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Abstract—Infection, replication and mutation govern the
population dynamics of viruses and are the key mechanisms
driving their evolution. In particular, RNA viruses (such as the
causative agents of Ebola, Dengue, Zika, West Nile, and SARS)
have the highest mutation rates which enable them to form
highly diverse populations within a single host, evade immune
responses and develop resistances to drugs. Understanding the
complexity of virus evolution is crucial for developing reliable
countermeasures.

We present an exploratory simulation model to study the
evolution of heterogeneous virus populations in heterogeneous
cell environments. This is a unique model that operates at three
scales and captures the core mechanisms of the evolutionary
process. To the best of our knowledge, this is the first HPC-
based simulation of its kind.

I. INTRODUCTION

Mutation and selection are key mechanisms driving the

evolution of viruses towards higher propensity to survive and

reproduce in a given environment. In particular, RNA viruses

have the highest mutation rates (10−5
−10

−3 nucleotide mis-

incorporations per genome replication), among all life forms.

Such a high mutation rate results in high genetic diversity of

a virus population even during a single host infection. The

fast diversification of viruses leads to resistance to drugs and

the low efficacy of vaccines such as annual flu vaccines, hin-

dering the development of reliable countermeasures, such as

for HIV, dengue, etc. It is, therefore, important to understand

the complex dynamics of virus evolution.

The advent of next generation sequencing platforms opens

up the possibility of understanding virus evolution at the

molecular level. However, virus evolution is a multi-scale

process, involving multiple entities, e.g. heterogeneous host

cells and receptors, and complex intracellular and extracellu-

lar mechanisms. Understanding this complexity necessitates

the development of a multi-scale model that is compu-

tationally challenging and thus requires high-performance

computing (HPC).

Building a predictive model is extremely challenging.

Many phenomena at the forefront of microbiology have yet

to be explained. There are far more biological phenomena to

be explored than currently understood. The challenges that

microbiologists face also include the difficulty of experi-

menting with a particular aspect of a system in isolation,

and the lack of tools to perform virtual experiments.

Thus, we take an exploratory modeling approach [1], and

offer a novel computational tool so that the biologist can

test what-if scenarios and gain insights into the evolutionary

dynamics of RNA viruses in a cell culture with less effort

and resources in a shorter amount of time. Our model algo-

rithmically represents key known or hypothesized biological

mechanisms in a computationally feasible way. The model

does not aim to substitute for lab experiments, but to guide

them and to speed up knowledge discovery.

We simultaneously simulate the extracellular and the

intracellular activities of RNA viruses, explicitly represented

as nucleotide (NT) and amino acid (AA) sequences, as

well as the diffusion of virus particles among cells. The

simulation produces the quasispecies [2] population evolved

from given initial viral and cell populations as a result

of genotype-specific replication. Given NT/AA frequencies

such as those available in public databases [3, 4], our model

tentatively scores each genotype’s replication capabilities.

This is a novel data-driven method, designed to explore

hypotheses.

We adopt the optimistic parallel discrete event simula-

tion paradigm [5]. We leverage the Rensselaer’s Optimistic

Simulation System (ROSS), which is based on the Time

Warp synchronization mechanism [5–7]. We have imple-

mented application-level reverse computation aided by a

small amount of state savings as well as retraction of events

that are no longer appropriate to execute.

We present two sets of demonstrations: i) the performance

of weak scaling up to one million cells using 128K pro-

cessors, and ii) the fitness composition of the quasispecies

evolved from an initial Dengue virus population.

II. BACKGROUND

A. Simulation approach

To capture the dynamic multi-scale phenomena in a

parallel simulation, we rely on optimistic parallel discrete

event simulations (PDES) [5]. Discrete event simulations are

not time-stepped, i.e. they do not have constant simulation

time delays between state changes, but instead dynamically

calculate the simulation time delay between causally-related

events (state changes) in the model. They tend to be dy-

namically irregular in time, often with a mixture of multiple

time scales, and often stochastic.
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There are two broad approaches to executing discrete

event simulations in parallel, based on the style of synchro-

nization used [5]. Conservative methods use conventional

block-and-resume synchronization, but require good looka-

head information to avoid deadlock and achieve a high de-

gree of parallelism. Optimistic synchronization methods, in

contrast, allow speculative computation and use rollback to

correct causal errors [6]. They do not require any lookahead

information, but are somewhat harder to implement, both

in the simulator and in the model code. Rollback in an

asynchronous distributed environment might seem complex

or even impossible, but there is an elegant algorithm called

Time Warp that performs it in a robust and general way [7].

B. Biological processes captured in the model

In this study, we focus on positive-sense single stranded

RNA viruses, labeled as (+)ssRNA. The high-level descrip-

tion of the (+)ssRNA replication process is as follows. A

virus particle (virion) may bind to a receptor available on

a cell surface. If it does, it enters the cell and releases the

positive sense RNA molecule which serves as a template

for translation into proteins and copying to negative sense

RNAs. The produced negative RNA is repeatedly copied

back to a positive-sense genomic RNA, which in turn is

packaged into a virion. With a certain probability, each

new copy (negative or positive) may contain mutations.

