
Parallel Protein Folding with STAPL∗

Shawna Thomas Nancy M. Amato
Dept. of Computer Science

Texas A&M University
{sthomas, amato}@cs.tamu.edu

Abstract

The protein folding problem is to study how a protein
dynamically folds to its so-called native state – an ener-
getically stable, three-dimensional configuration. Under-
standing this process is of great practical importance since
some devastating diseases such as Alzheimer’s and bovine
spongiform encephalopathy (Mad Cow) are associated with
the misfolding of proteins. In our group, we have developed
a new computational technique for studying protein fold-
ing that is based on probabilistic roadmap methods for mo-
tion planning. Our technique yields an approximate map of
a protein’s potential energy landscape that contains thou-
sands of feasible folding pathways. We have validated our
method against known experimental results. Other simu-
lation techniques, such as molecular dynamics or Monte
Carlo methods, require many orders of magnitude more
time to produce a single, partial, trajectory.

In this paper we report on our experiences parallelizing
our method using STAPL (the Standard Template Adaptive
Parallel Library), that is being developed in the Parasol Lab
at Texas A&M. An efficient parallel version will enable us to
study larger proteins with increased accuracy. We demon-
strate how STAPL enables portable efficiency across mul-
tiple platforms without user code modification. We show
performance gains on two systems: a dedicated Linux clus-
ter and an extremely heterogeneous multiuser Linux cluster.

1 Introduction

Protein folding research is typically focused on two main
problems: protein structure prediction and the study of
the protein folding process. Determining a protein’s na-
tive 3D structure is important because the protein’s func-

∗This research supported in part by NSF Grants ACI-9872126, EIA-
9975018, EIA-0103742, EIA-9805823, ACR-0081510, ACR-0113971,
CCR-0113974, EIA-9810937, EIA-0079874, by the DOE ASCI ASAP
program, and by the Texas Higher Education Coordinating Board grant
ATP-000512-0261-2001. Thomas supported in part by an NSF Graduate
Research Fellowship.

tion is related to it. Knowledge of the folding process is of
great practical importance since some devastating diseases
such as Alzheimer’s and bovine spongiform encephalopa-
thy (Mad Cow) are associated with misfolded proteins [23].
In this work, we assume the native structure is known and
concentrate on studying the protein folding mechanisms.
We study issues related to the folding process such as sec-
ondary and tertiary structure formation and its dependence
on the initial denatured configuration.

In previous work [4, 3, 34], we developed a new compu-
tational technique for studying protein folding. It is based
on a class of motion planning techniques, called probabilis-
tic roadmap methods (PRMs) [21], that have proven effec-
tive on a wide range of applications from robotics, to com-
puter animation, to molecules. Our technique yields an
approximate map of a protein’s potential and free energy
landscapes that contains thousands of feasible folding path-
ways and enables the study of global properties of the fold-
ing landscape. We obtained promising results for several
small proteins (60–100 amino acids) [4] and validated our
pathways by comparing secondary structure formation or-
der with known experimental results [28]. In one case study,
we demonstrated that our technique is sensitive enough to
identify subtle differences in folding behaviors for struc-
turally similar Proteins G and L [34].

Our technique, although significantly more computation-
ally efficient than previous methods, still requires large
amounts of computational resources. For example, it takes
several hours on a desktop PC to compute a map approx-
imating the potential landscape of a small protein when
using a coarse approximation for the energy calculations.
With a more accurate and detailed energy calculation, the
running time increases to two weeks. It is imperative that
we find a faster technique if we are to study larger proteins
with higher accuracy. Fortunately, PRMs are “embarrass-
ingly parallel” [2]. In particular, as we will see, the running
time of our technique is dominated by energy calculations,
and most are independent of each other.

