
Improving Performance of Multiple Sequence Alignment Analysis in Multi-client
Environments

Umit Catalyureky, Eric Stahlberg+, Renato Ferreiray, Tahsin Kurcy, Joel Saltzy

y Dept. of Biomedical Informatics
The Ohio State University

Columbus, OH, 43210
fcatalyurek.1,ferreira.18,kurc.1,saltz.1g@osu.edu

+Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH, 43210
eas@osc.edu

Abstract

This paper is concerned with the efficient execution of
multiple sequence alignment methods in a multipleclient en-
vironment. Multiple sequence alignment (MSA) is a com-
putationally expensive method, which is commonly used in
computational and molecular biology. Large databases of
protein and gene sequences are available to the scientific
community. Oftentimes, these databases are accessed by
multiple users to execute MSA queries. The data server has
to handle multiple concurrent queries in such situations. We
look at the effect of data caching on the performance of the
data server. We describe an approach for caching interme-
diate results for reuse in subsequent or concurrent queries.
We focus on progressive alignment-based strategies, in par-
ticular the CLUSTAL W algorithm. Our results for 350 sets
of sequences show an average speedup of up to 2.5 is ob-
tained by caching intermediate results. Our results also
show that the cache-enabled CLUSTAL W program scales
well on a SMP machine.

1 Introduction

An important goal of research in computational and
molecular biology is to reach a better understanding of bi-
ological systems at the gene level. A more accurate knowl-
edge of biological systems at this level carries a great po-
tential for gaining insight into the causes and progression of
many diseases such as cancer. A first step in the study of
molecular biology is to analyze gene and protein sequences.
When a new sequence is discovered, it is important to search
sequence databases to find homologous sequences [1], and
analyze structural and functional similarities and differences
among multiple sequences [9, 11, 16].

A large number of research institutions, laboratories
and biomedical companies are continually contributing se-

quence data to the rapidly growing databases of gene se-
quences. Many of these databases are publicly available for
research and development, and provide a rich source of in-
formation for molecular studies. Examples of large gene
databases include GenBank and PDB. For example, as of
October 2001, GenBank of The National Center for Biotech-
nologyInformation (NCBI)contained about 13.5 millionse-
quences with about 14 billion bases. Moreover, the size of
the data has tripled in the last two years1. Thanks to faster
networks, scientists can have online access to such databases
from their desktop PCs or laptops. As a result, data servers
for sequence databases should be designed to handle large
number of queries submitted by many clients.

Multiple sequence alignment (MSA) analysis is a power-
ful means for analyzing structural and functional similarities
and differences, and for finding historical and evolutionary
relationships. MSA involves computing the alignment of
three or more sequences and is a computationally expensive
method. A large number of methods have been developed
for fast and accurate multiple sequence alignments. Sev-
eral research projects have focused on the development of
heuristics [9, 11, 13, 16, 17], and the parallel implementa-
tions of MSA algorithms [12, 18].

Our work is concerned with the efficient execution of
MSA methods in a multi-client environment. Client queries
submitted against a database of sequences for MSA analy-
sis usually involve comparison of known sequences (stored
in the database) to one or more new sequences entered by
the client. Moreover, in a multiple client environment, sev-
eral clients may submit to a server requests that may con-
tain overlapping subsets of sequences. In this paper, we
look at the effect of data caching on the performance of the
data server. We describe an approach for caching previously
computed intermediate results. We focus on progressive
alignment-based strategies, in particular the CLUSTAL W

1http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html

1

algorithm.

2 Progressive Alignment Algorithms

Progressive alignment-based strategies are the most
commonly used methods for the solution of multiple
sequence alignment problems, because of their efficient
execution times [7]. The CLUSTAL algorithm proposed by
Higgins [9] and its improved version, CLUSTAL W [17],
are the most widely used methods among several alter-
natives. The basic idea behind progressive alignment
is to generate an initial phylogenetic tree via a series of
pairwise alignments and then, following the order in the
phylogenetic tree, to incrementally build up the multiple se-
quence alignment. A progressive alignment-based method
consists of three main stages: 1) computation of a distance
matrix based on the alignments of all pairs of sequences, 2)
calculation of a guide tree from the distance matrix, and 3)
alignment of multiple sequences according to the branching
in the guide tree.

