
Process Simulation of Complex Biochemical Pathways in Explicit 3D Space Enabled
by Heterogeneous Computing Platform

Jie Li
Dept. of Elec. and Comp. Engg.
Stevens Institute of Technology

Hoboken, NJ.
jli8@stevens.edu

Amin Salighehdar
Dept. of Elec. and Comp. Engg.
Stevens Institute of Technology

Hoboken, NJ.
asalighe@stevens.edu

Narayan Ganesan
Dept. of Elec. and Comp. Engg.
Stevens Institute of Technology

Hoboken, NJ.
nganesan@stevens.edu

Abstract—Biological pathways typically consist of dozens of
reacting chemical species and hundreds of equations describing
reactions within the biological system. Modeling and simulation
of such biological pathways in explicit process space is a com-
putationally intensive due to the size of the system complexity
and nature of the interactions. Such biological pathways exhibit
considerable behavioral complexity in multiple fundamental
cellular processes. Hence, there is a strong need for new
underlying simulation algorithms as well as need for newer
computing platforms, systems and techniques. In this work we
present a novel heterogeneous computing platform to accelerate
the simulation study of such complex biochemical pathways
in 3D reaction process space. Several tasks involved in the
simulation study has been carefully partitioned to run on
a combination of reconfigurable hardware and a massively
parallel processor, such as the GPU. This paper also presents an
implementation to accelerate one of the most compute intensive
tasks - sifting through the reaction space to determine reacting
particles. Finally, we present the new heterogeneous computing
framework integrating a FPGA and GPU to accelerate the
computation and obtain better performance over the use of
any single platform. The platform achieves 5x total speedup
when compared to a single GPU-only platform. Besides, the
extensible architecture is general enough to be used to study a
variety of biological pathways in order to gain deeper insights
into biomolecular systems.

I. INTRODUCTION

Biological systems encompass complexity that far sur-
passes many artificial systems. A biochemical pathway is
a cascade of reactions then lead to formation of certain end
product(s), in order to carry out specific task(s) within the
biological system. Simulation and study of such biochemical
pathways will lead to deeper insights and understanding of
functions of proteins, kinases and phosphotases that activate
and de-activate reagents, sensitivity of various chemical
species etc. There are several modeling and simulation tools
that are used to study biological pathways, including but
not limited to Ordinary Differential Equations(ODEs), graph
theoretical analysis of reaction networks, boolean networks
and explicit modeling in reactive process space, with each
having its own scientific, computational and implementation
merits and disadvantages. Although, ODEs are a popular
modeling framework and computationally very efficient,

they only represent aggregate concentration of the species,
and fail to capture many intricacies and local behavior
mechanisms within the cell. Modeling via Partial Differen-
tial Equations(PDEs) on the other hand, does not capture
the discrete particle effects(Eg: too few number of DNA
molecules within the nucleus) on the overall behavior of
the system but strikes a balance between computational cost
and accuracy. On the other hand, reaction modeling in 3D
process space is the most computationally intensive but at
the same time serves as an accurate virtual computational
microscope into biological systems.

In this work, we present an algorithm for simulation
study and a novel implementation of the computational
technique via a heterogeneous platform. Typically, modeling
such biological pathways in reaction space requires millions
of reagents and beyond and it is imperative to consider all-
particle interactions simultaneously within the system. In
this paper, we present a new heterogeneous computational
framework to study the interactions enabled by the massively
parallel processing capability of the GPUs and FPGAs. The
computational framework will take the simulation and study
of large biological systems to the next level, where in macro-
biological systems such as cells, and interaction between
multiple cells can be studied to gain valuable insights into
real biological processes. Since, the algorithm, technique
and the underlying computational framework, can be applied
to a variety of biochemical pathways, we test and validate
our system on the realistic JAK-STAT signal transduction
pathway as an example application.

The rest of the paper is organized as follows. In the next
section we give an overview of traditional stochastic sim-
ulation algorithms for simulation of chemical kinetics and
then proceed to present our scalable-concurrent algorithm
meant to study such complex pathways in reactive process
space. We then present the architecture and design of the
heterogeneous platform (FPGA + GPU) with the objective
of maximizing the operating frequency and the size (in
terms of number of particles) that fit on the FPGA while
maintaining simulation quality. We apply the framework to
study the behavior of a common yet complex JAK/STAT sig-

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.199

528

nal transduction pathway. Section III provides an overview
of the JAK/STAT pathway. We finally present our results
and validation experiments along with performance. We
conclude with a discussion of potential future work and
implications.