In this paper, we describe how we used the Standard
Template Adaptive Parallel Library (STAPL) [33, 5] to par-



Table 1. A comparison of protein folding models.
Comparison of Models for Protein Folding

Approach Folding Landscape # Paths Produced Path Quality Compute Time Native Required

Molecular Dynamics No 1 Good Long No
Monte Carlo No 1 Good Long No

Statistical Model Yes 0 N/A Fast Yes
PRM-Based Yes Many Approx Fast Yes
Lattice Model Not used on real proteins

allelize our existing PRM-based protein folding code. We
chose STAPL for the following reasons: (i) STAPL allows for
an easy transition from sequential code to parallel code by
extending the ANSI C++ Standard Template Library (STL)
[32] and (ii) STAPL provides portable efficiency to different
systems, both shared memory and distributed memory mod-
els, without requiring user code modification. We present
experimental results showing good speedups on two sys-
tems: a homogeneous dedicated Linux cluster and a hetero-
geneous non-dedicated Linux cluster. We also demonstrate
how STAPL enables one to run the same parallel application
on several different platforms without modifying user code.

2 Related Work

Protein folding. Several computational approaches have
been applied to the protein folding problem, see Table 1.
These include lattice models [12], energy minimization
[27, 37], molecular dynamics [26, 19, 16, 17], Monte Carlo
methods [15, 22], and genetic algorithms [11, 36]. Molec-
ular dynamics and Monte Carlo methods provide a single,
high quality folding pathway, but each run is computation-
ally intensive. Statistical mechanical models [31, 1, 8],
while computationally efficient, are limited to studying
global averages of folding kinetics and are unable to pro-
duce folding pathways. Our PRM-based work provides an
alternative approach that computes a map approximating
the energy landscape which contains thousands of approxi-
mate folding pathways for the given protein.

Apaydin et al. [7, 6] have also used PRM-based tech-
niques to study protein folding, however their work differs
from ours in several aspects. First, they model the protein
at a much coarser level considering each secondary struc-
ture to be rigid. Second, while our focus is on studying the
folding process, their focus has been to compare the PRM

approach with methods such as Monte Carlo simulation.
Probabilistic Roadmap Method. Given a description

of the environment and a movable object, the motion plan-
ning problem is to find a valid path for the movable object
from a start configuration to a goal configuration. The prob-
abilistic roadmap method (PRM) [21] has been shown to be
highly successful in solving the motion planning problem

for objects with many degrees of freedom (dof).
PRMs work by first sampling random points in the mov-

able object’s configuration space (C-space), which is the set
of all possible positions and orientations of the movable ob-
ject, valid or not [29]. Only those samples that meet cer-
tain feasibility requirements (e.g., collision free or potential
energy less than some threshold) are kept. The samples are
connected to form a graph (or roadmap) by using some sim-
ple local planner (e.g., a straight line in C-space) to connect
nearby points. This roadmap can then be used to answer
different queries or start and goal pairs. To answer a query,
the start and goal are connected to the roadmap. Then a path
from the start to the goal is extracted from the roadmap if it
exists. A major strength of PRMs is that they are simple to
apply, even for high dof problems, only requiring the abil-
ity to randomly sample points in C-space and test them for
feasibility.

Parallel techniques. Parallel protein folding techniques
have been restricted to molecular dynamics simulations. Pe-
ter Kollman pioneered work in this area with AMBER [39].
NAMD [20] is a parallel molecular dynamics code designed
for high-end parallel machines. It has been shown to scale
to hundreds of processors on massively parallel machines
and to tens of processors on PC clusters. Folding@Home
[24] uses a distributed computing technique to run molecu-
lar dynamics simulations. It overcomes the huge computa-
tion barrier of molecular dynamics simulations by making
use of over 40,000 machines. Still, only relatively small
motions have been simulated with this method.

There has been some work on parallel motion planning.
Lozano-Perez and O’Donnell [30] developed a parallel al-
gorithm for computing a discretized C-space for the first 3
links of a 6 dof articulated linkage. Challou et al. [14, 13]
parallelize the Randomized Path Planner [9], a randomized
potential field method. Finally, [2] shows that PRMs are
“embarrassingly parallel” and gives impressive speedups.