Pairwise Alignment: The first step is the computation
of a pairwise distance matrix. It is a symmetric, dense
matrix, which contains a floating point value for each pair
of sequences. The value represents the distance score of
a sequence pair. The original CLUSTAL program uses a
fast approximate method to compute the pairwise distance
matrix. The CLUSTAL W program offers, in addition
to the approximate method, a slower but more accurate
solution using dynamic programming. For q sequences, the
first step requires the computation of q(q � 1)=2 pairwise
alignments. As a result, the execution time complexity of
this step is O(q2l2) for q sequences, each of which has an
average length of l.

Computation of the Guide Tree: The second step is the
calculation of a phylogenetic tree to guide the progressive
alignment step. The tree is calculated from the distance ma-
trix using the neighbor-joining method [15]. This iterative
method successively selects the best sequence pair (i.e., the
pair with the minimum distance score) to link until all pairs
have been linked. After a pair has been linked, the distances
of all other sequences to that pair are recomputed, and the
corresponding values in the distance matrix are updated.
The computational complexity of this step is O(q3).

Progressive Alignment: The last step is a constructive step,
in which a series of pairwise alignments are computed using
full dynamic programming to align larger and larger groups
of sequences. The branching order in the guide tree de-
termines the ordering of the sequence alignments. Starting
from the leaves of the tree, the sequences are aligned toward
the root. At each step either two sequences are aligned, or a

new sequence is aligned with an existing alignment, or two
existing alignments are aligned. The computational com-
plexity of this step is O(ql2).

3 Sequence Analysis in a Multiple Client En-
vironment

Many gene and protein databases can be accessed re-
motely over the Internet. In such a setting, a data server
has to process multiple requests submitted by one or more
clients. Queries associated with multiple sequence align-
ment analysis oftentimes involve comparisons of known se-
quences to one another. Even if a user submits a query in-
volving a new sequence, the query generally contains multi-
ple known sequences. If commonalities among queries can
be utilized, better use of system resources can be achieved,
and the overall performance of the data server can be im-
proved.

Multi-query optimization is important in many applica-
tion domains, such as relational databases [6, 14], deduc-
tive databases [5], decision support systems [19], and data
analysis applications [2]. Several optimizations can be ap-
plied to speed up query execution when multi-query work-
loads are presented to the server. Multiple query optimiza-
tion techniques mainly rely on caching common subexpres-
sions. Carefully scheduling queries also plays an impor-
tant role, because the execution of queries can be ordered in
a way to better exploit expressions that have been already
cached. In an earlier work [2, 3], we investigated optimiza-
tions for multiple query workloads in an application for vi-
sualizing digitized microscopy images. Our results show
that significant performance improvements can be achieved
by data caching and carefully scheduling queries.

In this section, we describe an approach for improving
the execution of MSA analysis by caching previously com-
puted results both in memory and on disk.

3.1 Data Caching

As was described in Section 2, a progressive alignment-
based method consists of three main steps. We can view
the output of a step as an intermediate result that is used by
the next step. For example, the first step computes all pair-
wise alignments (and the associated scores) between the se-
quences in a query. The pairwise alignment scores are then
used to produce a distance matrix, which is input to the sec-
ond step that generates a guide tree. The guide tree is used
to generate larger groups of aligned sequences progressively
in the third step. Thus, the set of pairwise alignments, the
distance matrix, the guide tree, and the groups of aligned
sequences can be viewed as intermediate results. We argue
that intermediate results computed by previous queries can
be cached to speed up the execution of a new query.

