::Launch();
}
AlgorithmIni::PostProcess();

}
};

Figure 6. The structure of class template
GenericPattern.

communication behavior between all processors participat-
ing in the parallel computation. By defining these three pa-
rameters, the parallel part (ParallelCommu) is separated
from the sequential application parts (AlgorithmIni
and SequentialComp). Thus, both parts of a parallel ap-
plication can evolve independently. This allows for the rapid
prototyping of parallel applications, and permits users to
experiment with alternative communication structures con-
veniently. Currently, we have integrated the tunable block-
cyclic partitioning method for DP algorithms into the sys-
tem. The system also supports two dimensional and three
dimensional applications with nested recurrence relation-
ships. As to parallel GAs, the island and stepping stone
communication models have been pre-implemented.

3.2. Generic Pattern-based System: Extensibility
and Flexibility

An important aspect of our system is the generic repre-
sentation for a set of patterns, i.e. a generic pattern. With
this generic pattern, we mainly focus on the extensibility of
the framework rather than how many limited patterns it can
support. In order to achieve a good extensibility, the tem-
plate parameters of GenericPattern are also defined as

class templates. Thus, the user can extend the generic pat-
tern by specifying these application-independent templates.
Different specialization will lead to different implementa-
tion strategies for a concrete parallel application.

Template<class datatype,
class AlgorithmiIni,
class SequentialComp,
class ParallelCommu>

Class GenericPattern
{

generic implementation
};

Template< >
Class GenericPattern<datatype1, AlgorithmIni1,

 SequentialComp2 , ParallelCommu1 >
{

specialized implementation
};

Template< >
Class GenericPattern<datatype2, AlgorithmIni2,

SequentialComp2 , ParallelCommu1 >
{

specialized implementation
};

Template

specialization

Figure 7. Extend the generic pattern to im-
plement application-dependent parallel pro-
grams.

Figure 7 shows how to use the generic pattern to de-
velop parallel programs for new algorithms. The user only
needs to specify the relevant template parameters accord-
ing to the characters of the algorithm. In generic program-
ming techniques, this extension is also called template spe-
cialization. Our framework provides users with some pre-
defined, efficient and reusable class templates for paral-
lel and distributed computations, thus relieving the user of
the need of rebuilding all the error prone template parame-
ters common in parallel and distributed program code. The
user only needs to provide the sequential application spe-
cific code while the system supplies the necessary paral-
lel code and vice versa. From Figure 7 we can also find
that each template parameter is defined independently from
other parameters. Yet different template parameters can in-
teract with each other via standard interfaces. Consequently,
the system has a good flexibility. For instance in Figure 7,
two algorithms share the same sequential and parallel char-
acters. Thus we can entirely reuse the overall design of
SequentialComp2 and ParallelCommu1 to develop
another algorithm. The user can therefore reuse the exist-
ing components to develop new applications in a flexible
way.

4. Performance Evaluations

The system prototype is presently implemented using
standard C++ and MPI library provided by MPICH 1.2.5
and MPICH-G2. We have used it to develop high perfor-
mance applications for some DP algorithms in computa-
tional biology and the genetic algorithm for protein fold-
ing simulations with the HP lattice model [28].

Two test beds are used in our experiments. One is an
Alpha cluster which comprises eight ES45 nodes. Each
node contains four Alpha-EV68 1GHz processors with 1GB
RAM and 2 MB L2 cache for each processor. All the nodes
are connected with each other by a Gbit/sec quadrics switch.
Another test bed is a heterogeneous cluster environment.
It contains four high-performance clusters. These clusters
contain 8 Intel Xeon 2.6 GHz, 8 Intel Xeon 3.0 GHz, 8 In-
tel Pentium 731MHz and 8 Intel Itanium 733MHz respec-
tively. A 1Gbit/sec Myrinet switch connects each cluster in-
ternally and a 100Mbit/sec Ethernet switch is used as an
inter-cluster connection. Globus ToolkitTM is installed on
the head node of each cluster. Ganglia and Globus MDS
[1] are used to collect and present resource information for
users.