II. ALGORITHM AND IMPLEMENTATION

A. Sequential algorithm

Algorithms such as the Kinetic-Monte Carlo[2], [3] and
Gillespi Algorithm[1] have been used for stochastic simula-
tion of chemical systems, on a sequential execution platform.
The algorithm proceeds by listing all possible reactions and
choosing to execute one of them based on the stoichiomet-
ric rate and the population of reagents. The time counter
is then incremented appropriately. Traditionally Gillespie
Algorithm[1] and its derivatives such as Kinetic Monte
Carlo[2], [3] type algorithms have been used to study the
behavior of an ensemble of processes in a shared probability
space, meaning a single random variable dictates the next
feasible reaction. The Kinetic Monte Carlo based methods
broadly follow: (1) Enumeration of all feasible reactions
between all individual reagents that are at any given confor-
mation. (2) Random selection of one of the reactions to carry
out, based on the generated set of feasible reactions. The
selection of the reaction is based on the relative probability
and rate of that reaction. (3) Increment the simulation time
corresponding to the rate of the reaction just selected. Higher
the reaction rate or the number of distinct reactions, smaller
the time increment. (4) Updating the new set of particles
and their coordinates according to the selected reaction
and their movements within the 3D space. However, the
procedure is inherently sequential to be suitable for studying
behavior of large number of reagents due to rapid growth
of possible interactions between reagents. The number of
feasible reactions grows with growing number of species as
well as the the number of individual reagents. In general,
the growth in the set of all possible interactions grows
proportional to O(N2), for a set of N reagents and O(M2)
for M different chemical species. In the above algorithm, the
sequential nature of the enumeration of all possible reactions
as outlined above in Step (1) overwhelms the computation
required to accurately simulate the process behavior. Hence
the traditional algorithm above faces fundamental bottleneck
from a computational standpoint and is not scalable to sim-
ulation study of large biochemical systems within a reactive
3D space. Hence, an efficient simulation suite designed
for studying large number of concurrent interactions and
processes, and optimized for modern heterogeneous and
reconfigurable computational platforms will be imperative
in simulating drug treatment and therapy, gene expression,
protein-protein interaction and micro-devices that interact
with biological systems.

B. Scalable concurrent algorithm

In our previous work, we have designed and applied
the following algorithm to study the growth of biofilms[4]
which was implemented on massively parallel processors
such as GPUs. The application of GPUs for simulation study
of spatial molecular dynamics along with the challenges
were also investigated previously[5]. However, in contrast
to purely physical interactions, general chemical interactions
will result in creation of new particles and consumption of
others in a consistent pattern, as described by the chemical
equations. Furthermore, in contrast to molecular dynamics
problem, where fixed persistent agents interact with all the
neighboring agents, chemical reagents interact only with
select neighbors while producing new products.

In order to leverage the parallel and concurrent frame-
work, each interacting entity or particle is treated as an
”autonomous agent” that interacts with other such agents of
different type in an independent and autonomous fashion.
This helps overcome the sequential limitations imposed by
traditional algorithms. In such a parallel and concurrent
framework, each ”agent” is capable of reacting with one
or finite number of agents in its vicinity. The whole system
is then subject to global simulation time that is incremented
in fixed units throughout the course of the simulation. The
concurrent reactions at each time step is updated to reflect
the consumption of old reagent particles and production of
newer agents. One of the crucial tasks in transitioning from
traditional algorithms to an explicitly defined 3D process
space populated by individual particles is conversion of
reaction rates to equivalent interaction radii. A pair of
particles within the specified interaction radius on a collision
course, will react together with a probability that is set
by their velocities which then leads to the products of the
specified reaction. The concurrent algorithm (as shown in
Figure(1)can be stated as follows,
(1) Initialize: The particles positions, drift velocities.
(2) Initialize Reaction Radii: Enumerate the set of reactions
between different types along with the interaction radius of
the reaction. Each reaction ID contains a set of reacting
types, the radius of interaction, reaction delay and the
products. For first order reactions of type A → φ or
A→ B+C, each particle of type A is assigned a life-span
by sampling from an exponential distribution parametrized
by its decay rate. For reactions of type A + B → C + D,
the reaction radius is set based on the rate-constant and drift
rate of particles[6].
(3) Build Neighbor List: Divide the simulation volume into
disjoint cubic cells of dimensions equal to the largest radius
of interaction. In order to identify the neighbors of each
particle only the current cell and the 26 adjacent cells in 3D
need to be examined (Figure(2). For each particle, build a
list of particles of compatible types that could react. This
is done efficiently with the help of a stoichiometric bit-

529

vector. The stoichiometric bit-vector is a array of size n
of n-bit vectors, where n is the number of chemical species
(or types). The jth element of ith bit-vector is set to 1 if
type i can react with j. A separate lookup table stores the
product each corresponding reaction between types i and j.
(4) Start the Simulation: The algorithm is depicted in
fig(1). The neighborList as described above is made
computationally efficient via the Verlet Algorithm[7]. In the
Verlet method, the neighborList need not be build at
every step, if the radius is chosen to be larger than the
reaction with largest interaction radius rmax plus a buffer
rbuf . In this case, the neighborList of all particles stay
the same until any one of the particles move a distance
greater than rbuf/2, in which case it needs to be rebuilt.
This eliminates the need for building the neighbor list at
every time step. The simulation can be also configured to
support multiple disparate reaction regions with different
particle density.