2

In this work we have chosen to cache pairwise align-
ments computed in the first step so that they can be reused
by other queries. This decision is based on two observa-
tions. First, the computational complexity of this step is the
dominant factor in the total execution time. This theoreti-
cal analysis has been confirmed empirically by our experi-
ments presented in Section 5, and by Mikhailov et. al. [12].
Hence, minimizing the execution time of this step can re-
sult in significant reduction in the overall execution time of
a query. Second, the intermediate results generated in the
last two steps largely depend on the relationships between
the sequences in the query. Two queries should either be the
same or have very similar characteristics so that the guide
tree or the groups of aligned sequences can be reused. Each
pairwise alignment, on the other hand, is computed sepa-
rately and its contribution to the distance matrix is indepen-
dent of other pairwise alignments. Therefore pairwise align-
ments generated by a query have greater potential for reuse
by other queries than do the groups of multiple alignments
and the guide tree.

When a query is received from a client, the cache is
searched to find the sequence pairs that match the sequence
pairs in the query– note that a query may contain new se-
quences as well as a subset of the sequences already in the
database. The pairwise alignment step is performed only for
the sequence pairs that are not in the cache. When a new
pairwise alignment is computed, it is inserted into the cache.
A challenging issue in designing the cache is to optimize
the execution of search and insertion operations so that their
overhead will not offset the performance improvement ob-
tained from using cached results. The cache should be orga-
nized such that I/O overheads are minimized when access-
ing the portions of the cache that are stored on disk.

We propose a cache implementation based on B-Trees.
We assume that each sequence in a database is assigned a
unique identifier (e.g., a 32-bit number). A B-Tree is used
to store pairwise alignments. A record in this B-Tree cor-
responds to a pairwise alignment, and stores the distance
score of the pairwise alignment. The record is indexed by
a key, which is obtained by concatenating the unique identi-
fiers of the two sequences that make up the sequence pair.
The smaller of the two sequence identifiers represents the
upper half of a record key, whereas the larger one constitutes
the lower half. In this way, only one copy of a sequence pair
is needed to be stored in the B-Tree.

For each sequence in a query we should find the corre-
sponding unique identifier, if it is not already provided by
the query. Another B-Tree can be employed for this purpose.
Sequences are used as keys in this B-Tree, and each record
holds the unique identifier of a sequence. If a sequence is
not in the B-Tree, it is assigned a unique identifier and in-
serted into the B-Tree. For example, if we use numbers for
identifiers, we can maintain the current maximum identifier

stored in the tree. A new sequence inserted into the tree is as-
signed the current maximum number plus one as its unique
identifier. An alternative approach would be to use a hash
table to store the unique identifiers for sequences. The hash
table could be accessed using a hash function that computes
an index into the hash table from a given sequence. How-
ever, the efficient implementation of the hash table requires
a good hash function that willminimize collisions, and an ef-
ficient algorithm and data structure to resolve the collisions.

The cache structure described in this section effectively
employs a two-tier B-Tree approach. The first tier B-Tree
stores the unique identifiers of sequences, whereas the sec-
ond tier B-Tree stores pairwise alignments. The size of the
first tier B-Tree is linearly proportional to the number and
length of sequences. However, the size of the second tier B-
Tree grows withO(q2), where q is the number of sequences.
Hence, using a single file for the second tier B-Tree may in-
troduce technical and performance problems. First of all,
some file systems (e.g., Linux ext2) limit the maximum
file size to be less than 2GB. This places an upper bound
on the number of pairwise alignments that can be cached,
regardless of the size of available disk space. Moreover, a
large, single file may incur a performance penalty, because
of high I/O overheads (e.g., disk seeks) to search for a pair-
wise alignment in a large B-Tree. In order to alleviate these
problems, the set of sequences can be partitioned into bins
based on the unique identifiers of the sequences. The as-
signment of sequences to bins can be done in round-robin
fashion or in blocks (i.e., a range of identifiers are assigned
to the same bin). Each bin corresponds to a second tier B-
Tree. The record for a sequence in the first tier B-Tree con-
tains a pointer to the corresponding second tier B-Tree, in
addition to the unique identifier of the sequence. A new pair-
wise alignment is inserted into the second tier B-Tree that is
pointed to by the record, which corresponds to the sequence
of the pair with smaller identifier, in the first tier B-Tree. In
this way, only one copy of a pairwise alignment is stored in
the cache. Note that if there is one-to-one correspondence
between sequences and bins, a second tier B-Tree will con-
tain the pairwise alignments for a single sequence and in this
case only the second identifier can be used as a key.