Cells have limited amounts of resources for replication, and

thus can produce up to a fixed number of copies. When a

maximum capacity is reached, the cell bursts and discharges

the virions produced, which eventually diffuse to other cells.

Different genotypes likely exhibit different fitness among

mutants, which is typically understood as the replicative

capacity under a given environment [8]. This capacity de-

pends on various capabilities, such as receptor binding or

RNA copying by the polymerase. The efficacies of the

mechanisms depend on the phenotypic properties of the

participating proteins encoded by the viral genome.

III. MODEL DESIGN

In this section, we describe the key components of our

model and the events that update the model states repre-

senting important biological activities.

A. Model component overview

In our model, a population of host cells provides an envi-

ronment for the evolution of a viral population. A viral load

consists of virus populations of genotypes dynamically cre-

ated by random point mutations as well as those predefined

in the simulation input. We model the inter-cellular diffusion

of the viral load as well as the simultaneous intracellular

process of viral replication and mutation inside of each host

cell. We denote a point location in a cellular population by

a pixel (a cell site). Each pixel consists of zero or more cells

and the extracellular space (or medium) representing the
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Figure 1. Overview of model components at a cell site (pixel) in a host
cell population, and the model events.

well-mixed proximity space around the cells, as illustrated

in Figure 1. The model supports heterogeneous types of

receptors coupled with heterogeneous binding capabilities

for distinctive genotypes. This enables the representation

of the competition between genotypes in gaining access

to the replication machinery of host cells. The model also

supports heterogeneous cell types. Each cell type can have

a different mix of receptors, in terms of the number and the

type, as well as a different replication capacity. In addition,

the distribution of cells across pixels can be non-uniform

depending on the simulation input.

B. Compartment and virus tracking

Instead of instantiating a per-virion object, we manage the

particle count of each genotype per compartmental space. A

pixel is divided into two types of compartments, the medium

and the cell. A compartment enforces a capacity limit.

A cell is further divided into a surface, and an intracellular

space. The former manages receptors available for binding.

The latter contains a set of sub-compartments to track

intracellular activities at various stages, such as the release

of genetic material upon completion of entry, which initiates

copying, and the production of mutated sequences after each

replication stage.

The count-per-genotype tracking is useful in compressing

the same kind of genotype instances into one data entry

especially when the mutation rate is low, the sequence is

highly conserved, or there is a large initial viral population.

With highly-mutable and little-conserved sequences, this

approach can require memory up to twice the amount used

(requiring unnecessary count variables) by the alternative in

which we instantiate individual virions.

C. Model event overview

The types of model events and the strategies to generate

and handle them are discussed below. In a medium, we

schedule the earliest virion event for the whole viral load
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i) decrease the number of departing virus
ii) schedule an arrival event at the destination

iii) schedule a new local event

i) increase the number of arriving
virus

ii) retract the outstanding local event
iii) schedule a new local event

i) decrease the number of binding virus
ii) decrease the number of binding receptor

iii) schedule an entry event in the cell
iv) schedule a new local event

(a) A departure event (local) (b) An arrival event (non-local) (c) A binding event (local)

Figure 2. Sketches of extracellular event handling. A circular shade indicates the current event under processing in the timeline. A dashed curve leads
to an event scheduled by the current event. A solid curve shows which past event scheduled the current event.

of the medium one at a time, instead of independently

scheduling for each virion. While this is primarily for

efficiency, it is also natural to manage them in a collective

fashion for modeling binding competition.

In general, our strategy in scheduling an extracellular

event is to determine only the necessary details for schedul-

ing, such as the time of the next event, and determine the

details as late as possible. Then, we determine the rest when

we execute it; e.g. which virus binds to which receptor.

This lazy specification of event is useful in two ways.

First, it helps to avoid wasting computation by rollbacks in

optimistic PDES. Second, this allows us to define an event

based on the most up-to-date model state.

A local event denotes an event scheduled locally to update

the local state, such as a virion departure and a virion-

receptor binding as shown in Figure 2. An arrival is an

example of a non-local event. We determine the time of

the next local event by estimating the interval with no

state change in the local system. As there are multiple

types of local events with unique event rates, we make

independent estimation for each (Section III-D and III-E),

and then choose the earliest one for scheduling. Note that

we have no estimation for non-local events. An externally

scheduled event may arrive during such a period and update

the local state as shown in Figure 2 (b). This invalidates

the earlier local estimation. In this case, we retract the local

event scheduled based on the invalidated estimation (Section

IV-B). After the state update, we schedule a new local

event based on the new state. We maintain one outstanding

local event unless there is no local virion. Without one, we

schedule no local event. This is analogous to defining the

default behavior given that nothing unexpected occurs.

