
Efficient Computation of Linkage Disequilibria

as Dense Linear Algebra Operations

Nikolaos Alachiotis, Thom Popovici, Tze Meng Low

Carnegie Mellon University

{nalachio, lowt, dpopovic}@andrew.cmu.edu

Abstract—Genomic datasets are steadily growing in size as
more genomes are sequenced and new genetic variants are
discovered. Datasets that comprise thousands of genomes and
millions of single-nucleotide polymorphisms (SNPs), exhibit
excessive computational demands that can lead to prohibitively
long analyses, yielding the deployment of high-performance
computational approaches a prerequisite for the thorough
analysis of current and future large-scale datasets. In this work,
we demonstrate that the computational kernel for calculating
linkage disequilibria (LD) in genomes, i.e., the non-random
associations between alleles at different loci, can be cast in
terms of dense linear algebra (DLA) operations, leveraging the
collective knowledge in the DLA community in developing high-
performance implementations for various microprocessor ar-
chitectures. The proposed approach for computing LD achieves
between 84% and 95% of the theoretical peak performance of
the machine, and is up to 17X faster than existing LD kernel
implementations. Furthermore, we argue that, the current
trend of increasing the SIMD (Single Instruction Multiple
Data) register width in microprocessors yields minor benefits
for assessing LD, resulting in an increasing gap between
performance attainable by LD computations and the theoretical
peak of the microprocessor architecture, suggesting the need
for hardware support.

Keywords-linkage disequilibrium; population genetics; dense
linear algebra; matrix multiplication;

I. INTRODUCTION

Linkage Disequilibrium (LD) [1] describes the non-

random association between alleles at different loci. It is

a statistical measure that quantifies the existence of as-

sociated alleles in a population when the detected allele

associations differ from what one would expect if the alleles

were inherited independently. Prior to conducting any LD

computation, a typical workflow involves the preliminary

steps of sequencing the genetic material of a set of individ-

uals under investigation, and the mapping of the generated

short reads to a reference genome to create a multiple-

sequence alignment (MSA). Thereafter, a so-called SNP

calling step identifies variable sites, such as single-nucleotide

polymorphisms (SNPs). The computation of LD can only

take place after a SNP map of the population under study

has been generated, since alignment sites without mutations,

i.e., monomorphic sites, are non-informative for LD.

LD has several applications in population genetics studies.

The identification of coevolving interacting genes [2], for

instance, relies on LD in order to detect regions that undergo

complementary mutations that maintain the gene interaction.

Searching for traces of positive selection in a population also

relies on LD, since, according to selective sweep theory [3],

low LD is found on different sides of a positively selected

site, whereas high LD is expected across a positively selected

site. In genome-wide association studies (GWAS), LD is

deployed to identify SNPs associated with cetrain traits of

interest, such as human diseases [4], paving the way for

more effective and personalized drug treatments [5].

LD calculations entail the extraction of allele frequencies

per SNP, and haplotype frequencies per pair of SNPs in a

dataset. Thus, the computational demands increase linearly

with an increasing sample size (number of individuals), and

quadtratically with an increasing number of SNPs. As more

and more genomes are sequenced, driven by the continuous

advances in DNA sequencing technologies, genomic datasets

suitable for population-based association studies grow both

in sample size as well as number of SNPs. Thus, high-

performance implementations are required to enable the

efficient analysis of current and future large-scale datasets on

modern microprocessor architectures, as well as to facilitate

more thorough LD-based analyses.

In this work, we make the observation that LD com-

putations can be cast in terms of a series of dense linear

algebra (DLA)-like operations, which are well-studied by

the high performance computing (HPC) community. Casting

LD computations in terms of DLA operations allows the

bioinformatics and computational biology fields to lever-

age the collective knowledge in the HPC community to

develop high-performance LD implementations for various

architectures. We describe LD computations as a series of

Basic Linear Algebra Subprograms [6], [7], [8] (BLAS)

operations, and show how high-performance LD can be

efficiently implemented using HPC techniques.

To facilitate the required allele and haplotype frequency

computations, alleles are typically encoded as one- or two-

bit entities, based on the assumption of the–widely adopted–

infinite sites model [9], or a finite site model (e.g., the gen-

eral time reversible model of DNA substitution [10], [11]).

The performance bottleneck for computing allele/haplotype

frequencies is the enumeration of states in SNPs and pairs

of states in SNP pairs, which heavily relies on population

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.80

418

count operations, i.e., counting of set bits in a word. While

the current trend in microprocessor design is to increase

the SIMD (Single Instruction Multiple Data) register width,

allowing optimized software codes to exploit this increased

computational capacity via the use of vector intrinsics, mod-

ern microprocessors do not currently exhibit a vectorized

population count operator. Consequently, applications that

rely on population count operations do not benefit from

the increased computational capacity in microprocessors.

We provide an analytical argument that increasing SIMD

width yields little benefit for LD, indicating the need for a

vectorized population count operator.

The remainder of this paper is organized as follows. In

Section II, we describe the mathematical operations and

concepts required to compute LD as a series of DLA

operations. Section III outlines the GotoBLAS approach for

high-performance matrix multiplication, as can be applied

for computing LD. Thereafter, we provide implementation

details and performance of the required LD micro-kernel

(Section IV), and highlight the need for a vectorized pop-

count operator (Section V). We provide a performance

comparison with existing LD implementations in Section VI,

and discuss current limitations and future extensions of our

approach in Section VII. Finally, we review related work in

Section VIII, and conclude in Section IX.

II. LINKAGE DISEQUILIBRIUM (LD)

Linkage disequilibirum (LD) essentially is a test to deter-

mine if mutations in different SNPs are independent. Two

SNPs (si and sj) are said to be in linkage disequilibrium

if the mutations in the two SNPs are not independent.