With the organization of the cache as described above, on
a distributedmemory machine, the set of second tier B-Trees
can be partitioned among the nodes in the system, thus al-
lowing the effective use of aggregate storage space. The first
tier B-Tree also can be partitioned across the system. How-
ever, we anticipate that in most cases that B-Tree will be able
to be replicated on all the nodes, because the size of the first
tier B-Tree will be small enough, as it is proportional to the
number of sequences.

3

3.2 A Complexity Analysis of Proposed Approach

In this section, we analyze the computational complexity
of the B-Tree based caching described earlier. We present
the complexity analysis of the second tier B-Tree. A similar
analysis can be carried out for the first tier B-Tree.

For complexity analysis, let us assume that the maxi-
mum number of keys in a tree node is given by 2t � 1 and
that the maximum number of pairs that can be stored in the
cache is C. Then the worst case height of the tree is rep-
resented by h � log

t

C+1

2
. This assumes a single second

tier B-Tree and minimum number of keys per tree node. The
CLUSTAL W algorithm that employs caching, starts its first
step with q(q � 1)=2 searches to the cache. The cost for a
single search on a B-Tree is O(t log

t
C), which leads to a to-

tal cost of O(q2t log
t
C).

For a hit ratio of H(< 1), each of the remaining (1 �
H)q(q � 1)=2 pairs should be computed. The cost of exe-
cuting these computations is therefore equal to (1�H)q(q�
1)=2O(l2). Moreover, the cost of adding a new pair to the
cache is also O(t logtC). If another pair needs to be evicted
from the cache, this extra cost may double, if the cost of find-
ing a candidate for eviction is O(1). Now consider the I/O
costs of maintaining and searching the cache. All three B-
Tree operations (search, insert, and delete) require reading
O(logtC) tree nodes. However, if the first few levels of the
tree can be pinned in memory, the number of disk I/O oper-
ations can be significantly reduced.

Let m be the number of misses, i.e. m = (1 �H)q(q �
1)=2, then the computational complexity of the proposed
scheme is O(q2t logtC + ml2 + mt logtC). The number
of blocks that need to be accessed is O(q2(logtC � p) +
m(logtC � p)) where p is the number of B-Tree levels,
which are pinned in memory.

3.3 Deployment on a SMP Machine

When the data server is deployed on a SMP machine,
multiple queries can be executed simultaneously as sepa-
rate processes or threads. The server instantiates multiple
query processes (or threads)2 to serve queries submitted by
clients. A query received by the server is assigned to one of
the query processes for execution. Care should be taken to
make sure the integrity of the cache is maintained, as mul-
tiple processes may access the cache concurrently. In this
section we discuss three different types of cache for servers
running on SMP machines.

The first is a read-only cache. In this type of cache, all
pairwise alignments that are likely to be accessed by many
queries are precomputed and a cache is created from these
pairwise alignments. When a query is executed, the pairwise

2In general, the number of processes will be equal to the number of pro-
cessors on the machine.

alignments that are not in the cache are computed on the fly,
but are not inserted into the cache. Although this method as-
sures that the cache is uncorrupted, it requires good a priori
knowledge of query access patterns to achieve good perfor-
mance.

The second type is an online-updated cache. When a
cache miss occurs, new data is inserted into the cache during
query processing. Since multiple queries may submit up-
dates to the cache at the same time, a locking mechanism
should be implemented to serialize those updates. More-
over, duplicate updates by different queries should be elimi-
nated to prevent the cache from growing unnecessarily. This
cache type allows new pairwise alignments to be cached, so
it does not require the knowledge of query access patterns.
However, it may incur a high performance penalty because
of the need to serialize accesses to the cache structure.