In a cell, we individually handle the entry, which is the

beginning of a copying stage, as well as the successive copy-

ing stages for each RNA instance (Section III-F). Whether

a copying results in mutation or not is determined upon

completion of the copying. Finally, we schedule a burst event

when the intracellular viral load exceeds the predefined limit

of the cell, which in turn discharges the progeny virions into

the surrounding medium.

D. Diffusion

A virus particle may move to a random neighbor pixel

at a random point in time. While we explicitly model the

diffusion of a virion, the random decision is made per

pixel rather than per virion for computational efficiency. The

diffusion occurs across pixels, not within a pixel even if there

are multiple cells in a pixel. In scheduling, we determine the

time of a next departure from the pixel. During execution,

we decide which virion should diffuse, and its destination

pixel. We further explain how we determine the diffusion

variables here.

We represent a pixel as a vertex in a graph, with edges

connecting neighboring pixels. Each edge is directional and

parameterized by the mean time to reach the other end

(Δtr) and the diffusion propensity factor (fD). We randomly

choose a neighbor for a virion to move to, considering the

propensity factor which represents the non-homogeneous

degree of diffusion to the neighbor [9]. The higher the value,

the greater the chance of being selected. The time interval

to the next diffusion in a medium, Δtd, depends on the

current viral load in the pixel and the diffusion propensity

factors for neighbor pixels. Such an interval is determined

randomly from the exponential distribution with a mean

1/λd as λdexp(−λdt) where

λd =
∑
v∈v

∑
m∈m

fD
m,v × cntVv ,

v is a virus type in v which is the current set of virus
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types in the medium, m is a neighbor in m which is the

current set of neighbors of the medium, cntVv is the number

of virions of type v, and fD
m,v is the diffusion propensity

factor for v to m. Currently, fD
m,v is an input parameter

which needs to be set for a particular biological experiment.

However, such a parameter can be dynamically updated to

reflect environmental changes using events. Once we pick a

random interval Δtd, we can use it to schedule a departure

event for t = tcur + Δtd where tcur is the current time.

However, whether to actually schedule or not depends on

the estimated time of the other local event, binding, in the

medium as explained in Section III-C.

We randomly determine the virion to depart and its

destination based on the current state of the pixel when we

executes a departure event as opposed to when it is sched-

uled, as explained in Section III-C. To make the choices,

we rely on a similar method described in Section III-E.

Finally, we schedule an event of arrival at the destination for

t = tcur+Δtr, where Δtr is a randomly determined interval

from the distribution of time-to-reach, λrexp(−λrt) where

λr = 1/Δtr. As a virion leaves a pixel and moves into a new

pixel, we decrease the count of the virus type at the source

medium and increase it at the destination. Figure 2 (a) and

(b) illustrate the process as well as the generation/retraction

of a local event discussed in Section III-C.

E. Receptor binding

Our binding model is simplified in that a virion directly

binds to a receptor on a cell instead of attaching to the

surface of a cell in advance. While an elaborate model can

be incorporated in the future [10], we concentrate on the

effect of non-uniform binding capability of genotypes on the

population dynamics. We define the binding fitness fB
r,v of a

genotype v as a relative measure of binding capability to a

particular receptor of type r in a pixel. We use this parameter

to compute when a virion will bind, and to decide the entities

involved in the event at execution; i.e., which virion to bind

to which receptor of which cell in the pixel.

We compute binding weights in multiple forms to aid

various random decisions. Suppose that we have a set of

genotypes v, a set of receptor types r and a set of cells c

in a pixel. We define the weight of binding genotype v to a

single receptor of type r independently of the cell as

Wr,v = fB
r,v × cntVv ,

where cntVv is the number of virions of type v. We also

define the weight of binding to a single receptor of type r
independently of the genotype as Wr =

∑
v∈v

Wr,v . Then,

the weight of binding to any receptor of type r on cell c is

Wc,r = Wr × cntRc,r .

where cntRc,r is the number of receptors of type r on cell c.

Similarly, the weight of binding to a cell c is

Wc =
∑
r∈r

Wc,r .

Then, the total weight is Wtot =
∑

c∈c
Wc.

Scheduling a binding event is similar to scheduling a de-

parture discussed in Section III-D. Once we obtain Δtb from

the random distribution λbexp(−λbt), where λb = Wtot ,

we can schedule a binding event in the medium. However,

whether to actually schedule depends on the estimated time

of the other local event, a departure (see Section III-C).

Upon binding, we schedule the completion of entry in the

cell for t = tcur +Δte, where Δte is randomly chosen from

the distribution of time-to-enter; i.e. λeexp(−λet) where

λe = 1/Δte. Section III-H describes how Δte is obtained

per genotype. As a virion binds to a receptor on a cell, we

decrease the count of the genotype at the medium as well as

the number of available receptors of the chosen type on the

chosen cell. Figure 2 (c) shows the process. In Section IV-A,

Figure 5 shows how we keep binding weights up-to-date.