3 Protein Folding using PRMs

In previous work, we successfully applied the PRM

framework to study protein folding pathways [4, 3, 34]. The
protein is modeled as an articulated linkage. Using a stan-



0 10 20 30 40 50

50

40

30

20

10

0

x
x

x
x
x

x
x
x

x
x
x
x

x
x
x

x
x
x
x

x
x
x

x
x
x

x
x x

x

x

x
x

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x
x

x
x

x

x

x
x
x

x
x

x
x
x

x
x
x

x
x
x

x
x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x

x
x
x
x

x
x
x

3

70

78

21

81

1

27

87

89

1

93

13

92

1

91

16

76

67

95

79

89

94

91

94

93

91

94

102

104

97

101

102

97

101

101

104

103

102

104

101

79

96

81

76

86

97

93

100

96

97

100

102

101

103

102

105

104

102

103

105

104

103

102

104

103

104

103

104

71

103

82

79

89

94

91

1

33

56

99

79

96

81

76

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
��

(I: α)

(II: β1β2)

(III: β3β4)

(IV: β1β4)

�
�

�
�

�
��

�
�

�
�

�
��

(V: βturn1)

�
�

�
�

�
��

�
�

�
�

�
��

(VI: βturn2)
�

�
�

�
��

�
�

�
�

��

(I)

(II)

(III)

(IV)

�
�

��

�
�

��

(V)

�
�

��

�
�

��

(VI)

Figure 1. Timed Contact Map for Protein G. The full contact matrix (right) and blow-ups (left) showing the time steps when
contacts appear on a path. The blow-ups: I: α helix, II: β1β2, III: β3β4, IV: β1β4, V: turn 1 (β1β2), and VI: turn 2 (β3β4).

dard modeling assumption for proteins that bond angles and
bond lengths are fixed [35], the only dof in our model are
the backbone’s phi and psi torsional angles. These are mod-
eled as revolute joints taking values [2, π).

PRMs can be applied to proteins by simply replacing the
traditional collision-free requirement with a potential en-
ergy calculation. A sample q is accepted with the following
probability where E(q) is the potential energy:

P (accept q) =

⎧⎨
⎩

1 if E(q) < Emin
Emax−E(q)
Emax−Emin

if Emin ≤ E(q) ≤ Emax

0 if E(q) > Emax

Due to the high dimensionality of the protein’s C-space,
uniform sampling would take too long to provide suffi-
ciently dense coverage of the region surrounding the native
state. Instead, we bias our sampling around the native state
by iteratively applying small perturbations to existing con-
figurations. Node connection is done in the same way as
traditional PRMs except that each connection is assigned a
weight to reflect its energetic feasibility. This allows us to
easily search for low energy paths in the roadmap.

We obtained promising results for several small proteins
(∼60 amino acids) and validated our pathways by compar-
ing the secondary structure formation order with known ex-
perimental results [28] using timed contact analysis. We
also demonstrated that this technique is sensitive enough to
identify the different folding behaviors of structurally simi-
lar Proteins G and L [34].

Roadmap analysis. Timed contact analysis gives us a
formal method of validation and allows for detailed analy-
sis of the folding pathways. We first identify the native con-
tacts by finding all pairs of Cα atoms in the native state that
are at most 7Å apart. If desired, attention can be restricted
to hydrophobic contacts between hydrophobic residues. To
analyze a pathway, we examine each conformation on the
path and determine the time step at which each native con-
tact appears. Although these time steps cannot be associated
with any real time, they give a temporal ordering and pro-
duce a timed contact map for the pathway. Figure 1 shows
a timed contact map for Protein G.

The timed contact map provides a formal basis for deter-
mining secondary structure formation order along a single
pathway. Here, structure formation order is based on the
formation order of the native contacts [18]. We have looked
at several metrics to determine when a secondary structure
appears: average appearance time of native contacts within
the structure, average appearance of the first x% of the con-
tacts, average appearance ignoring outliers, etc. We can also
focus our analysis on smaller pieces of secondary structure
such as β-turns (instead of the entire β-sheet). This is espe-
cially helpful when looking for fine details in a pathway.