Mathematically, two events (A and B) are independent if

and only if

P (AB) = P (A)P (B),

where P (A) and P (B) are the probabilities that event A
and event B occur, and P (AB) is the joint probability of

both events occuring. Alternatively, events A and B are not

independent if the value D, given by

D = P (AB)− P (A)P (B), (1)

is statistically different than zero.

Given SNPs si and sj , the LD between these SNPs

can be computed using Equation 1, where events A and

B are the probabilities that a mutation has occured at

locations i and j, respectively. In other words, P (AB) is

the haplotype frequency, whereas P (A) and P (B) are the

allele frequencies. When D = 0, si and sj are in linkage

equilibrium, i.e., mutations in si and sj occur independently

of each other, whereas D �= 0 suggests that the two SNPs

are in linkage disequilibrium.

It should be noted that this formulation of LD is not

commonly used. A more commonly used measure of LD

is the squared Pearson coefficient

r2 =
(P (AB)− P (A)P (B))2

P (A)P (B)(1− P (A))(1− P (B))

=
D2

P (A)P (B)(1− P (A))(1− P (B))
, (2)

which has the advantage that all r2 values remain between

0.0 and 1.0.

A. Allele and Haplotype Frequencies

Population genetics studies typically adopt the infinite

sites model (ISM) [9], which assumes that an infinite number

of sites exist, thus every new mutation always occurs at

a site where no mutation has previously occured. As a

consequence, the number of allelic states per SNP is limited

to two, i.e., the ancestral state (before the mutation) and the

derived state (after the mutation). In this paper, we use 0 and

1 to represent the ancestral and derived states, respectively.

The limited number of states in ISM allows us to reformulate

the computation of allele and haplotype frequencies using

linear algebra, which allows to eventually leverage the

collective knowledge of the linear algebra community to

produce a high-performance LD implementation.

Given a sample size of Nseq sequences, the allele fre-

quency of SNP si (Pi) can be computed by counting the

number of derived states (mutations) in si and dividing that

by Nseq . This can easily be computed using a linear algebra

operation as follows:

Pi =
sTi si
Nseq

. (3)

Note that, because si contains only ones and zeros, the

inner/dot product (sTi si) computes the number of ones in si,
which is exactly the number of mutations in the SNP.

Similarly, the haplotype frequency Pi,j in a pair of SNPs,

si and sj , can be obtained by computing the inner product

first and then dividing the result by the sample size Nseq ,

as described below:

Pi,j =
sTi sj
Nseq

. (4)

Using Equations 1, 3, and 4, the LD value, Di,j , between

SNPs si and sj is given by:

Di,j = Pi,j − PiPj

=
1

Nseq

(sTi sj)−
1

N2
seq

(sTi si)(s
T
j sj). (5)

B. Computing LD as Matrix Multiplication

In practice, we want to compute Di,j for all possible pairs

of SNPs, si and sj , in a region of n SNPs. Thus, a simple

way of computing this is with the following pseudocode:

419

for (i = 0 to n-1)

for (j = 0 to n-1)

compute D_{i,j}

The problem with this approach is that in the above formula-

tion of Di,j , each SNP is treated as a column vector, and the

required computations for all LD values are cast in terms of

vector operations. This approach is highly inefficient, which

is why the dense linear algebra community has developed

the Level 3 Basic Linear Algebra Subprograms (BLAS3) [8]

operations, which are essentially matrix multiplications of

different forms, that are more efficient on modern day

processors with hierarchy of caches for memory. Similarly,

we note that every dataset that comprises more than one

SNPs can be regarded as a genomic matrix G, where each

column in the matrix is a SNP. Therefore, it would be

beneficial to reformulate LD computations in a way that

maximizes the amount of operations that can be cast as

matrix multiplication. Reformulating LD computations in

terms of matrix multiplication yields the following sequence

of dense linear algebra operations:

H = 1

Nseq
GTG

D = H − ppT ,

where the first operation computes all the haplotype frequen-

cies, Pi,j , and stores them in a matrix H , while the second

operation subtracts the product of the allele frequencies from

H . Here, p is a vector of the per-SNP allele frequencies.

Using this formulation, it becomes obvious that comput-

ing the matrix of haplotype frequencies (H) is an O(n3)
operation as it is simply a matrix multiplication. In addition,

the subtraction of the allele frequencies is an O(n2) opera-

tion as it is an outer product of two vectors. Therefore, as

the number of SNPs gets larger, the cost of computing H
dominates the overall required computations, and thus efforts

to optimize LD computations should focus on optimizing the

computation of H . Hence, the rest of the paper will focus

on optimizing the computation of the haplotype frequency

matrix H .

III. HIGH PERFORMANCE LD AS GEMM

Using the BLAS naming convention, the computation of

the haplotype frequency matrix, H , is in essense the general

matrix multiplication operation (GEMM). In this section,

we show that a high-performance scalar implementation of

the LD computation can indeed be implemented using the

GotoBLAS [12] approach for high-performance GEMM.

A. GotoBLAS Approach to GEMM

The GotoBLAS approach (now maintained as

OpenBLAS [13]) is a widely adopted approach for

implementing high-performance Level 3 BLAS operations

on modern architectures with a cache-based memory

hierarchy. At the heart of the GotoBLAS approach is a

highly optimized GEMM kernel of a particular shape and

implementation. For completeness, we provide an overview

of the GotoBLAS approach, but the interested reader is

recommended to review [12].