F. RNA copying

As discussed in Section II, copying a positive-sense

ssRNA involves two stages: copying from a (+)sense RNA

to a (-)sense RNA followed by copying from a (-)sense RNA

to a (+)sense RNA as depicted in Figure 3. The latter further

entails a packaging stage which turns the (+)sense RNA

into a progeny virion. We label the former as C2N , and the

latter as C2V . The first stage begins with a translation phase

enabling RNA synthesis followed by a replication phase.

The second stage replication is followed by a translation to

enable virion packing. In our current model, we simply add

the duration of both phases to compute the time interval to

complete a copy stage as Δtc=Δttr+Δtrp where Δttr and

Δtrp are times taking to translate and replicate respectively.

These are genotype-dependent and unique to the stage.

Section III-H describes how these parameters are obtained.

We schedule a copy event, such as C2N or C2V which

represents the completion of a copying stage, using the

respective Δtc. We currently rely on a random distribution

λcexp(−λct) to obtain Δtc, and compute the event time as

t = tcur + Δtc, where λc = 1/Δtc. Experimental data is

necessary to set up a more appropriate distribution.

Figure 3 shows the chain of intracellular events, i.e., entry,

copy, and burst events. The binding (BIND) event schedules

an entry (ENT ) event, which is the beginning of intracellular

chain leading to C2N and C2V . The first step in executing

a copy event is to determine if the RNA copy is a mutant

as we discuss in Section III-G. If so, we register it into a

local database (see Section IV-D). We increase the count of

the new genotype in the associated compartment. Then, we

schedule subsequent copying events. In case of C2N , two

following events are scheduled. One is for another round of

copying the original (+)sense RNA. The other is to copy the
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Copy event handling (C2N and C2V )
i) Determine if the RNA copy is a mutant. If so,

compute mutation and register it to local database.
ii) Increase the count of genotype at the associated

compartment. If internal load reaches a limit,
schedule a burst event, and skip iii) and iv).

iii) For C2N , schedule another C2N .
iv) For C2N and C2V : schedule C2V .

Figure 3. The chain of intracellular events in the model, such as an entry and the two staged copying; copying from a (+)sense RNA to a (-)sense RNA,
and copying from a (-)sense RNA to a (+)sense RNA. Each copying stage repeats until the cell bursts as the internal load reaches the threshold.

resultant (-)sense RNA of the current stage. In case of C2V ,

only the initial (-)sense RNA of the current stage is subject to

further copying. In case that the total internal population or

the number of progeny virions reaches a threshold provided

by a user, a burst event is scheduled, which coincides with

the discharge in the medium.

G. RNA mutation

We choose a random number r of mutated positions

during a copy from the cumulative binomial distribution as:

r∑
k=0

(
n

k

)
qk(1− q)L−k

where L is the length of the sequence, and q is a mutation

rate. If r > 0, we choose r uniformly random positions.

Then, we decide the new NT using the transition probability

ptr , which biases the changes between particular NT pairs.

Both q and ptr are simulation inputs.

Currently, we only model point mutation, and plan to add

other mutation mechanisms. Recombination is known to be

important for some virus species and mix of species while

being less common for Dengue virus in a single host [11].

H. Fitness computation

To quantitatively describe how a genotype is capable of

surviving in a given environment, we require users to provide

score functions for binding, entry, and copying. Then, we

scale the parameters of a reference genotype by the relative

scores for each mutant. Users provide the parameters of the

reference sequence as input. For parameters unique to the

environment, we require them for each environment (e.g.

receptor or cell). Here, for demonstration, we tentatively

compute the relative fitness scores considering the mutations

at the NT or AA positions affecting these functionalities,

especially on those corrupting conserved subsequences, as

well as the NT/AA frequencies reported in public databases

[3, 4]. This data-driven method enables us to explore hy-

potheses and gain insights. We plan to investigate if we can

refine scoring methods by combining further bioinformatics

knowledge [12].

s1 sn
... ... ...

f1,1 · · · f1,L1
fn,1 · · · fn,Ln

τ1 = [
∏L1

i=1(1− f1,i)]
(1/L1) τn = [

∏Ln

i=1(1− fn,i)]
(1/Ln)

Figure 4. Per-mutation tolerance τk pre-computed based on the observa-
tion frequency fk,i of a conserved subsequence sk of length Lk .

We express the parameter of relative binding fitness fB
r,v as

a rate, and the rest of the parameters as mean-time-to-event

(MTTE). A binding fitness fB
r,v is necessary for processing

an arrival event as we update binding weights as shown in

Section III-E. Handling a binding event requires the MTTE

of entry (Δte) to schedule an entry. The parameters for

copying consist of four MTTE values, corresponding to the

translation (Δttr ) and the replication (Δtrp) in C2N and

C2V respectively.

How we compute a relative score is described below.