4.1. Experimental Results for Parallel Dynamic
Programming Algorithms

We have run the parallel DP applications on the Alpha
cluster. Figure 8 shows the best speedups for different num-
ber of processors when division is set from 1 to 100 and
rowwidth is set from 5 to 50. It is important to note that these
applications are implemented using different methods. The
linear space method is used to reduce the RAM needed by
the Smith-Waterman algorithm (with linear gap penalty and
affine gap penalty) and the Syntenic alignment algorithm
for long sequences. Similar space-saving methods are used
for the three dimensional applications such as the spliced
alignment algorithm. As for the Smith-Waterman algorithm
with general gap penalty and the Nussinov algorithm, we
store and compute the whole matrix. Notice the super lin-
ear speedups are observed in several applications. This is
because of the effects due to better caching are different
according to different implementation methods for specific
applications.

4.2. Experimental Results for Parallel Genetic Al-
gorithms

Computing the speedup of a parallel algorithm is a well-
accepted way of measuring its efficiency. According to the
conventional definition, the speedup of a parallel GA can
be defined as the ratio of the execution time of the best se-
quential algorithm, TS , and the execution time of the par-

0

5

10

15

20

25

30

35

40

(a)

Syntenic
 60000X60000

 32 Processors
 16 Processors
 8 Processors
 4 Processors
 2 Processors

 S
pe

ed
up

 SWaffine
 70000X70000

SWlinear
 90000X90000

0

5

10

15

20

25

30

35

40

(b)

 Spliced
4000X4000X1000

 32 Processors
 16 Processors
 8 Processors
 4 Processors
 2 Processors

 S
pe

ed
up

 Nussinov
 5000X5000

SWgeneral
 5000X5000

Figure 8. Speedups for some regular (a) and
irregular (b) DP algorithms with correspond-
ing matrix size in computational biology.

allel program, TP [3]. TP can be described as the sum
of the time used by one subpopulation in the computation
(TCOMP) and the time it used to communicate information
to its neighbors (TCOMM), so we can compute the speedup
as:

SP =
TS

TP
=

TS

TCOMP + TCOMM
(2)

Although speedup is very common in the deterministic
parallel algorithms field, in the GA community the topic
of parallel speedups has raised significant controversy. The
main reason is that the execution time of the serial and par-
allel GAs are compared without considering the quality of
the solutions found in each case. Because of the limited

number of individuals and the inherited selection, the se-
quential GA has much more tendency to be trapped in a lo-
cal minimum, without enough genetic diversity to help it-
self out. Communicating individuals between different evo-
lutions in parallel GAs can help in keeping the genetic di-
versity of the population, thus greatly reducing the proba-
bility to be trapped into local minimum. Assuming the GA
is seeking the maximum of some fixed real-valued func-
tion, the parallel GA will have an unfair advantage to work
out the result much faster. In fact, many researchers have
achieved super-linear speedups when using a parallel GA.
Shonkwiler [24] has proven this theoretically and provided
the following formula to compute the speedup for parallel
GAs:

SP = P × SP−1 (3)

In Eq. (3) he introduced an acceleration factor S that can
explain the super-linear speedup (S > 1), P is the number
of processors. It is also shown that for the ”deceptive” prob-
lem where the time to reach the goal can be infinite, very
large speedups are possible.

Eq. (3) provides us a precise way to explain and pre-
dict the speedups for parallel GAs. However, the compu-
tation of the acceleration factor S is too complex. And be-
cause for any time T, there is a non-zero probability that the
algorithm will take time T to work out the final result, in or-
der to get the expected speedups by (3), the user may wait a
very long time T [24]. This is not feasible in practice. Dur-
ing an experiment, if the time to reach the goal tends to be
infinite, we think the algorithm is trapped into local mini-
mum. We therefore define the hit rate of a running parallel
GA as the percentage of the number of outcomes achieved
in finite time relative to the total number of experiments.
With the concept of hit rate, we introduce an approximate
way to compute the speedups for parallel GAs:

SP = P × (k × HP

HS
) (4)

where HS and HP are the hit rates for the sequential and
parallel GAs respectively. k is an algorithm-dependent con-
stant.

The following sequence with the length 64 has been used
in the experiments: hhhhhhhhhhhhphphpphhpphhpphpphh-
pphhpphpphhpphhpphphphhhhhhhhhhhh. This sequence is
based on the hydrophobic-hydrophilic (HP) model [11].
The HP model reduces a protein instance to a string of h’s
and p’s that represents the pattern of hydrophobicity in the
protein’s amino acid sequence.