Given matrices A, B, and C, the GEMM operation

computes

C = αAB + βC,

where A, B, and C are of dimensions m × k, k × n, and

m × n, respectively. Using the GotoBLAS approach, the

input matrices are partitioned in the k dimension, exposing

a loop around a smaller GEMM operation whose inputs are

of sizes m×kc, kc×n, and m×n, where m,n� kc. This

smaller GEMM operation, also known as the rank-k update,

is the GEMM kernel in the GotoBLAS approach1. Using the

GotoBLAS approach, high-performance GEMM implemen-

tations are obtained when the GEMM kernel is implemented

efficiently for the given machine architecture. In particular,

a highly efficient GEMM kernel can usually yield GEMM

performance that is close to the peak performance of the

machine (≈ 90%).

The GEMM kernel is implemented in a carefully layered

manner where each matrix is further partitioned in a partic-

ular manner to maximize data reuse in all cache levels. In

particular, each GEMM kernel is implemented as a series of

block-panel multiplications. The inputs to each block-panel

multiplication are then packed into contiguous memory,

and the resulting matrix multiplication is implemented as a

blocked-dot product. Pictorially, this layering of the different

matrix multiplications required to compute the GEMM ker-

nel is shown in Figure 1, where the bottom layer shows

the GEMM kernel matrix being partitioned into a series

of blocked-panel matrix multiplications (denoted by the

lighter shades). The layers above the bottom layer show how

each resulting matrix multiplication at the different layers is

implemented in terms of simpler and smaller blocked matrix

multiplication operations.

B. A “Future-proof” Approach

Apart from being a highly efficient approach to imple-

menting the GEMM operation, the GotoBLAS approach

is well-suited for computing LD, now and in the future.

Typically, the number of SNPs is larger than the number of

available samples/sequences. This means that the genomic

matrix G has a dimension of k×n where n� k. In addition,

the operation for computing the haplotype frequency matrix,

H , is

H =
1

Nseq

GTG.

As m = n � k, the computation of the haplotype

frequency matrix H is already a rank-k update, which means

that the input and output matrices are already of the shapes

optimized by the GotoBLAS approach. Hence, the haplotype

1Larger input matrices are first partitioned in the m and n dimensions,
before being partitioned to expose the rank-k updates.

420

Blocked-dot product

+=

Block-panel multiplication

+=

Rank-k updates

C += A

B

Figure 1. GotoBLAS layered approach to implementing a GEMM (rank-
k) kernel on cache-based architectures. General matrix dimensions are
first partitioned into rank-k kernels (bottom layer), which in turn are
implemented as block-panel matrix multiplications (middle layer). These
block-panel matrix multiplications are then implemented as blocked-dot
products (top layer).

frequency computation is already optimized with a highly

optimized GEMM kernel.

In addition, as DNA sequencing technology improves,

the number of sequences in genomic datasets increases.

This implies that the k dimension of the genomic matrix,

representing the number of samples, is increasing. Recall

that the GotoBLAS approach partitions the input matrices

in the k dimension. Thus, increasing the k dimension of

the genomic matrix requires no change to the implemented

algorithm. More importantly, the GotoBLAS approach is

already optimized for this increase in the k dimension. Thus

the GotoBLAS approach can be considered a “future”-proof

approach for computing LD.

IV. A SCALAR LD MICRO-KERNEL

Apart from leveraging the GotoBLAS approach, we uti-

lized the BLAS-Like Instantiation Software (BLIS) [14], a

framework for rapidly implementing DLA operations using

the GotoBLAS approach. The BLIS framework represents

the accumulated knowledge of how DLA libraries are built

using the GotoBLAS approach. Using the BLIS framework,

the developer only needs to implement a highly efficient

micro-kernel, a much smaller GEMM operation than the

GotoBLAS GEMM kernel, in order to obtain a high-

performance GEMM implementation. Furthermore, employ-

ing this framework allows to leverage existing efficient

parallelization schemes.

A. The LD Micro-kernel in BLIS

At the heart of the BLIS framework is a highly efficient

micro-kernel that computes

C = αAB + βC,

where the dimensions of the matrices A, B, and C, are

mr × kc, kc × nr, and mr × nr, respectively, and

kc � mr, nr
2. A highly tuned micro-kernel will yield

a highly efficient GEMM implementation. The interested

reader is pointed to [15] for details on how a BLIS micro-

kernel is implemented and the performance achievable using

the BLIS framework. In the rest of this section, we describe

the changes required to implement the LD micro-kernel

within the BLIS framework. No attempt was made to tune

the parameters within BLIS to obtain an optimized LD

kernel.

A key difference in implementing a micro-kernel for LD is

that the LD micro-kernel operates on binary data. Recall that

our genomic matrix is a binary matrix, whose elements can

be effectively stored by using one bit per element. However,

the use of a binary matrix is not supported by BLIS or BLAS

in general. However, note that the size of a double-precision

floating-point value is the same as the size of an unsigned

long integer (64 bits). This implies that, as long as the same

64 bits in memory are loaded into the registers, we can

interpret them either as unsigned long integers or as double-

precision floating-point numbers. Therefore, the following

steps are performed:

• The genomic matrix G is stored as an array of unsigned

long integers.

• The pointer to the genomic matrix G is typecast into

a pointer to a double-precision floating-point matrix,

before being passed to the BLIS framework.

• Within the micro-kernel, the pointers to the input ma-

trices are recast back into pointers to unsigned long

integer matrices, thus allowing to correctly retrieve the

binary data.

The net result is that the genomic matrix G is stored in

the same storage scheme as described in [16], where each

SNP is stored as consecutive unsigned long integers. When

the number of sequences is not a multiple of 64, each SNP

is padded with zeros to make the number of sequences a

multiple of 64. A pictorial description of the data layout

introduced in [16] is shown in Figure 2.

A second difference is that computing with binary data

simplifies the computations that need to be performed.