We can also use the roadmap to study more general prop-
erties of the protein’s folding behavior. For example, if the
roadmap maps the potential energy landscape well, then the
percentage of pathways in the roadmap that contain a par-
ticular formation order should reflect the probability of that



Table 2. Comparison of analysis techniques for proteins G and L using roadmaps computed with energy thresholds Emin = 50, 000
kJ/mol and Emax = 70, 000 kJ/mol. For each combination of contact type (all or hydrophobic) and number of contacts (first x% to
form), we show the percentage of pathways with a particular secondary structure formation order. Recall that β-hairpin 2 (β3-β4)
forms first in protein G and β-hairpin 1 (β1-β2) forms first in protein L.

Name Contacts SS Formation Order 20% 40% 60% 80% 100%

Protein all α, β3-β4, β1-β2, β1-β4 76 66 77 55 58
G α, β1-β2, β3-β4, β1-β4 23 34 23 45 42

α, β3-β4, β1-β2, β1-β4 85 78 77 62 67
hydrophobic α, β3-β4, β1-β4, β1-β2 11 11 9 8 8

α, β1-β2, β3-β4, β1-β4 4 10 14 29 24
Protein α, β1-β2, β3-β4, β1-β4 67 76 78 78 92

L all α, β1-β2, β1-β4, β3-β4 15 4 4 4 4
α, β3-β4, β1-β2, β1-β4 19 20 18 18 4
α, β1-β2, β3-β4, β1-β4 54 65 74 73 86

hydrophobic α, β1-β2, β1-β4, β3-β4 9 3 3 2 2
α, β3-β4, β1-β2, β1-β4 36 32 23 26 13

order occurring. Table 2 shows secondary structure forma-
tion order results for Proteins G and L [34]. Our results
were able to identify the different folding behaviors of the
two structurally similar proteins.

Potential energy calculations. We have tested two po-
tential energy calculations with our technique.

The first is a coarse potential similar to [26]. We use a
step function approximation of the van der Waals potential
component and model side chains as spheres with zero dof.
If any two side chain spheres are too close (i.e., less than
2.4Å during node generation and 1.0Å during node con-
nection), a very high potential is returned. Otherwise, the
potential is:

Utot =
∑

restraints

Kd{[(di−d0)2+d2
c ]

1/2−dc}+Ehp (1)

The first term represents constraints favoring known sec-
ondary structure through main-chain hydrogen bonds and
disulphide bonds. The second term is the hydrophobic ef-
fect. It takes 8–10 hours to build a reasonable roadmap con-
taining thousands of folding pathways for a small protein
with this potential.

The second potential is the Effective Energy Function 1
all-atoms potential [25]. The running time increases to 2
weeks with this much finer potential. Thus, it is impera-
tive that we have a parallel solution to make experiments on
larger proteins with increased accuracy feasible.

4 STAPL

STAPL (the Standard Template Adaptive Parallel Li-
brary) is a framework for parallel C++ code [5, 33]. Its
core is a library of ISO Standard C++ components with
interfaces similar to the (sequential) ISO C++ standard li-
brary [32]. STAPL offers the parallel system programmer a

shared object view of the data space. The objects are dis-
tributed across the memory hierarchy which can be shared
and/or distributed address spaces. Internal STAPL mecha-
nisms assure an automatic translation from one space to an-
other, presenting to the less experienced user a flat, uniform
memory access-like, unified data space. For more experi-
enced users the local/remote distinction of accesses can be
exposed and performance enhanced. STAPL supports the
SPMD model of parallelism with essentially the same con-
sistency model as OpenMP. To exploit large systems like
the DOE machines and IBM’s BlueGene/L, STAPL allows
for (recursive) nested parallelism (as in NESL [10]). Be-
cause performance of parallel algorithms is sensitive to sys-
tem architecture to application data, and to run-time condi-
tions, STAPL is designed to continually adapt to the system
and the data at all levels — from selecting the most appro-
priate algorithmic implementation to balancing communi-
cation granularity with latency, etc.