It is very well possible that each particle is found within
the interaction radius of several other particles capable of
reacting with each other, in such case, efficient parallel
techniques to select a set of mutually consistent reactions
to carry out, must be formulated. The ParallelSelect
algorithm proposed here (as shown in Fig(3) is instrumental
in consistent particle selection in a parallel and concurrent
simulation framework. The algorithm proceeds as follows:
1) Build the feasibleList for each particle, which is a
subset of neighborList and contains the set of particles
capable of reacting with the current particle. 2) Sort the
feasibleList according to the Euclidean metric in
order to set the reaction priority. 3) Each particle selects
the first available particle in its feasible list for reaction. 4)
If the selection is mutual then schedule the corresponding
reaction in the reaction pipeline and mark the particle as not
available for any more selections, else mark the particle as
still available for selection by other particles. Perform steps
3) and 4) until converged or no more available particles in
the feasibleList.

C. Heterogeneous computing framework

The high-throughput and similar nature of computation
required to process each agent makes any massively parallel
processor such as the GPU a good initial choice. However, as
we outline below, the reconfigurable hardware co-processor
is extremely beneficial in handling tasks that would other-
wise strain the memory bandwidth and instruction through-
put of the GPU. In this work we demonstrate the power
of heterogeneous computational framework in accelerating
an application that is not amenable to massively parallel
processor alone. The novel application area as well as its
implementation on the heterogeneous computing platform
has not been studied before. In our previous work[8], we
described the FPGA-only architecture for the Feasible list

Is t<Tf

1) Build NeighborList

2) Sift through NeighborList to extract

FeasibleList,(Subset of particles that can

react with current particle)

ParallelSelect Reagents for

reaction

Execute Reactions:

1) Check to see if the particle’s lifespan is up or if it

is selected to react with another particle

2) Mark reacting particles as “inactive”

3) Create new particles for products of reactions,

set their types, positions, velocities and life-spans

Update positions velocities and “time

to live” for all particles

Garbage Collection: Free memory

used by inactive particles for reuse

Increment

global time ‘t’

Figure 1. Tasks in process simulation of chemical kinetics in 3D process
space.

Figure 2. Schematic of NeighborList build in 2D

530

Computational Workgroup of threads

Figure 3. Particles in Red can react with particles in Green. Left: Each
particle governed by a thread is in the vicinity of several particles that it can
react with. Right: The ParallelSelect algorithm leads to consistent
selection of reagents on a parallel execution framework.

generation. In the current work we build upon the hardware
design and present the integrated (GPU+FPGA) comprehen-
sive framework along with PCI-e bridge and interconnect
performance. In the original GPU implementation of the
NeighborList build kernel, each thread-block is respon-
sible for building the neighbor list of all the particles within
a specific cell with in the reaction space. To this effect each
thread block sifts through the particles in 26-adjacent cells
in addition to its own cell to determine the neighbors of each
particle within the cell (as shown in Figure(2)).

The above algorithm was implemented to study the be-
havior of JAK/STAT signal transduction pathway, within
intra-cellular 3D space, which is outlined in Section(III).
We provide a quick preview of the GPU-kernel times, just
to motivate the need for heterogeneous hardware, while a
full discussion of performance results follows in Section(III).
Table IV shows the average performance of GPU-only
implementation and GPU-FPGA heterogeneous implemen-
tation of the various kernel functions. Among all kernel
functions in the table, NeighborBuild function consumes
> 90% of the total execution time. This is due to fact that
any parallel implementation that sifts through adjacent cells
will require 27x bandwidth to the off-chip global memory,
as each cell performs the same task to its neighboring
cells. The problem is further amplified by the fact that the
NeighborBuild kernel is called far more often than in
an application such as molecular dynamics. The faster the
movement of particles more often the NeighborBuild
kernel needs to be called. This places undue strain on the
global memory bandwidth even on a high-throughput device
and throws off the instruction-to-memory ratio far from the
optimal value.