The third type is an offline-updated cache. This is a hy-
brid of the first two types. As for the first cache type, a cache
is created by precomputing the pairwise alignments that are
likely to be needed by queries. During query processing,
each query process keeps a record of cache misses (i.e., the
pairwise alignment and the associated distance score). The
cache is updated when the system load is low– the cache
misses that have been recorded by each query process are
inserted into the cache. Note that cache misses recorded by
a process can also be maintained in a local cache by that
process. That is, each process is assigned a separate cache,
which can be updated only by that process, and there exists
a global cache, which is accessible by all processes. Dur-
ing query processing, no updates are allowed to the global
cache. When a query is assigned to a query process, both
the local cache and the global cache are searched to look for
cached pairwise alignments. When a cache miss occurs, the
query process updates the local cache only. Local caches are
merged into the global cache when no queries are executing
in the system or the system load is low. Note that locking
on cache data structures is necessary only when the global
cache is updated. Thus, this cache organization reduces the
complexity and overhead associated with maintaining locks
on cache data structures when there are multiple queries.

Updates to the global cache can be accelerated in sev-
eral ways. Each processor can keep track of the number of
times a pairwise alignment is requested. When merging lo-
cal caches with the global cache, rarely used pairs can be
eliminated. Moreover, if a two tier B-Tree structure is em-
ployed for the global cache, the global cache can be updated
one second tier B-Tree at a time. A copy of the second tier
B-tree that is in the process of being updated is created and
this copy is updated using local caches. We need to lock a
first tier B-Tree element, only when the new copy replaces
the old copy of the second tier B-Tree and the correspond-
ing pointer in the first tier B-Tree is updated. This scheme
allows the queries that are currently executing in the system

4

to access the global cache more efficiently.

4 CLUSTAL W Implementation with Data
Caching

The CLUSTAL W program source code was minimally
modified to support the introduction of primitive data cache
operations search and insert. The delete operation was not
needed for the investigation and was not introduced. The
B-Tree code available from the GIST library [8] was uti-
lized as the source of the data cache operations. A simple
set of wrappers were written to bridge the C source code of
CLUSTAL W to the C++ source code of the GIST library.

The modifications to the CLUSTAL W code were cen-
tered around enhancing the speed of the construction of the
pairwise score matrix which is integral to the application.
In this process, a matrix is created containing the pairwise
alignment scores of each unique pair of sequences in the
alignment. The data which was stored in the cache consisted
of the names and lengths for both sequences, the gap weights
and resulting pairwise score. The size of this data aggregate
was only 40 bytes per element. The unique key for each pair
combination in the data structure was a 20 byte composite
key created by incorporating a mod of each sequence length
into the name of each sequence and concatenating the re-
sult. It was necessary to include a length dependent property
of the sequence into the key due to the lack of guaranteed
uniqueness the sequence name alone provides.

Our current implementation employs a read-only cache
for SMP machines. We are planning to implement the other
cache types in near future.

5 Experimental Results

In the first set of experiments, we performed a time pro-
file analysis of the CLUSTAL W program (version 1.82).
For these initial experiments, a PC running RedHat 7.1
Linux was used. The PC has one Pentium III 650MHz CPU,
768MB main memory and two 75GB IDE hard disks. We
randomly selected 1000 sequences, with an average length
of 450 amino acids per sequence, from a dataset of G-protein
coupled receptor (GPCR [10]) protein sequences. We cre-
ated 10 queries, with the number of sequences ranging from
25 to 1000 per query. Figure 1 shows the total execution
time and the breakdown of the execution time into the three
steps of the program, when the number of sequences in a
query is varied. Note that the scale of y-axis (total execution
time) in Figure 1(a) is logarithmic. As was discussed in the
previous sections, the computational complexity of the pair-
wise alignment step for q sequences, with average sequence
length of l, is equal to O(q2l2), and is the dominant factor
in the execution time of the CLUSTAL W program, as long

as q <= l. Our experiments also confirm this theoretical re-
sult. As is seen from the figure, for queries with fewer than
400 sequences, the pairwise alignment step takes 78-95% of
the total execution time. For example, with 400 sequences,
CLUSTAL W ran 4606 seconds, where pairwise alignment
step took 4342 seconds (94%). The execution time of the
guide tree computation becomes more significant with the
increasing number of sequences, after 600 sequences. The
experimental results show that if pairwise alignment compu-
tations can be avoided, the overall performance can improve
significantly.