The STAPL infrastructure consists of platform indepen-
dent and platform dependent components. These are re-
vealed to the programmer at an appropriate level of de-
tail through a hierarchy of abstract interfaces. The plat-
form independent components include the core parallel li-
brary, a view of a generic parallel/distributed machine,
and an abstract interface to the communication library and
run-time system. The core library consists of parallel al-
gorithms (pAlgorithms) and distributed data structures
(pContainers). A pContainer is the parallel equiva-
lent of an STL container. Its data is distributed but offers a
shared object view. The pContainer distribution can be
user specified or computed automatically. A pAlgorithm
is the parallel equivalent of an STL algorithm. STAPL binds
pAlgorithms to pContainers with a pRange class
which supports random access to distributed pContainer
data. Communication and synchronization use the remote



method invocation (RMI) communication abstraction that
assures mutual exclusion at the destination but hides the
lower level implementation (e.g., MPI, OpenMP).

The STAPL run-time system (RTS) is a collection of plat-
form specific components that needs to be adapted when-
ever STAPL is ported to a new system. Here remote refer-
ences to shared objects are detected and the generic RMI is
translated to MPI, OpenMP, pthreads, or native communi-
cation primitives. The memory management is also tailored
to the specifics of the hardware, e.g., processor aware allo-
cation, mapping of virtual processor to physical processor,
etc., and other low-level optimizations are performed here.

Two pContainers provided by STAPL are pVector
[5] and pArray [38]. They have the same interface
as their sequential counterparts — pVector is a paral-
lel/distributed version of the STL vector, and pArray is a
parallel/distributed version of the valarray. pVector and
pArray provide (semi-) random access to a sequence of
elements in shared or distributed memory. pArray has
a fixed number of elements, but pVector may grow or
shrink during execution. Both support data redistribution.

5 Parallel Protein Folding

The sequential PRM-based protein folding algorithm is
given by Algorithm 5.1. The dominating operation is the
potential energy calculation. This is performed once for
each of the n roadmap nodes. In addition, for each node
q and its k nearest neighbors q′, all the edges (q, q′) must
be checked. To check the edge (q, q′), the potential energy
calculation is called a number of times that is proportional
to the C-space distance between q and q′. Assuming that q
and q′ are an average distance d apart, roadmap construc-
tion requires O(nkd) potential energy calculations, most of
which are independent.

Algorithm 5.1 Sequential PRM-based protein folding algorithm.

Input: The protein’s native state qnative.
Output: A roadmap R of the protein’s potential energy

landscape.
1: Generate n nodes biased toward qnative.
2: for each q ∈ R do
3: Let Nk(q) be the k closest neighbors of q.
4: for each q′ ∈ Nk(q) do
5: if the local planner can find a path between q and

q′ then
6: Add the edge (q, q′) to R.
7: end if
8: end for
9: end for

10: return R.

This observation leads to a straightforward parallel ver-

sion replacing the sequential for loop in line 2 of Algo-
rithm 5.1 with a parallel for loop. This is similar to the
parallel PRM algorithm in [2]. Nodes are divided among the
processors. Each processor checks the candidate edges for
its nodes in parallel. This requires little communication.

Although it is possible to further parallelize the algo-
rithm by generating roadmap nodes in parallel, we refrain
in this initial study for two reasons: (i) 99% of the com-
putation time is spent during node connection, very little is
spent generating nodes and (ii) our biased sampling method
would require more processor communication as each gen-
erated node is not independent of the others. We find that
we get significant speedups without parallelizing the node
generation phase, but we do plan to parallelize it in the fu-
ture.

We use STAPL to manage communication between pro-
cessors during node connection. We study two implemen-
tations: one with pVector and one with pArray. During
node connection, each processor pi (for 0 ≤ i < p) adds
k(n/p) candidate edges to the pContainer indexed be-
ginning at i × k(n/p). The pContainer is distributed
so elements accessed by pi are local to pi. Each pro-
cessor then checks its candidate edges and records the re-
sults in the pContainer. Finally, the valid edges in
the pContainer are sequentially added to the roadmap.
STAPL masks all the communication from the user.

6 Experimental Results and Discussion

In this section, we study the performance gains of the
parallel protein folding code using STAPL over the sequen-
tial code. We compare results on three small proteins with
differing structures previously studied in [4] (see Table 3).