Table 2 shows the performance measurements for differ-
ent numbers of processors on the Alpha cluster. Because
GAs are stochastic procedures, we have done more than
twenty measurements for each configuration. The total pop-
ulation size is set to be 768. For the mutation stage and the

Number of Processors 1 4 8 16 32
Island Model

Hit Rate 25% 60% 42.9% 50% 40%
Speedups predicted by Eq. (4) \ 9.6 13.7 32 51.2

Experimental Speedups \ 8.66 14.4 32.4 54.7
Stepping Stone Model

Hit Rate 25% 45% 52% 44% 36%
Speedups predicted by Eq. (4) \ 7.2 16.6 28.2 46.1

Experimental Speedups \ 7.5 13.3 30.1 49.6

Table 2. Performance measurements for the
general PGA on the Alpha cluster.

crossover stage, the cooling scheme starts with C = 2 and
is cooled by a factor of 0.99 for every 4 generations. The
communication frequency is set to be every 5 generations,
exchanging 10% subpopulations.

Number of Processors 1 4 8 16 32
Grid level: Island Model; Cluster level: Island Model

Hit Rate 25% 53.8% 64% 44% 37.5%
Speedups predicted by Eq. (4) \ 8.6 20.5 28.2 48

Experimental Speedups \ 8.3 15.6 31.2 52.1
Grid level: Island Model; Cluster level: Stepping Stone Model

Hit Rate 25% 52% 60% 40% 32%
Speedups predicted by Eq. (4) \ 8.3 19.2 25.6 41

Experimental Speedups \ 8.52 14.7 29.7 44.3
Grid level: Stepping Stone Model; Cluster level: Stepping Stone Model

Hit Rate 25% 42.3% 46.2% 39.2% 32%
Speedups predicted by Eq. (4) \ 6.8 14.8 25.1 41

Experimental Speedups \ 5.8 11.8 26.2 39.8
Grid level: Stepping Stone Model; Cluster level: Island Model

Hit Rate 25% 37.5% 45% 38.7% 36%
Speedups predicted by Eq. (4) \ 6 14.4 24.8 46.1

Experimental Speedups \ 6.7 10.7 30.2 49.8

Table 3. Performance measurements for the
HPGA on the heterogeneous cluster environ-
ment.

Table 3 shows the performance measurements for the
protein folding simulations using the HPGA on the hierar-
chical grid environment. The processors used are distributed
evenly on the four clusters. The island model and the step-
ping stone model are used on the grid level and the clus-
ter level respectively. From Table 3 we can see that the hi-
erarchical communication architecture in Figure 5 for HP-
GAs can be efficiently applied to a hierarchical grid envi-
ronment. From Table 2 and Table 3 we can also find that the
speedups predicted by Eq. (4) are very close to the experi-
mental speedups.

5. Conclusions

In this paper we have presented a new generic pattern-
based system prototype for the development of high perfor-
mance computational biology applications. We have iden-
tified common communication patterns by analyzing the

characteristics of popular CB algorithms. By integrating
these pattern in a generic way, our system provides good ex-
tensibility and flexibility. Moreover, we have integrated the
two level communication schemes for grid computing into
the system. So, it can support two level hierarchical appli-
cations, such as HPGAs, on the computational grid. Experi-
ments show that our system can be used to develop high per-
formance applications with substantial performance gains
on both PC clusters and computational grid environments.

The exponential growth of genome data demands even
more parallel and distributed solutions in the future. As al-
gorithms favored by biologists are not fixed, programmable
parallel environments are eagerly required to speed up these
tasks. Our future work includes identifying more CB appli-
cations that can benefit from our system. Moreover, we will
develop a tool to facilitate the easy integration of new pat-
terns.

References

[1] Globus project: http://www.globus.org/.

[2] http://www-unix.mcs.anl.gov/mpi/mpich/.

[3] G. Almasi and A. Gottlieb. Highly Parallel Computing. Ben-
jamin/Cummings Publishing Company, 1994.

[4] J. Anvik, J. Schaeffer, D. Szafron, and K. Tan. Why not
use a pattern-based parallel programming system. In EURO-
PAR’2003, LNCS 2790, 2003.

[5] A. Bartoli, P. Corsini, G. Dini, and C. Prete. Graphical
design of distributed applications through reusable compo-
nents. IEEE Parallel Distrib. Technol, 3, 1995.