We gather data on conserved subsequences from public

sources. Especially, we obtain the NT frequencies per base

position and the AA frequencies per codon position using the

software introduced in [4]. Some studies identify conserved

AA subsequences in coding regions and present the observed

frequencies of those [3]. Others identify the conserved NT

subsequences especially in the non-coding regions and in

the coding regions adjacent to them [13–18]. We combine

these data to acquire the frequency of each known conserved

subsequence. We also define a conserved AA as the AA

of a set of synonymous codons whose sum of observed

frequencies exceeds a threshold, which is set to 80% in this

demonstration to be consistent with the data in [3].

Figure 4 shows the main idea of our data-driven strategy

to decide relative fitnesses. For a mutation that falls onto

a conserved subsequence sk, we define the per-mutation

tolerance of sk as τk = g
(1/Lk)
k , where Lk is the length

of sk, and gk =
∏Lk

i=1(1 − fk,i) while fk,i is the observed

frequency of the (collectively) conserved value at position

i in sk. A position represents either an AA or an NT. A

subsequence of length 1 has a single position. A mutant se-
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quence may have multiple mutations that possibly belong to

different subsequences. We define the per-mutant tolerance

tol as the product of all the per-mutation tolerance associated

with the mutated positions. Given M mutations,

tol =

M∏
i=1

τσ(i)

where σ(i) is the index of the conserved subsequence to

which the ith mutation belongs. If a mutation does not

belong to a conserved subsequence, τσ(i) is 1.

Finally, we compute the scaling factor for a rate pa-

rameter as tol/(1 − tol), and that for a time parameter

as (1− tol)/tol . The conserved subsequences/positions are

categorized by the regions affecting a particular function

of the virus. For example, in Dengue virus parts of the

C and E coding regions affect binding, the prM region

affects entry, and non-structural coding regions and non-

coding regions affect copying [13–18]. The tolerance is

independently computed for each functionality. Thus, a

region can contribute to multiple functions. If tol is zero,

the sequence has no capability of the function(s). In a purely

random position, fk is 0.25 as there are four types of

NTs: A, C, G, and U. Additionally, a mutation changing

an ordinary codon to a stop codon or vice versa leads to

a non-functional sequence. We also provide a capability to

handle a group of conserved subsequences/positions in case

that there exist multiple subsequences that are effective over

the same positions. In this case, we simply treat the sum of

the frequencies of a group as a whole.

IV. PARALLEL IMPLEMENTATION

In this section, we discuss how we map our model to

ROSS [7], and the challenges overcome in the effort.

A. Rollback

Rollback is a mechanism to correct a causal error from

speculative execution in optimistic PDES. Modern optimistic

simulators, such as the ROSS, implement rollback partly by

requiring that the model be written using reversible code.

Most ordinary code is irreversible, meaning that it destroys

information as it executes. Information is often lost when

data is overwritten, for example, or when memory is freed

and its contents are lost. As a result, it is not possible

to restore a prior state using just the information in the

current state. However, reversible code uses a stack to save

information which would otherwise be destroyed during

speculative execution. When rollback to a prior state is

required, saved data can be popped off the stack and restored

to reconstruct a prior state as needed.

We implement our model code to be reversible, saving

the least amount of information necessary to reconstruct

the prior state. We leverage the ROSS event message itself,

which is kept by ROSS on a rollback stack, to save our mini-

mal prior state information, and manually implement reverse
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Figure 5. Management of binding weights per pixel discussed in Section
III-E. The medium keeps track of cnt

V
v and each cell maintains cnt

R
c,r .

The medium computes Wr,v and Wr independent of cell, and updates them

when there is a change in cnt
V
v . This typically occurs with an arrival, a

departure, a binding, and a discharge event. A cell computes Wc,r and

Wc, and updates them when cnt
R
c,r or Wr changes only if it owns a type

r receptor. The medium updates Wtot with any change in Wc.

computation routines to restore the complete prior state. The

event message will be thrown away as the global virtual time

(GVT) progresses past the time of the event. At that point

we will no longer require a rollback to the state preserved

in the message. Figure 5 shows an example. We only save

a single count value to restore the previous state of entire

weight lists. To rollback the cascading update, we simply

undo the count change which triggered the update and then

recompute the weights. This also ensures reproducibility by

avoiding the side effects from the otherwise reversed order of

floating point operations in reverse computation for rollback.

For reversing a mutation, we remove the mutant info added

to the local database as well as other associated data.

B. Retraction

Almost all events schedule one or more other events to

be executed at a future simulation time. If an event e1 at

time t1 schedules another event e2 for a time t2 > t1, then

e2 will normally execute when the simulation reaches time

t2. However, sometimes at an intermediate time t3 (t1 <
t3 < t2) conditions may have changed so that it is no longer

appropriate to plan to execute event e2 after all. Then the

scheduled event e2 can be retracted, and the simulation will

proceed as if it was never scheduled in the first place. This

is different from rollback in that the event has not occurred

yet. When retraction is used, all scheduled events must be

regarded as tentatively planned. They execute only if they

are not retracted until the planned execution. For example,

a model may specify a default behavior at some point in the

future unless a certain event occurs before then.