Name PDB ID Description Size Structure

A 1BDD Protein A, B domain 60 3α

G 1GB1 Protein G, B1 domain 56 1α + 4β

CTXIII 2CRT Cardiotoxin III 60 5β

Table 3. Characteristics of the three proteins studied.

6.1 Experimental Setup

We study the performance on two systems: a dedicated
Linux cluster (Linux Cluster A) and a non-dedicated ex-
tremely heterogeneous Linux cluster (Linux Cluster B).
Linux Cluster A consists of 4 boards. Each board has 2
processors and 2GBs RAM. Two boards have 1GHz pro-
cessors with 256KB caches, and two boards have 1.1GHz
processors with 512 KB caches. They are connected with a



Gbit dedicated Ethernet switch. Linux Cluster B has 10 sys-
tems; the individual system specs are given in Table 4. The
systems and the interconnects are not dedicated. Because
there is a large discrepancy between some of the systems
(e.g., systems 9 and 10 as compared with the others), we
attempt to load balance by executing multiple processes on
the other systems when running 12 and 16-way jobs. The
code was compiled without any optimizations. Results use
the coarser potential. Using the all-atoms potential yields
better performance gains.

System Processor Speed Cache Size Memory
ID (GHz) (KB) (MBs)

1–4 2.8 512 512
5 2.8 512 1024
6 2.4 512 640

7–8 1.8 256 512
9–10 0.5 512 512

Table 4. Individual system specs for Linux Cluster B.

6.2 Results

Performance on Linux Cluster A. Here we study the
performance gains on a dedicated Linux Cluster up to 8
processors. Figure 2 gives speedups over the sequential ver-
sion for pVector; the results for pArray are similar. The
parallel code scales well and greatly reduces the total run-
ning time. Performance gains are similar for all proteins
studied indicating that performance is not dependent on the
protein’s structure.

Figure 3 displays the speedups for the connection phase.
Performance is only marginally better confirming our state-
ment that most of the running time is spent in the connection
phase and little is spent during node generation.

Performance on Linux Cluster B. Here we look at the
performance gains on a non-dedicated Linux Cluster. No
user code modification was required. Figure 4 gives the
speedups for pVector; the results for pArray are similar.
The code scales well up to 8 processors, then performance
tapers off. This is caused by two factors. First, each addi-
tional system is slower than previous systems. Performance
degrades because each system is given the same amount
of work. A more sophisticated load-balancing algorithm
would help alleviate this. Second, the system network is
shared by the entire department. This increases communi-
cation cost. This decreases performance stability between
Cluster B and Cluster A.

Figure 5 shows speedups for the connection phase. They
are similar to those for the entire program execution.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Speedup on Linux Cluster A using pVector

Number of Processors

S
pe

ed
up

Protein A
Protein G
Protein CTXIII

Figure 2. Speedup on Linux Cluster A using pVector.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Number of Processors

S
pe

ed
up

Conn. Phase Speedup on Linux Cluster A using pVector

Protein A
Protein G
Protein CTXIII

Figure 3. Speedup of the connection phase only on Linux
Cluster A using pVector

7 Conclusion

We presented a parallel protein folding algorithm that
can compute maps of a protein’s energy landscape con-
taining thousands of folding pathways in a relatively short
amount of time. With STAPL, we were able to easily par-
allelize our sequential code to obtain scalable speedups.
STAPL also enabled portability across multiple platforms
with no user code modification. We expect that our paral-
lel protein folding technique will enable the study of larger,
more complex proteins with a higher degree of accuracy.

In the future, we plan to study the performance gains
using pGraph to store the roadmap. pGraph, a STAPL

pContainer currently under development, is a dis-
tributed graph data structure. It allows parallel insertion of
nodes and edges and will enable a more straightforward par-



2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4
Speedup on Linux Cluster B using pVector

Number of Processors

S
pe

ed
up

Protein A
Protein G
Protein CTXIII

Figure 4. Speedup on Linux Cluster B using pVector.