[6] J. Browne, M. Azam, and S. Sobek. Code: A unified ap-
proach to parallel programming. IEEE Software, pages 10–
18, 1989.

[7] J. Browne, S. Hyder, J. Dongarra, K. Moore, and P. Newton.
Visual programming and debugging for parallel computing.
IEEE Parallel Distrib. Technol, 3, 1995.

[8] E. Cantu-Paz. A Survey of Parallel Genetic Algorithms,
1997.

[9] M. Cole. Bringing skeletons out of the closet: A pragmatic
manifesto for skeletal parallel programming. Parallel Com-
puting, 30(3):389–406, 2004.

[10] J. Deutsch. Evolutionary algorithms for finding optimal gene
sets in microarray prediction. Bioinformatics, 19(1):45–52,
2003.

[11] K. Dill, S. Bromberg, K. Yue, K. Fiebig, D. Yee, P. Thomas,
and H. Chan. Principles of protein folding: A perspec-
tive from simple exact models. Protein Science, 4:561–602,
1995.

[12] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biologi-
cal Sequence Analysis–Probabilistic Models of Protein and
Nucleic Acids. Cambridge University Press, 1998.

[13] Z. Galil and K. Park. Dynamic programming with convex-
ity, concavity and sparsity. Theoretical Computer Science,
92:49–76, 1992.

[14] M. Gelfand, A. Mironov, and P. A. Pevzner. Gene recogni-
tion via spliced sequence alignment. Proc. Natl. Acad. Sci,
93:9061–9066, 1996.

[15] J. Gerlach. Generic programming of parallel application with
janus. Parallel Processing Letters, 12(2):175–190, 2002.

[16] X. Huang and K. M. Chao. A generalized global alignment
algorithm. Bioinformatics, 19(2):228–233, 2003.

[17] N. Karonis, B. Toonen, and I. Foster. Mpich-g2: A grid-
enabled implementation of the message passing interface.
Journal of Parallel and Distributed Computing, 63(5), 2003.

[18] H. Kuchen. A skeleton library. In EURO-PAR’2002, LNCS
2400, 2002.

[19] V. Kumar, A. Grama, A. Gupa, and G. Karypis. Introduc-
tion to Parallel Computing. The Benjamin-Cummings Pub-
lishing Company Inc, 1994.

[20] D. Mount. Bioinformatics-Sequence and Genome Analysis.
Cold Spring Harbor Laboratory Press, 2001.

[21] C. Notredame and D. Higgins. Saga: Sequence alignment by
genetic algorithm. Nucleic Acid Research, 24:1515–1524,
1996.

[22] J. Pedersen and J. Moult. Genetic algorithms for protein
structure prediction. Curr Opin Struct Biol, 6(2):227–231,
1996.

[23] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons. The en-
terprise model for developing distributed applications. IEEE
Parallel Distrib. Technol, 1:85–96, 1993.

[24] R. Shonkwiler. Parallel genetic algorithms. In 5th Interna-
tional Conference on Genetic Algorithms, 1992.

[25] A. Singh, J. Schaeffer, and M. Green. A template-based tool
for building applications in a multi-computer network envi-
ronment. Parallel Computing, pages 461–466, 1989.

[26] S. Siu and A. Singh. Design patterns for parallel comput-
ing using a network of processors. In 6th IEEE Interna-
tional Symposium on High Performance Distributed Com-
puting, pages 293–304, 1997.

[27] T. Smith and M. Waterman. Identification of common sub-
sequences. Journal of Molecular Biology, pages 195–197,
1981.

[28] R. Unger and J. Moult. Genetic algorithms for protein fold-
ing simulations. Journal of Molecular Biology, 1993.

[29] D. Vandevoorde and N. Josuttis. C++ Template: The Com-
plete Guide. Addison Wesley, 2002.

[30] B. Wilkinson and M. Allen. Parallel Programming-
Techniques and Applications Using Networked Workstations
and Parallel Computers. Pearson Education, Inc, 1999.

[31] L. Xue and J. Bajorath. Molecular descriptors for effec-
tive classification of biologically active compounds based on
principal component analysis identified by a genetic algo-
rithm. Journal of Chemical Information and Computer Sci-
ences, 40(3):801–809, 2000.

[32] M. Zuker and P. Stiegler. Optimal computer folding of large
rna sequences using thermodynamics and auxiliary informa-
tion. Nucleic Acids Research, 9, 1981.