ROSS does not support retraction directly. However, we

program the same effect as follows. We keep track of the

outstanding local event (Section III-C) by the pointer to the
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event which becomes a part of model state. Fortunately, there

is at most one local event at a time in our model that is

subject to retraction. To retract it, we simply mark it as

‘retracted’. We write the model event handler to ignore such

an event. If the other event which caused retraction is rolled

back, we undo the retraction marking on the retracted event,

which we can access via the pointer we store.

C. Processor mapping

A logical process (LP) [7] simulates a pixel. We assign

one kernel process (KP) per MPI rank [7]. Each KP manages

an event queue for one or multiple local LPs. Also, local LPs

share the address space, we do not share model data among

different LPs except for the initial simulation input and for

the post-processing of simulation results. Currently, all the

model compartments are on the pixel LP. However, in the

future, we plan to separate the cell and the medium into

different LPs on different KPs. In this scenario, we would

still keep the cell surface as a part of the medium such

that binding events are isolated in the medium LP while the

intracellular events experience a minimum disturbance from

the extra-cellular activities.

D. Sequence data management

We store a mutant sequence in a compressed format. An

edit list contains only the positions that differs from the

reference. Each entry in a list is a pair of a mutated position

and the new NT at the position. This is packed into 4-bytes

reducing the amount of memory needed. We also compress

a full reference sequence by packing three NTs into a single

byte. The initial reference sequence of each species and its

id are globally known.

The diffusion of a locally mutated sequence requires

sufficient pieces of information to be encoded in a message

such that a receiver can reconstruct the sequence. A basic

sequence descriptor in a message consists of the edit list and

the id of the reference sequence. For further optimization,

we maintain a pair of cache structures. One is maintained by

a receiver to store the pairs of the source of a message and

the sender’s local id of the sequence received. The other is

maintained by a sender to store the list of receivers of each

sequence it has transmitted. We label the former as Mapr
and the latter as Maps. We substitute it with the pair of the

local sequence id at the sender and the id at the receiver

side if known.

We make use of the cache structure as follows. First time

a sender sends a sequence, in principle, has to send the local

id , the edit list and the full reference sequence. For subse-

quent communications, the sender only sends the local id .

If a sender knows that a receiver already has the reference,

it sends the local id , the edit list and the reference id . A

sender knows if it is the case if the sequence originally came

from the receiver (according to Mapr), or it has previously

sent it to the receiver and, most importantly, the receiver has

received it (according to Maps). If the time of virus arrival

has not reached at the destination, the receiver has not seen

it. Thus, we update Maps via a local event scheduled at the

same time of arrival. A sender attempts to translate the local

id to the counterpart at the destination whenever possible by

using Mapr. Coordinating this distributed data structures as

well as the sequence database is especially challenging as it

needs to be reversible.

We implement the sequence database based on

boost::multi_index to allow identification of a

sequence by various search criteria including the full

sequence, the edit list, and the id while taking advantage

of early termination of comparison by using light-weighted

xor-based hashing.

E. Scalable data reduction

At the end of the simulation, a viral population with high

genetic diversity remains on each MPI rank. Moreover, the

same genotype appears on multiple ranks under different

local ids. To reduce the data and collect statistics of each

genotype in an efficient and scalable manner, we rely on an

approach combining a distributed hash table with commu-

nication scheme based on a balanced tree.

In post-processing, each gene sequence (genotype) is

identified with its unique fingerprint, which is fixed in size

and far smaller than the full sequence. A strong hash func-

tion (160 bit SHA-1) generates a fingerprint such that the

probability of non-unique fingerprint is vanishingly small.

We aggregate statistics of each genotype by a distributed

hash table including information such as specimen counts,

fitnesses, and mutation counts. We denote such information

combined with the genotype fingerprint a record. The des-

tination MPI rank of a record is defined as the modulo of

the fingerprint by the number of MPI ranks.

With destinations identified, we distribute the records in

a scalable way such that no MPI rank sends or receives too

many record or runs out of memory. We accomplish this by

a recursive bisection strategy, in which each process sends

and receives O(log
2
N) messages to the counterpart in the

other section. This requires memory enough to store O(S ×

maxi
(
N before

i , N after
i

)
) records, where S is the size of a record,

N is the total number of record, N before
i /N after

i is the number

of records owned by process i before/after data distribution.

The hash function helps to ensures that the resultant data

distribution is relatively uniform. To make sure no process

runs out of memory, we balance data per section as needed

before each recursion step.

As a result of exchanging data, all records pertaining

to the same genotype are gathered on the same processor,

enabling us to reduce records per genotype. For each ag-

gregated record, we choose an arbitrary destination among

the processes that contributed statistics for this genotype.