Recall that each haplotype frequency, Pi,j , is computed as

follows:

Pi,j =
sTi sj
Nseq

.

Since the elements in SNPs si and sj are binary, the

multiplication of each pair of elements from si and sj will

be one if and only if both elements are ones. Hence, the

multiplication of the elements of si and sj can be simplified

to performing an and operation (&). Similarly, the addition

operation for binary data is a bit-counting/population count

2The subscripts r and c stand for registers and cache, respectively.

421

0 1 0 1 0 0 0 0 . . . 0 1 0 1
...

...

0 0 0 1 1 1 1 0 . . . 1 1 0 0
0 1 0 0 1 0 1 0 . . . 1 1 0 1 Sample
...

...

1 0 1 0 0 1 1 0 . . . 1 0 1 0
1 0 0 1 0 1 1 1 . . . 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ⇑
0 0 0 0 0 0 0 0 0 0 0 0 0 padding

0 0 0 0 0 0 0 0 0 0 0 0 0 ⇓
SNP

Figure 2. A genomic matrix G. Each row represents a sample, while every
column represents a SNP (source: [16]).

(POPCNT) operation. Therefore, the computation of Pi,j can

be performed in the following manner:

Pi,j =
1

Nseq

POPCNT(si & sj).

However, recall that within the micro-kernel, binary data is

being retrieved as unsigned long integers of 64 bits. Hence,

the computation of Pi,j in the micro-kernel is given by

Pi,j =
1

Nseq

Nint∑

k=0

POPCNT(ski&skj),

where Nint is the number of unsigned long integers required

to store a single SNP vector, and skx is the kth unsigned long

integer of SNP sx.

On modern x86 architectures (2007 onwards), the popu-

lation count operation can be effectively implemented with

the intrinsic POPCNT instruction3. There are different efforts

in implementing efficient population counters in software,

and a summary of these methods can be found in [17].

However, these software implementations have been shown

to attain lower performance than simply using the POPCNT

instruction [18]. As such, we opted to use the POPCNT

instruction in our implementation of the micro-kernel.

B. A Measure of Performance

In order to determine if an implementation of LD is high

performance, a metric for determining the theoretical peak

performance for computing the haplotype frequency matrix

D is required. Using execution time and/or number of LD

values computed per second is not a good measure as both

measures are highly dependent on the shape and size of the

input genomic matrices. We, instead, examine how the HPC

community determines the theoretical peak for GEMM.

3The POPCNT instruction comes in a 32-bit and a 64-bit variant. The
64-bit variant was chosen as it reduces the number of operations required
to compute the haplotype frequency.

GEMM is computed using multiplications and additions.

In each clock cycle, v multiplications and v addition in-

structions can be issued in parallel. On machines with

SIMD or vector registers, v is typically the number of

elements in each SIMD/vector register. Therefore, a total

of v+ v = 2v floating-point operations (FLOP) required for

computing GEMM can be performed in each cycle. Hence,

the theoretical peak of GEMM is 2v FLOP per clock cycle.

To determine the theoretical peak of LD computations,

note that three separate operations are required. Initially,

the haplotypes are constructed using an and operation to

identify samples that exhibit mutations in SNPs si and sj .

Thereafter, the number of such samples is counted using

the POPCNT intrinsic operation, and the total number of

samples is computed via an accumulation (add operator).

On current x86 architectures, only one POPCNT instruction,

computing the number of set bits in 64 bits, can be issued in

each cycle, i.e., v = 1. However, all three (and, POPCNT,

and add) instructions can be issued in the same clock cycle.

This implies that for these architectures, the theoretical peak

for computing LD is three operations per clock cycle. Note

that these three operations are scalar operations (i.e., v = 1).

C. Performance

In Figure 3, we report the performance of our haplotype

frequency implementation with scalar instructions for dif-

ferent sizes of the haplotype frequency matrix H , where

m = n, on an Intel Haswell architecture, 3.5 GHz machine.

In each test, we measured the performance attained as

a percentage of the theoretical peak as we varied the k
dimension of the genomic matrix. The top of the y-axis

represents the theoretical peak of the scalar instructions of

3 operations per clock cycle. Measuring the performance

as the k dimension increases, which represents increasing

sample size, is important because it simulates the effect of

improvements in DNA sequencing technologies that lead to

more and more genomes being sequenced.

In all these tests, even though the parameters used were

optimized for double-precision GEMM, our scalar imple-

mentation achieves between 84% and 90% of the theoret-

ical peak performance as the k dimension increases. This

variation is expected, and is also observed in many regular

GEMM implementations. The variation can be attributed to

the size of the matrix being not a multiple of the different

cache sizes. When the matrix is not a multiple of the

cache sizes, computations need to be performed on data

that do not fit in cache. As such, these data has to be

brought into the cache before computation can proceed. As

the matrix size increases, more of the cache is filled. This

translates to increased performance. It should be noted that,

this performance variation could be smoothen, but is not

considered in this implementation.

It is important to note that even as the k dimension

increases, the performance attained by our implementations

422

0 0.5 1 1.5

·104

0

20

40

60

80

100

Number of Samples (m=n)

%
o
f

th
eo

re
ti

ca
l

p
ea

k

Same Genomic Matrix on Intel Haswell (3.5GHz)

#SNPs = 4096

#SNPs = 8192

#SNPs = 16k

Figure 3. Performance attained on Intel Haswell, 3.5GHz with scalar
implementation.

remains relatively steady, thereby demonstrating that an

implementation of LD using the GotoBLAS approach re-

mains a high-performance algorithm even as the number of

samples increases. Furthermore, we show that the algorithm

is agnostic to the number of SNPs being computed. As

we increase the number of SNPs in the genomic matrix

from 4096 to 16384, the peak performance attained still

remains between 84% and 90% of the theoretical peak. Even

though increasing the number of samples could potentially

increase the number of SNPs identified, the performance of

our computation remains relatively stable across increased

number of SNPs.