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Conn. Phase Speedup on Linux Cluster B using pVector

Number of Processors

S
pe

ed
up

Protein A
Protein G
Protein CTXIII

Figure 5. Speedup of the connection phase only on Linux
Cluster B using pVector.

allelization of the code.
pGraph will also reduce some extra overhead incurred

by the current parallel implementation. In the sequential
code, an edge is only validated if it not already in the
roadmap. Thus, valid edges are not checked more than
once. There is a nontrivial subset of repeated edges using
the k-closest connection strategy that are checked multiple
times in the current parallel implementation. pGraph will
eliminate this problem. This will eliminate most validation
redundancy.

References

[1] E. Alm and D. Baker. Prediction of protein-folding mecha-
nisms from free-energy landscapes derived from native struc-
tures. Proc. Natl. Acad. Sci. USA, 96(20):11305–11310,
1999.

[2] N. M. Amato and L. K. Dale. Probabilistic roadmap methods
are embarrassingly parallel. In Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), pages 688–694, 1999.

[3] N. M. Amato, K. A. Dill, and G. Song. Using motion plan-
ning to map protein folding landscapes and analyze folding
kinetics of known native structures. J. Comput. Biol., 2003.
To appear. Special issue of Int. Conf. Comput. Molecular Bi-
ology (RECOMB) 2002.

[4] N. M. Amato and G. Song. Using motion planning to study
protein folding pathways. J. Comput. Biol., 9(2):149–168,
2002. Special issue of Int. Conf. Comput. Molecular Biology
(RECOMB) 2001.

[5] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase,
N. Thomas, N. Amato, and L. Rauchwerger. STAPL: An
adaptive, generic parallel programming library for C++. In
Proc. of the 14th International Workshop on Languages
and Compilers for Parallel Computing (LCPC), Cumberland
Falls, Kentucky, Aug 2001.

[6] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, and J.-C.
Latombe. Stochastic roadmap simulation: An efficient rep-
resentation and algorithm for analyzing molecular motion.
In Proc. Int. Conf. Comput. Molecular Biology (RECOMB),
pages 12–21, 2002.

[7] M. Apaydin, A. Singh, D. Brutlag, and J.-C. Latombe. Cap-
turing molecular energy landscapes with probabilistic con-
formational roadmaps. In Proc. IEEE Int. Conf. Robot. Au-
tom. (ICRA), pages 932–939, 2001.

[8] D. Baker. A surprising simplicity to protein folding. Nature,
405:39–42, 2000.

[9] J. Barraquand and J.-C. Latombe. Robot motion planning:
A distributed representation approach. Int. J. Robot. Res.,
10(6):628–649, 1991.

[10] G. Blelloch. NESL: A Nested Data-Parallel Language. Tech-
nical Report CMU-CS-93-129, Carnegie Mellon University,
April 1993.

[11] J. Bowie and D. Eisenberg. An evolutionary approach to
folding small α-helical proteins that uses sequence informa-
tion and an empirical guiding fitness function. Proc. Natl.
Acad. Sci. USA, 91(10):4436–4440, 1994.

[12] J. Bryngelson, J. Onuchic, N. Socci, and P. Wolynes. Fun-
nels, pathways, and the energy landscape of protein folding:
A synthesis. Protein Struct. Funct. Genet, 21:167–195, 1995.

[13] D. Challou, D. Boley, M. Gini, and V. Kumar. A parallel
formulation of informed randomized search for robot motion
planning problems. In Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), pages 709–714, 1995.

[14] D. J. Challou, M. Gini, and V. Kumar. Parallel search algo-
rithms for robot motion planning. In Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), volume 2, pages 46–51, 1993.

[15] D. Covell. Folding protein α-carbon chains into compact
forms by Monte Carlo methods. Proteins: Struct. Funct.
Genet., 14(4):409–420, 1992.

[16] V. Daggett and M. Levitt. Realistic simulation of naive-
protein dynamics in solution and beyond. Annu. Rev. Bio-
phys. Biomol. Struct., 22:353–380, 1993.