We return the aggregated records to the chosen destinations

by the same recursive data distribution. This ensures that
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the destination process has a complete copy of the genetic

information of this genotype. Finally, we rely on MPI-IO to

write aggregated population statistics and complete genetic

information for each genotype that existed in the simulation.

V. RESULTS

We conducted weak scaling evaluations on two HPC

platforms, a Cray XK7 cluster (called Titan) [19], an IBM

BlueGene/Q cluster (Vulcan) [20]. These are the state-of-

the-art HPC systems, and respectively ranked as the 3rd and

the 21st fastest system in the current (Nov. 2016) Top500

list [21]. Figure 6 shows the results. For all these runs, we

use 16 MPI tasks per compute node. We execute the model

with two cells per pixel LP, and four LPs per MPI task. Thus,

total eight cells are simulated per processing element (PE)

used. On the Titan cluster, we run up to 128K processors

simulating total one million cells. Each simulation runs until

all the cells burst, at which point there exists no cell for a

virion to infect. Until then, a virion released from a burst cell

may infect a cell that is alive and has a receptor available

or may continue to diffuse to another cell site. In this study,

we simulate Dengue serotype 2, which has an approximately

11K-base-long sequence. The parameters of the virus are

mostly obtained from [22, 23]. We define two different types

of cells with different mix of receptors for the demonstration.

We use 0.5 for the multiplicity of infection (MOI) parameter,

meaning that there is one initial virus particle per two cells.

The larger the MOI, the faster the simulation runs as cells

get infected quicker and thus burst earlier. For example,

compared to the problem with MOI=1, it runs 22 times

faster with MOI=1000 and 3.6 times slower with MOI=0.001

by the simulation clock. For Titan, we use 8MB hugepages

setup. For final file output, we use non-blocking MPI-IO

mode with individual file pointers on Lustre storage systems.

Figure 6 (a) shows net event rates. A net rate is computed

as Rnet = (Etot − Ert − Erb)/T , where Etot is the total

number of events, Ert is the number of retractions, Erb is

the number of rollbacks, T is the time to execute excluding

the initialization and the post processing. The highest net

event rate achieved on Titan is about 540 million events

per second (meps) using 128K PEs. On Vulcan, 11 meps

is achieved using 64K PEs. The gross rate, computed as

Rgross = (Etot − Erb)/T , is higher than the net rate by 13%

on average for both platforms. The ideal event rate shows the

linearly increased rate as more PEs are used. It is computed

as Rideal = Rnet(16) × NPE/16, where Rnet(16) is the net

event rate using 16 PEs on a single compute node, and NPE

is the number of PEs used.

Figure 6 (b) shows the execution times from the weak

scaling test on Titan. The total execution time including IO

increases by a factor of 33 as the problem size becomes

8192 times larger on Titan, and by 21 times as it becomes

4096 times larger on Vulcan. The breakdown shows the

amount of time spent by each part of the code. Before

and after the event processing loop of a simulation are

initialization and post processing. Init shows the maximum

time taken across PEs for the initialization and data loading.

Finish shows that for post-processing, i.e., the reduction

of the sequence information as described in Section IV-E,

as well as result file writing. The largest file written is

about 4.3 GB. We report the averages times spent across

PEs for those related to asynchronous event processing as

follows. Fitness shows the time spent for fitness computation

discussed in Section III-H, and Mutation shows that for

mutation discussed in Section III-G. SeqManage shows the

time taken to manage/search sequence information discussed

in Section IV-D. Weighting shows that for binding weights

and the diffusion weights discussed in Section III-D and

III-E. Finally, ROSS+Cost shows the rest of total time, which

consists of the parallelization cost including event handling,

message packing/unpacking and GVT synchronization as

well as the effect of load imbalance.

The cost ROSS+Cost is highly dependent on the model

and the load balance, especially on their stochastic nature.

Figure 6 (c) shows the average and the minimum of the

virtual time of cell burst events, which is normalized by the

virtual time of the last burst. As the problem size increases

up to 8K cells (1K PE), so is the difference between the

virtual times of the earliest and the last cell bursts. This

increases the inherent chance of rollbacks as discharged

virions diffuse to other pixels which may have progressed to

different virtual times. Imbalanced load between processors

as well as message delay may lead to rollbacks as the

time of an event generated at one processor (possibly with

a higher load) is already past where the event supposed

to occur. We observe that the ratio of rollbacks increases

from 60% to 80% of the total events. Beyond 8K cells,

the difference remains steady until 1M cells. Figure 6 (d)

shows the maximum, the average, and the minimum of the

wallclock times of cell bursts. The wallclock time of the

last burst increase as the number of processors increases

even when the range of the virtual times of cell bursts is

steady. The correction of a causal error further leads to an

increased execution time, and complicates load analysis. We

need to gain a better understanding on how to define a load

in the presence of rollbacks and retractions. The new version

of ROSS [24] is being built on top of Charm++ to enable

dynamic load balancing for improving performance scaling.