Similar performance (Figure 4) is observed when two

different genomic matrices are used as inputs. In this test,

the haplotype frequencies between the SNPs in two different

genomic matrices of sizes m×k and k×n are computed. The

difference between this set of tests and the previous results

shown in Figure 3 is that all m × n haplotype frequencies

must be computed. Notice that, despite having to compute

approximately twice as many output values, the attained

performance from our implementation remains consistent

between 84% and 90%. More importantly, this demonstrates

that our proposed GEMM-based LD computational approach

can be deployed for association studies between distant

genes, as well as long-range LD calculations.

V. IN NEED FOR SIMD HARDWARE SUPPORT

Given that we can achieve good scalar performance

with no modifications to the GotoBLAS approach, one

would not be remissed if one assumes that almost linear

speed up is achievable by switching to SIMD instructions,

such as 128-bit-wide SSE (Streaming SIMD Extensions) or

0 0.5 1 1.5

·104

0

20

40

60

80

100

Number of Samples (m=n)

%
o
f

th
eo

re
ti

ca
l

p
ea

k

Different Genomic Matrices on Intel Haswell (3.5GHz)

#SNPs = 4096

#SNPs = 8192

#SNPs = 16k

Figure 4. Performance attained on Intel Haswell, 3.5GHz when computing
with two different genomic matrices.

256-bit-wide AVX (Advanced Vector Extensions). This is

because high-performance matrix multiplication invariantly

is implemented with SIMD instructions in order to attain

near peak performance. In addition, the current trend in

hardware architecture is to increase the length of SIMD

instructions allowing more computations to be performed

in parallel4. Recall that, on current x86 architectures, the

POPCNT instruction enumerates the number of set bits in a

chunk of 32 or 64 bits, which means that POPCNT is a scalar

operation. For a SIMD register containing v scalar elements,

each of the v scalar values must be extracted from the

SIMD register before the POPCNT operation is performed

on the extracted value. In addition, after all v POPCNT

operations have been performed, all v results must be stored

back into a SIMD register before a parallel SIMD addition

is performed for the accumulation step. We analyze the

changes to performance in switching to SIMD instructions

in the subsequent section.

A. Analysis of SIMD Benefit for LD

Recall that in computing the theoretical peak for the

construction of the haplotype frequency matrix, we assumed

that all three scalar operations (and, POPCNT, and add) can

be issued in parallel in one clock cycle. For simplicity, we

also assume that every instruction takes one clock cycle.

Mathematically, we can represent the time required to

compute the haplotype frequency matrix as

T = mn(max(Tadd, Tand, TPOPCNT))
= mnTadd = mnTand = mnTPOPCNT.

4512-bit SIMD instructions are already being introduced in the latest
architecture.

423

With the use of SIMD instructions, Tadd and Tand are

reduced to Tadd/v and Tand/v, respectively, where v is the

number of elements in the SIMD register. However, because

POPCNT is sequential, there is no change to TPOPCNT. Thus

the time for computing the haplotype frequency matrix is:

TSIMD = mn(max(Tadd

v
, Tand

v
, TPOPCNT))

= mnTPOPCNT,

which suggests no benefit for using SIMD instructions under

the best scenario.

However, recall that extraction and insertion operations

have to be performed in order to exploit the POPCNT

instruction. If extractions and insertions can be performed in

parallel with all three instructions, then the time to compute

the haplotype frequency matrix is mnTPOPCNT. In practice,

extractions and insertions cannot be performed in parallel as

they require the same hardware resources. This means that

when an insertion has to happen, no extraction instruction

can be executed. In turn, because there is a stall in the

extraction of values from the SIMD registers, there is a stall

in the execution of the POPCNT instruction. Hence, TPOPCNT
will increase. Thus, there potentially could be a decrease in

performance in moving to SIMD instructions for LD.

B. A Need for Vectorized POPCNT

Assuming that a vectorized POPCNT implementation in

hardware is available, this implies that all three instructions

required to calculate LD can be parallelized, and the ex-

pected time taken is

THW = mn(max(Tadd

v
, Tand

v
, TPOPCNT

v
))

= mnTadd

v
= mnTand

v
= mnTPOPCNT

v
.

The difference between TSIMD and THW is that a vector-

ized POPCNT instruction eliminates the need for extractions

and insertions, and more importantly parallelizes the se-

quential POPCNT instruction. This eliminates any sequential

segments of code in the computation of the haplotype

frequency matrix, thus parallelizing the entire operation.

VI. PERFORMANCE COMPARISON

To compare the performance of our proposed approach

with existing LD implementations, we consider two op-

timized software codes, PLINK 1.9 [19] (a performance

update to the widely used PLINK software [20] for whole-

genome association and population-based linkage analyses),

and OmegaPlus [21], [22] (a high-performance implemen-

tation5 of the ω statistic [23] for selective sweep detection

that relies on LD). We used a workstation with two Intel

Xeon E5-2620 v2 (Ivy Bridge) 6-core processors (running

at 2.10 GHz, 128 GBs main memory), as a test platform.

5We further improved performance by employing the same 64-bit pop-
count intrinsic instruction used in the GEMM-based LD implementation.