The rest of the experiments presented in this section were
carried out on one of four Sun systems at the Ohio Super-
computer Center Sun Center of Excellence for High Per-
formance Computing Environments. The model employed
for these investigations was a 24-processor Sun Fire 6800
system, equipped with 750 MHz CPUs and 48 GB of main
memory. The GNU compilers were used to compile both the
CLUSTAL W code and the GIST library supporting the un-
derlying cache data structure.

In the next set of experiments we examine the effect of
cache on the performance of MSA. A full range of test cases
were used in evaluating the modified CLUSTAL W algo-
rithm. The length of the sequences ranged from 61 to 1580
characters, with an average value of 417. The number of
sequences per alignment ranged from a low of 2 sequences
in the alignment to an alignment involving in excess of 200
sequences. In all, over 350 sets of alignments were per-
formed, with an average of 5700 characters involved in each
alignment. The initial processing required computing the
unique pair alignment entries and inserting them into the
cache structure. Realizing that the number of elements to
be computed and stored with even the 350 sequence set was
too small to create a meaningful size dataset for benchmarks,
an inflation factor was used during the loading phase of the
cache. For each computed pair score introduced into the
cache, 9 additional dummy entries were also inserted with
a comparable but slightly modified combined key. This ap-
proach, while not a worst case situation, is far from ideal as
it insures that each element of interest in the structure is sur-
rounded by unutilized elements, thereby reducing any prox-
imity benefit to be gained. The total number of elements in-
serted into the cache, which was used to perform the cache
performance benchmarks in Figures 2 and 3, was in excess
of one million individual entries, resulting in a file size in
excess of 200MB.

Figure 2 shows breakdown of the execution time of MSA
into the three steps, with and without data caching. Solaris,
like many modern operating systems, maintains a system file
cache. In order to emulate the case where the cache for mul-
tiple sequence alignment does not fit in memory, we em-
ployed the directio function in Solaris. The directio
function is used to advise the OS to bypass the system file

5

Execution Time of CLUSTAL W

1.00

10.00

100.00

1000.00

10000.00

100000.00

25 50 75 100 150 200 400 600 800 1000

Number of GPCR sequences

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Breakdown of CLUSTAL W Execution Time on PIII-650MHz

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

25 50 75 100 150 200 400 600 800 1000

Number of GPCR Sequences

T
im

e
F

ra
ct

io
n

s

prog-align
guidetree
pairwise

(a) (b)

Figure 1. The execution time of CLUSTAL W, as the number of sequences is varied. (a) Total execution
time. (b) Breakdown of execution time into the three steps of the algorithm.

Breakdown of Execution Time

0.00

5.00

10.00

15.00

20.00

25.00

30.00

No Cache Cache, DIO Cache, No DIO

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

prog.align
guide tree
pairwise

Figure 2. Breakdown of total execution time.
In the graph, “Cache, DIO” and “Cache,
no DIO” denote the cache-enabled version
of CLUSTAL W with directio and without
directio, respectively.

cache for a specific file. As is seen from the figure, per-
formance difference between the cache-enabled versions of
CLUSTAL W with directio and without directio is
very small and both of them performs significantly better
than the original version of CLUSTAL W. Focusing on the
pairwise score matrix created in the CLUSTAL W process-
ing, the utilization of the cache approach provides a relative
speed up that averages in excess of 15 over the 350 trial sets
of sequences. In only one case was the cache recovery actu-
ally slower than computation, and this was for an alignment
of 6 sequences which only required 3.1 milliseconds to com-
pute. In this case, the retrieval of the elements required 3.3
milliseconds.