Figure 7 shows the impact of two ROSS runtime parame-

ters on performance: the batch processing size and the GVT

synchronization interval. The former defines the upper bound

on the number the events in the queue to process before

incrementing the synchronization trigger count. When the

count reaches the latter value, the runtime relies on global

reductions to determine the GVT progress. We experimen-

tally determine that it is optimal when both parameters are

set to 128 on single node runs. For memory limitation, we
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(a) Net event rates (b) Execution times (Titan) (c) Virtual times of cell bursts (Titan) (d) Walltimes of cell bursts (Titan)

Figure 6. Weak scaling performance using MOI=0.5 and 8 cells/PE.

Figure 7. Impact of ROSS parameter choices on performance: GVT
synchronization interval vs. batch. Tested using 10K cells, 128 LPs/rank,
and 40 MPI ranks on a 40-core node of Intel E7-4870 with 2TB memory.
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Figure 8. A passage experiment. (a) At the end of 10th passage with

MOI=1, 54% of the population has the intact copy fitness score ( tol
1−tol

),

most of which contain mutations on non-conserved NT or AA, or that
lead to synonymous codons. (b) The number of point mutations vs. the
number of passages.

set the batch size to 128 and the other to 64. While these are

reasonably good, the optimal choice depends on the model,

which is stochastic in nature, and the execution platform.

Figure 8 demonstrates a serial passage experiment, in

which a viral population sample obtained from the previous

infection stage (passage) is used to infect a new cell culture

in the next stage. Figure 8 (a) shows roughly 46% of the

entire population consists of mutants that have decreased

copying fitness score tol
1−tol

as a result of mutating conserved

regions and negatively affecting the functionality. Figure

8 (b) shows how the viral population evolves through 10

passages in terms of the number of mutations.

VI. RELATED WORKS

To our best knowledge, no comparable HPC simulation

model of virus evolution exists in the literature. In general,

multi-scale models are fairly rare or small scale.

A majority of the published simulations are of sim-

ple small-scale stochastic models. For example, Lazaro et

al. [25] present a time-stepping model with no explicit

sequence structure; the model is used to study the evolution

of fitness in the context of quasispecies theory. Similarly,

Jenkins et al. [26] consider a model simulating pseudo

genomes of 100 bases that replicate with mutation. The

reference genome and its neutral mutants (neutral sites are

predefined) have fitness 1, while the rest have fitness 0.1.

No cells are included in the model. Ribeiro et al. [27] com-

plement a simulation with clinical observations to study the

diversification of Hepatitis C virus. However, all mutations

are neutral in terms of fitness. Nonacs and Kapheim [28]

include more biological mechanisms and simulate genomes

with 9 loci existing in 10 different alleles. Cells can be

infected by 1-7 randomly chosen viruses; subsequent rounds

of replication; at each round 120 cells get infected and

release virus simultaneously; there is intracellular competi-

tion between genotypes, but no explicit fitness is associated

with different genotypes. Included is a simulated immune

response.

The closest in spirit HPC simulation model that we have

found in literature [29] simulates the evolution of bacterial

communities. The model simulates the molecular pathways

within individual cells and the effect of mutations on gene

expression and changing the bacterial phenotype. Xia et

al [30], offer an HPC model to study the effect of mutations

on the structure of the influenza virus. This model first

deduces influenza evolutionary changes from yearly data and

then performs molecular dynamics simulations to attempt to

predict the affinity of the mutated virus to the human cell
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receptor. Da Silva and Hughes [31] simulates the dynamics

between hypothetical antibody reaction on mutations of 96-

base-long HIV-1 V3 region without involving cells. Woo

and Reifman [32] present a model that simulates evolution-

ary dynamics with several amino acids using empirically

inferred fitness landscape.

VII. CONCLUSION AND VISION FOR THE FUTURE

We provide an in silico tool to allow faster and inex-

pensive exploration of the evolutionary dynamics of RNA

viruses. It is designed to provide insights that could guide lab

experiments to test hypotheses, and to speed up knowledge

discoveries. The plans for future work include incorporat-

ing immune responses into the model, enabling additional

mutation mechanisms, scaling up to the organ level, and

modeling cross-species transmissions. The model can serve

as a foundation for studying various drug interventions,

defective interfering particles, and stability of attenuated

vaccines. In addition, the model will be extended to include

various intracellular pathways and intercellular signaling

which will enable further medical studies such as sepsis.

Our novel HPC-based simulation approach is a first step

towards achieving these goals. We discuss the challenges in

designing and implementing extremely fine-grained models

for complex biological systems, such as writing reversible

model code for databases implicit to the model, retraction

of scheduled events and explicit diffusion of rare and

unique particles. The attained scale of the simulation is

unprecedented. Yet, another major scalability enhancement

is necessary to enable many biological/medical studies.
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