[17] Y. Duan and P. Kollman. Pathways to a protein folding inter-
mediate observed in a 1-microsecond simulation in aqueous
solution. Science, 282:740–744, 1998.

[18] K. M. Fiebig and K. A. Dill. Protein core assembly pro-
cesses. J. Chem. Phys, 98(4):3475–3487, 1993.

[19] J. Haile. Molecular Dynamics Simulation: elementary meth-
ods. Wiley, New York, 1992.



[20] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy,
N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and
K. Schulten. Namd2: Greater scalability for parallel molec-
ular dynamics. J. Comp. Phys., 151:283–312, 1999.

[21] L. Kavraki, P. Svestka, J. C. Latombe, and M. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Trans. Robot. Au-
tomat., 12(4):566–580, August 1996.

[22] A. Kolinski and J. Skolnick. Monte Carlo simulations of
protein folding. Proteins Struct. Funct. Genet., 18(3):338–
352, 1994.

[23] P. Lansbury. Evolution of amyloid: What normal protein
folding may tell us about fibrillogenesis and disease. Proc.
Natl. Acad. Sci. USA, 96(7):3342–3344, 1999.

[24] S. Larson, C. Snow, M. Shirts, and V. Pande. Foldinghome
and genomehome: Using distributed computing to tackle
previously intractable problems in computational biology.
Computational Genomics, 2003. To appear.

[25] T. Lazaridis and M. Karplus. Effective energy function
for proteins in solution. Proteins, 35:133–152, 1999.
http://mingus.sci.ccny.cuny.edu/server/.

[26] M. Levitt. Protein folding by restrained energy minimization
and molecular dynamics. J. Mol. Biol., 170:723–764, 1983.

[27] M. Levitt and A. Warshel. Computer simulation of protein
folding. Nature, 253:694–698, 1975.

[28] R. Li and C. Woodward. The hydrogen exchange core and
protein folding. Protein Sci., 8(8):1571–1591, 1999.

[29] T. Lozano-Pérez. Spatial planning: A configuration space
approach. IEEE Trans. Comput., C-32:108–120, 1983.

[30] T. Lozano-Pérez and P. O’Donnell. Parallel robot motion
planning. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
pages 1000–1007, 1991.

[31] V. Muñoz, E. R. Henry, J. Hoferichter, and W. A. Eaton. A
statistical mechanical model for β-hairpin kinetics. Proc.
Natl. Acad. Sci. USA, 95:5872–5879, 1998.

[32] D. Musser, G. Derge, and A. Saini. STL Tutorial and Refer-
ence Guide, Second Edition. Addison-Wesley, 2001.

[33] L. Rauchwerger, F. Arzu, and K. Ouchi. Standard Templates
Adaptive Parallel Library. In Proc. of the 4th International
Workshop on Languages, Compilers and Run-Time Systems
for Scalable Computers (LCR), Pittsburgh, PA, May 1998.

[34] G. Song, S. Thomas, K. Dill, J. Scholtz, and N. Amato.
A path planning-based study of protein folding with a case
study of hairpin formation in protein G and L. In Proc.
Pacific Symposium of Biocomputing (PSB), pages 240–251,
2003.

[35] M. J. Sternberg. Protein Structure Prediction. OIRL Press at
Oxford University Press, 1996.

[36] S. Sun. Reduced representation model of protein structure
prediction: statistical potential and genetic algorithms. Pro-
tein Sci., 2(5):762–785, 1993.

[37] S. Sun, P. D. Thomas, and K. A. Dill. A simple protein fold-
ing algorithm using a binary code and secondary structure
constraints. Protein Eng., 8(8):769–778, 1995.

[38] O. Tkachyshyn, P. An, G. Tanase, and N. M. Amato. parray
as an efficient static parallel container in stapl. Technical
Report 02-003, PARASOL Lab, Dept. of Computer Science,
Texas A&M University, Aug 2003.

[39] P. Weiner and P. Kollman. Amber: Assisted model build-
ing with energy renement, a general program for modeling
molecules and their interactions. J. Comp. Chem., 2:287–
303, 1981.