Figure 3 shows the average query execution time as the
hit ratio is varied. As is seen from the figure, the cache-

Effect of Hit Ratio

0.00

10.00

20.00

30.00

40.00

50.00

60.00

NOCACHE 12% 25% 50% 75% 100%

Cache Hit Ratio

E
xe

cu
ti

o
n

 T
im

e
(s

ec
o

n
d

s)

prog.align
guide tree
pairwise

Figure 3. The effect on performance of the hit
ratio.

enabled version of CLUSTAL W performs better than the
original version even with small hit ratio. As expected, the
performance improves as the hit ratio increases. The execu-
tion time decreases almost linearly.

Figure 4 shows the total execution time as the number of
query processes is varied. For this experiment, we created
64 disjoint sets of sequences. Each set had 40 sequences
with unique identifiers. All the sequences in all the sets were
of the same length. The pairwise alignments computed from
each set were inserted into the cache used in the previous ex-
periments, along with a set of dummy pairwise alignments,
so that the final cache contained a total of 1.5 million en-
tries. The size of the cache file was 400MB. In this experi-
ment, we used a read-only cache, i.e., timing values do not
include overhead of updating the cache. In the experiments,
the same sets of sequences were also distributed among the
query processes to carry out MSA. We assigned the same
number of query sets to each query process so as to iso-

6

0

500

1000

1500

2000

2500

3000

3500

1 2 4 8

Number of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

No Cache
Cache, DIO
Cache, no DIO

Figure 4. Total execution time of 64 queries,
as the number of query processes is var-
ied. In the graph, “Cache, DIO” and “Cache,
no DIO” denote the cache-enabled version
of CLUSTAL W with directio and without
directio, respectively.

late the effect of caching on the scalability of the server. As
is seen from the figure, when cache is disabled, the execu-
tion time of the queries decreases almost linearly. This is
expected since the query sets have been evenly distributed
among the query processes. When cache is enabled, the total
execution time decreases to half for all configurations– note
that the hit ratio in this experiment is 100%, since the same
sets of sequences that have been used to create the cache
are used as queries. Our results show that although all pro-
cesses access the same B-Tree files concurrently, the associ-
ated overheads are small and the overall performance of the
server scales well as the number of processes is increased.

6 Conclusions and Future Work

We have presented a caching approach for speeding up
the execution of multiple sequence alignment queries in a
multiple client environment. We have shown theoretical
analysis indicating potential for substantial improvements
on the overall execution time of the algorithms by using the
caching schemes described in this paper. Experimental re-
sults have also been presented which corroborate our expec-
tations. Overall, we were able to obtain an average speedup
of 2.5 for the 350 trial sets of sequences. Our results also
show that the cache-enabled CLUSTAL W scales well on a
SMP machine.

One of our longer term goals is to evaluate different ar-
chitecture configurations for MSA analysis and develop ef-
ficient support for alternative configurations. For exam-
ple, it is becoming increasingly cost-effective to build large
scale disk-based storage systems using currently available
off-the-shelf components. A large disk-based storage sys-

tem can be built at relatively low cost by connecting many
such PCs via a high-speed switched network3. In addition to
substantial storage space and high I/O bandwidth provided
through the collective use of multiple disks in the system,
such a configuration offers significant processing power for
manipulating data, and large memory space that can be used
for caching data. However, developing system support for
MSA analysis on such systems is challenging. Several key
questions should be addressed.

The first question is “which node should the query be exe-
cuted on?”. When a query is assigned to a processor, the cor-
responding pairwise alignments stored in the local caches
of other processors should be communicated to that proces-
sor via inter-processor communication. The second ques-
tion is “should a query reuse a cached pairwise alignment,
or recompute it?”. If a pairwise alignment is cached on a
remote node and the network latency is high, the overhead
of communication to retrieve the pairwise alignment from
the remote node may be more than the cost of recomputing
it. Good system support is needed to balance the workload
among processors and minimize the communication over-
heads due to cached pairwise alignments. We plan to look
at the implementation of system support using a component-
based framework [4]. In this framework, data retrieval and
data processing operations are implemented as a set of in-
teracting components. Communication, computation, and
I/O overheads can be minimized by placing components ef-
ficiently across the system and by efficiently scheduling data
flow between components.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic local alignment search tool. J. Mol. Biol., 215(3):403–
410, Oct 1990.