We conduct performance comparisons in terms of execu-

tion time and number of LD values per second. While execu-

tion time/number of LDs per second is not a good measure

of performance (see Section IV-B), we unavoidably conduct

such comparisons here to eliminate the risk of miscalculating

the theoretical peak performance for the other software, as it

requires low-level understanding not only of the employed

algorithms, but also the implementation itself. We consider

three datasets, A, B, and C, with same number of SNPs

(10,000) and varying sample sizes. Dataset A represents a

small subset of variants from the first chromosome of the

human genome (available from the 1000 Genomes project,

http://www.1000genomes.org), with a sample size of 2,504

sequences. Datasets B and C are simulated and comprise

10,000 and 100,000 sequences, respectively.

Due to different scope/concerns of the three LD imple-

mentations under comparison (PLINK 1.9 vs OmegaPlus vs

GEMM-based LD), it is important to note the following:

i) While all three assume the ISM, the focus of PLINK

1.9 is on genotypes, whereas the focus of OmegaPlus and

GEMM is on alleles. ii) PLINK 1.9 and GEMM compute

all N(N + 1)/2 LD values in a region of N SNPs,

whereas OmegaPlus computes only the LD values required

for the ω statistic calculations. For this reason, PLINK 1.9

and GEMM conducted 50M pairwise LD calculations for

all three datasets, whereas OmegaPlus conducted 49.4M

pairwise LD calculations for Dataset A, and 49.9M LD

calculations for Datasets B and C.

Tables I, II, and III provide the results of the comparisons

for the three datasets. As can be observed, the GEMM-

based LD approach outperforms both the PLINK 1.9 and

OmegaPlus implementations for all dataset sizes and differ-

ent numbers of threads. Figure 5 illustrates a performance

comparison based on Dataset C (10,000 SNPs and 100,000

sequences) as the number of threads increases until no more

performance gains are observed by any of the implementa-

tions, which extends beyond the number of physical cores

on the test platform (12 cores). As can be observed, the

GEMM-based performance immediately diminishes when

the number of threads is higher than 12, because each thread

is already achieving near peak core performance, whereas

both OmegaPlus and PLINK 1.9 performances improve

further, suggesting the underutilization of each core when

a small number of threads is launched.

VII. DISCUSSION

It should be pointed out that in this work we focus

solely on computing LD under the assumption of the infinite

sites model. From a computational standpoint, this requires

the simplest LD kernel implementation, since a single bit

is sufficient to accurately represent each allelic state in a

SNP. The computational demands and complexity of the LD

kernel will increase when a finite sites model is assumed, or

alignment gaps and ambiguous characters are considered.

424

Table I
PERFORMANCE COMPARISON BASED ON THE TEST DATASET THAT COMPRISES 10,000 SNPS FROM THE GENOMES OF 2,504 HUMANS.

Execution time (seconds) LDs per second (×10
6) GEMM Speedup (X) vs

Threads PLINK 1.9 OmegaPlus GEMM PLINK 1.9 OmegaPlus GEMM PLINK 1.9 OmegaPlus

1 14.18 7.04 1.89 3.52 7.10 26.36 7.48 3.71
2 12.02 6.72 1.36 4.15 7.43 36.75 8.85 4.94
4 8.21 6.02 1.11 6.09 8.29 44.87 7.36 5.41
8 5.88 4.56 0.73 8.49 10.94 68.34 8.05 6.25

12 5.29 4.21 0.62 9.44 11.85 79.58 8.43 6.72

Table II
PERFORMANCE COMPARISON BASED ON A SIMULATED DATASET THAT COMPRISES 10,000 SNPS AND 10,000 SEQUENCES.

Execution time (seconds) LDs per second (×10
6) GEMM Speedup (X) vs

Threads PLINK 1.9 OmegaPlus GEMM PLINK 1.9 OmegaPlus GEMM PLINK 1.9 OmegaPlus

1 49.20 23.71 5.36 1.01 2.10 9.31 9.22 4.43
2 39.11 14.32 3.16 1.27 3.49 15.81 12.45 4.53
4 23.98 7.79 2.01 2.08 6.41 24.85 11.94 3.87
8 13.60 5.34 1.44 3.67 9.35 34.64 9.44 3.70

12 9.78 4.67 1.17 5.11 10.70 42.37 8.29 3.96

Table III
PERFORMANCE COMPARISON BASED ON A SIMULATED DATASET THAT COMPRISES 10,000 SNPS AND 100,000 SEQUENCES.

Execution time (seconds) LDs per second (×10
6) GEMM Speedup (X) vs

Threads PLINK 1.9 OmegaPlus GEMM PLINK 1.9 OmegaPlus GEMM PLINK 1.9 OmegaPlus

1 465.99 222.54 48.09 0.10 0.22 1.03 10.3 4.68
2 364.96 114.50 25.07 0.13 0.43 1.99 15.31 4.63
4 210.64 60.31 13.54 0.23 0.82 3.69 16.04 4.50
8 120.81 31.08 7.37 0.41 1.60 6.78 16.54 4.24

12 88.37 20.95 5.21 0.56 2.38 9.59 17.13 4.01

4 12 24 48 96 128 160
0

2

4

6

8

10

Number of threads

L
D

s
p
er

se
co

n
d

(×
1
0
6
)

Performance for #threads > #cores

PLINK 1.9

OmegaPlus

GEMM LD

Figure 5. Performance comparison based on Dataset C (10,000 SNPs,
100,000 sequences) as the number of threads increases beyond the number
of physical cores (12 cores on the test platform).

Considering alignment gaps: Gaps in a MSA can

appear due to missing data [24], or can be artifacts of the

employed scoring scheme for the construction of the MSA.

The proposed framework can be adapted to compute LD

between SNPs with alignment gaps by treating them as

invalid states. This requires an additional bit vector per SNP,

denoted by c, to indicate the existence of valid allelic states

in the SNP bit-vector s. For every pair of SNPs i and j,

cij = ci&cj describes all valid pairs of states. Therefore, the

inner products for the allele frequencies can be computed as

follows:

(cij&si)
T (cij&si) = POPCNT(cij&si)

=
Nint∑
k=0

POPCNT(ckij&ski)

for both si and sj , whereas the inner product for the

haplotype frequency can be computed as:

(cij&si)
T (cij&sj) = POPCNT(cij&si&sj)

=
Nint∑
k=0

POPCNT(ckij&ski&skj).

Facilitating finite sites models: Due to the wide accep-

tance of the infinite sites assumption by population genetists,

425

our current work already covers a broad range of real-world

use-case scenarios. However, the proposed framework can be

adapted for other LD use cases that are being increasingly

deployed lately, such as finite sites models [25]. As already

explained, under the FSM assumption, the number of sites is

no longer infinite, which translates to more than two possible

states per SNP, requiring a minimum of 2 bits per allelic state

per SNP, or more. DNA states (A for adenine, C for cytosine,

G for gouanine, and T for thymine) can be encoded by as

few as 2 bits, but 4 bits are typically allocated per state to

account for ambiguous characters and alignment gaps. Note

that, ambiguous DNA characters may appear in the short

reads due to sequencing errors and/or insufficient base mis-

call correction.To facilitate LD computations under the FSM,

each SNP is now represented by 4 bit vectors, one for every

nucleotide state. Thus, a coefficient-based statistic for LD,

denoted Tij , is computed as follows, according to [26]:

Tij =
(vi − 1)(vj − 1)vij

vivj

∑

si,sj∈S

r2sisj , (6)

where S : {A,C,G, T}, vi is the number of existing states

in SNP i (vi≤ 4), vj is the number of existing states in

SNP j (vj ≤ 4), vij is the number of valid pairs of states (no

alignment gaps), and r2sisj is given by Equation 2. Evidently,

the worst case of computing LD under the FSM requires 16

times more computations than the ISM, due to the 4 valid

DNA states in each SNP.

Adapting for other domains: The representation of ob-

jects by binary vectors to facilitate computations is common

in various fields. For instance, in chemical informatics, com-

pounds are represented by binary vectors (typically referred

to as 2D fingerprints), which are generated by subgraph

isomorphism algorithms that examine atoms and bonds, and

set a bit for each different pattern. Given two compounds

A and B, with p, q, and x being the numbers of set bits

in A, B, and A ∩B, respectively, the similarity between A
and B can be calculated by several measures, with the most

commonly employed being the Tanimoto coefficient [18]:

TanimotoAB =
x

p+ q − x
. (7)

From a computational standpoint, computing the Tanimoto

coefficient between compounds represented by 2D finger-

prints is similar to computing LD between SNPs under the

ISM. Therefore, our approach can be adapted for domain-

specific similarity calculations, as long as the objects under

comparison can be represented by binary vectors.

VIII. RELATED WORK

Several software tools or packages to compute LD have

been released [27], [19]. These implementations either rely

on scalar kernels that are not optimized for performance [27]

or on vector intrinsics [19] that, as already demonstrated,

exhibit poor performance for population count operations.

Thus, it is essential to explore how the proposed framework

can be exploited to boost performance of existing software

tools for LD, or be adapted for more specialized use-

cases such as higher-order LD [28] or for selective sweep

detection [21].

IX. CONCLUSION

In this paper, we show that efficient linkage disequilibrium

computations are in fact DLA operations in disguise. By

employing the GotoBLAS and BLIS approaches from HPC,

an efficient LD implementation can be attained. Addition-

ally, the benefit of relying on the GotoBLAS approach for

computing LD is that the approach already is future-proof

with respect to advances in DNA sequencing technologies

that lead to increasing genomic dataset sizes. We also show

analytically that the lack of a SIMD popcount instruction

severely reduces the performance attainable by a SIMD

implementation of LD, resulting in a diverging gap between

what needs to be computed, and what can be computed

efficiently.

As future work, we intend to explore GPUs for the

acceleration of LD calculations. In theory, LD performance

can be significantly improved by exploiting the high mem-

ory bandwidth that current GPUs offer, since, like matrix

multiplication, LD computations are memory-bound. The

data access pattern suggests that LD is well-suited for

current SIMT (Single Instruction Multiple Threads) GPU

architectures. It remains to explore, however, whether the

underlying LD arithmetics can be efficiently handled by the

ALUs (Arithmetic and Logic Units) on the GPUs.

ACKNOWLEDGEMENTS

The authors thank Pavlos Pavlidis (FORTH, Greece) for

comments on the manuscript. This work was sponsored by

the DARPA BRASS program under agreement FA8750-16-

2-003. The content, views and conclusions presented in this

document do not necessarily reflect the position or the policy

of DARPA or the U.S. Government. No official endorsement

should be inferred.

REFERENCES

[1] R. Lewontin and K. Kojima, “The evolutionary dynamics of
complex polymorphisms,” Evolution, pp. 458–472, 1960.

[2] R. V. Rohlfs, W. J. Swanson, and B. S. Weir, “Detecting
coevolution through allelic association between physically
unlinked loci,” The American Journal of Human Genetics,
vol. 86, no. 5, pp. 674–685, 2010.

[3] J. Maynard Smith and J. Haigh, “The hitch-hiking effect
of a favourable gene.” Genetical research, vol. 23,
no. 1, pp. 23–35, Feb. 1974. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/4407212

426

[4] D. E. Reich, M. Cargill, S. Bolk, J. Ireland, P. C. Sabeti, D. J.
Richter, T. Lavery, R. Kouyoumjian, S. F. Farhadian, R. Ward
et al., “Linkage disequilibrium in the human genome,” Na-
ture, vol. 411, no. 6834, pp. 199–204, 2001.