[2] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Efficient exe-
cution of multiple workloads in data analysis applications. In
Proceedingsof the 2001 ACM/IEEE SC’01 Conference, Den-
ver, CO, Nov. 2001.

[3] H. Andrade, T. Kurc, A. Sussman, and J. Saltz. Schedul-
ing multiple data visualization query workloads on a shared
memory machine. Technical Report CS-TR-4290 and
UMIACS-TR-2001-68, University of Maryland, Department
of Computer Science and UMIACS, Oct. 2001. Submitted to
IPDPS 2002.

[4] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Suss-
man, and J. Saltz. Distributed processing of very large
datasets with DataCutter. Parallel Computing, 27(11):1457–
1478, Oct. 2001.

[5] U. S. Chakravarthy and J. Minker. Multiple query processing
in deductive databases using query graphs. In Proceedingsof
the 12th VLDB Conference, pages 384–391, 1986.

3At Ohio State University, we are building a 7.2TB storage cluster with
24 PCs, each with 3 100GB disks, Pentium III 933MHz CPU and 512MB
memory. At current prices, the cost of this cluster is about $50,000.

7

[6] F.-C. F. Chen and M. H. Dunham. Common subexpression
processing in multiple-query processing. Transactions on
Knowledge and Data Engineering, 10(3):493–499, 1998.

[7] D.-F. Feng and R. Doolittle. Progressive sequence alignment
as a prerequisite to correct phylogenetic trees. J. Mol. Evol.,
25:451–360, 1987.

[8] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Gen-
eralized search trees for database systems. In Proc. of
21st International Conference on Very Large Data Bases,
Zurich, pages 562–573, September 1995. Available at
http://datasplash.cs.berkeley.edu:8000/gist/.

[9] D. Higgins and P. Sharp. CLUSTAL : a package for perform-
ing multiple sequencealignments on a microcomputer. Gene,
73:237–244, 1988.

[10] F. Horn, J. Weare, M. Beukers, S. Hrsch, A. Bairoch,
W. Chen, . Edvardsen, F. Campagne, and G. Vriend. Gpcrdb:
an information system for g protein-coupled receptors. Nu-
cleic Acids Res., 26(1):277–291, 1998.

[11] D. Lipman, S. Altschul, and J. Kececioglu. A tool for multi-
ple sequence alignment. In National Academy Science, vol-
ume 86, pages 4412–4415, 1989.

[12] D. Mikhailov, H. Cofer, and R. Gomperts. Performance opti-
mizations of Clustal W: Parallel Clustal W, HT Clustal, and
MULTICLUSTAL. Technical report, SGI Life and Chemical
Sciences, www.sgi.com/solutions/sciences/chembio, 1999.

[13] C. Notredame, D. Higgins, and J. Heringa. T-coffee: A novel
method for multiple sequence alignments. Journal of Molec-
ular Biology, 302:205–217, 2000.

[14] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
and extensible algorithms for multi query optimization. In
Proceedings of the 2000 ACM-SIGMOD Conference, pages
249–260, 2000.

[15] N. Saitou and M. Nei. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Molecular Bi-
ology Evolution, 4:406–425, 1987.

[16] J. Stoye, V. Moulton, and A. Dress. Dca: An efficient im-
plementation of the divide-and-conquer approach to simulta-
neous multiple sequence alignment. Comput. Appl. Biosci.,
13(6):625–626, 1997.

[17] J. Thompson, D. Higgins, T.J., and Gibson. Clustal w:
improving the sensitivity of progressive multiple alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res, 222:4673–
4690, 1994.

[18] T. Yap, O. Frieder, and R. Martino. Parallel computation in
biological sequence analysis. IEEE Transactions on Parallel
and Distributed Systems, 9(3):1–12, 1998.

[19] Y. Zhao, P. M. Deshpande, J. F. Naughton, and A. Shukla. Si-
multaneous optimization and evaluation of multiple dimen-
sional queries. In Proceedings of the 1998 ACM-SIGMOD
Conference, pages 271–282, Seattle, WA, 1998.

8