[5] M. T. Alam, D. K. de Souza, S. Vinayak, S. M. Griffing,
A. C. Poe, N. O. Duah, A. Ghansah, K. Asamoa, L. Slutsker,
M. D. Wilson, J. W. Barnwell, V. Udhayakumar, and
K. A. Koram, “Selective sweeps and genetic lineages of
Plasmodium falciparum drug -resistant alleles in Ghana.”
The Journal of infectious diseases, vol. 203, no. 2, pp. 220–7,
Jan. 2011. [Online]. Available: http://jid.oxfordjournals.org/
content/203/2/220.long

[6] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh,
“Basic linear algebra subprograms for fortran usage,” ACM
Transactions on Mathematical Software (TOMS), vol. 5, no. 3,
pp. 308–323, 1979.

[7] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson,
“An extended set of FORTRAN basic linear algebra subpro-
grams,” vol. 14, no. 1, pp. 1–17, Mar. 1988.

[8] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, “A set
of level 3 basic linear algebra subprograms,” vol. 16, no. 1,
pp. 1–17, Mar. 1990.

[9] M. Kimura, “The number of heterozygous nucleotide sites
maintained in a finite population due to steady flux of
mutations,” Genetics, vol. 61, no. 4, p. 893, 1969.

[10] T. H. Jukes and C. R. Cantor, “Evolution of protein
molecules,” Mammalian protein metabolism, vol. 3, pp. 21–
132, 1969.

[11] J. Felsenstein, “Evolutionary trees from DNA sequences: a
maximum likelihood approach,” Journal of molecular evolu-
tion, vol. 17, no. 6, pp. 368–376, 1981.

[12] K. Goto and R. van de Geijn, “Anatomy of high-performance
matrix multiplication,” vol. 34, no. 3, pp. 12:1–12:25, May
2008.

[13] http://www.openblas.net, 2015.

[14] F. G. Van Zee and R. A. van de Geijn, “BLIS: A Framework
for Rapidly Instantiating BLAS Functionality,” ACM Trans.
Math. Softw., vol. 41, no. 3, pp. 14:1–14:33, Jun. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2764454

[15] F. G. Van Zee, T. Smith, F. D. Igual, M. Smelyanskiy,
X. Zhang, M. Kistler, V. Austel, J. Gunnels, T. M. Low,
B. Marker, L. Killough, and R. A. van de Geijn, “The BLIS
Framework: Experiments in Portability,” ACM Transactions
on Mathematical Software, 2015, accepted.

[16] N. Alachiotis and G. Weisz, “High Performance Linkage
Disequilibrium: FPGAs Hold the Key,” in Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’16. ACM, 2016,
pp. 118–127. [Online]. Available: http://doi.acm.org/10.1145/
2847263.2847271

[17] Benchmarking crc32 and popcnt instructions. [Online].
Available: http://www.strchr.com/crc32 popcnt

[18] I. S. Haque, V. S. Pande, and W. P. Walters, “Anatomy
of high-performance 2d similarity calculations,” Journal of
chemical information and modeling, vol. 51, no. 9, pp. 2345–
2351, 2011.

[19] C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M.
Purcell, and J. J. Lee, “Second-generation PLINK: rising
to the challenge of larger and richer datasets,” Gigascience,
no. 4, 2015.

[20] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A.
Ferreira, D. Bender, J. Maller, P. Sklar, P. I. De Bakker, M. J.
Daly et al., “PLINK: a tool set for whole-genome association
and population-based linkage analyses,” The American Jour-
nal of Human Genetics, vol. 81, no. 3, pp. 559–575, 2007.

[21] N. Alachiotis, A. Stamatakis, and P. Pavlidis, “OmegaPlus: a
scalable tool for rapid detection of selective sweeps in whole-
genome datasets,” Bioinformatics, vol. 28, no. 17, pp. 2274–
2275, 2012.

[22] N. Alachiotis, P. Pavlidis, and A. Stamatakis, “Exploiting
multi-grain parallelism for efficient selective sweep detec-
tion,” in Algorithms and Architectures for Parallel Processing.
Springer, 2012, pp. 56–68.

[23] Y. Kim and R. Nielsen, “Linkage disequilibrium as
a signature of selective sweeps,” Genetics, vol. 167,
no. 3, pp. 1513–1524, Jul. 2004. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/15280259

[24] A. Stamatakis and N. Alachiotis, “Time and memory efficient
likelihood-based tree searches on phylogenomic alignments
with missing data,” Bioinformatics, vol. 26, no. 12, pp. i132–
i139, 2010.

[25] L. A. Mathew, P. R. Staab, L. E. Rose, and D. Metzler, “Why
to account for finite sites in population genetic studies and
how to do this with jaatha 2.0,” Ecology and evolution, vol. 3,
no. 11, pp. 3647–3662, 2013.

[26] D. V. Zaykin, A. Pudovkin, and B. S. Weir,
“Correlation-based inference for linkage disequilib-
rium with multiple alleles.” Genetics, vol. 180,
no. 1, pp. 533–45, Sep. 2008. [Online]. Avail-
able: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=2535703\&tool=pmcentrez\&rendertype=abstract

[27] B. Pfeifer, U. Wittelsbürger, S. E. Ramos-Onsins, and M. J.
Lercher, “PopGenome: An Efficient Swiss Army Knife for
Population Genomic Analyses in R.” Molecular biology and
evolution, vol. 31, no. 7, pp. 1929–36, Jul. 2014. [Online].
Available: http://mbe.oxfordjournals.org/content/31/7/1929

[28] M. Slatkin, “Linkage disequilibrium-understanding the evolu-
tionary past and mapping the medical future,” Nature Reviews
Genetics, vol. 9, no. 6, pp. 477–485, 2008.

427