In order to overcome this bottleneck, we implement the
NeighborBuild task on the FPGA and leverage the
capability of the heterogeneous computational platform. The
on-chip block RAM in an FPGA chip can be configured
with more flexibility as needed. However differences in
the operating clock speeds between the FPGA and GPUs

(typically 200Mhz vs 1200Mhz) along with other on-chip
capabilities make GPU and FPGAs suitable for different
applications. Reconfigurable hardware are extremely good
in handling divergent task pipelines via combinational logic,
not subject to software synchronization overheads, do not
require similarity of instructions and offer cycle-accurate
performance predictability. On the other hand, GPUs have
high-instruction throughput and floating point capability
which is suitable for data parallel applications. It is possible
to leverage the capabilities of each device via a task-level
partition of the kernels as shown in Figure (6) and integrate
the GPU and FPGA-based platforms.

On a GPU platform, the on-chip shared memory is a
critical resource for high-throughput instruction processing,
which is allocated per thread block to enable low-latency
inter-thread communication. However the shared memory
size as well as the bank-conflicts limits speedup in handling
and accelerating computation that exhibit data dependency.

D. Hardware Design
Although the presented application is unique, previous

work on accelerating molecular dynamics on reconfigurable
platform[9], [10], is most related to the current implementa-
tion, but from a different application domain. In addition, in
this work, we focus on the heterogeneous computing hard-
ware to leverage the capabilities of multiple architectures.
In this section we present the hardware design for the task
to compute NeighborList and a unified heterogeneous
computing framework for large scale process simulations in
3D space. This framework also considers other resources
such as PCIe communication throughput and the memory.
Target hardware: a generic PC and GPU GTX 580 and a
PCIe plug-in board ML605 with Xilinx XC6VLX240T. The
generic system design is shown in Figure 4.

CPU

PCIe

Switch

DDR

Memory

GPU FPGA

DDR

Memory

DDR

Memory

GPU Kernel Tasks

CleanArray

SortFeasible

ExecuteReaction

UpdatePosition

BuildCell

UpdateCell

CheckConstraints

FPGA Kernel Tasks

NeighborBuild

Figure 4. Heterogeneous system framework

The FPGA processes one central cell at a time. Each
processing unit needs to compute the distance between all

531

pairs of particles i and j, where i must be in the central
cell but j can be in any of the 26 neighborhood cells or in
the central cell. In order to fully parallelize each cell, the
system needs as many processing units as the particles in the
central cell. One particle in the neighboring cell is processed
per time cycle. So, the total execution time of one central
cell is 27 x the maximum number of particles in one cell.

In order to preserve the accuracy of distance calculation,
32-bit single precision is necessary. Traditionally, since float-
ing point resources on the FPGA are limited to be useful for
large scale data processing applications, fixed point precision
is implemented with some impact on accuracy. Fortunately,
modern FPGAs are equipped with ample DSP units that
make floating point distance calculation within each pro-
cessing element possible. With the available resources, it
is usually advantageous to use the existing floating point
units instead of synthesizing custom fixed precision units.
This leads to greater than expected number of Processing
Elements to represent particles within each cell.

In our implementation particle coordinates and reagent
types are copied from GPU to FPGA as shown in Figure 5.
We also maintain a reaction radius lookup table on FPGA,
as each reaction may have different reaction effective ra-
dius. The total amount of data transferred to the FPGA
(assuming an average number of particles to be 1 million)
is coordinates = 1M x 3 channel x 32 bits = 12MB and
type = 1M x 32 bit = 4MB. However, the copy-back of
the FeasibleList can be overlapped with computation.

The FPGA-GPU communication takes place across the
PCIe bus via DMA transfers access. The tasks partitioned
among the FPGA and GPU such that the NeighborList
build is performed on the FPGA and the other remaining
tasks on the GPU. Once the computation is initiated, data
transfer between GPU and FPGA would take place once
per iteration. Beside the FPGA processing time, the data
transfer which incurs certain overhead also contributes to
the total calculation time. The PCIe x4 bus of ML605 board
provides 800MBps bandwidth each direction. Normally, PCI
transmission efficiency ratio is close to 0.8. Initially, the
global list of coordinates of all particles arranged in the
order of the cell is copied to the FPGA, in order to calculate
the NeighborList. In order to decrease the copy-back
bandwidth to the GPU, where the reactions are selected and
are executed, we only need the list of reacting neighbors
feasiblelist and not all the neighbors. This decreases
the amount of data to be copied back to the GPU. The
feasiblelist is a size n by m 32 bit array, where n
is the maximum number of feasible neighbors and m is the
number of total particles. The element {i, j} is the global id
of feasible neighbor j which particle i will react with. The
feasiblelist is of size 32(where we assume maximum
number of feasible reacting neighbors is 32) x 1M x 32 bit
= 128MB which needs around 0.2s to transfer through PCIe.

The critical resources on the FPGA are the hard mul-

GPU FPGA

Coordinates

& Type

FeasibleList

PCIe

Figure 5. Data is exchanged between GPU and FPGA every time step.
Particle coordinates are transferred to the FPGA for the computation of
FeasibleList which is copied back to the GPU.

Y fifo

Z fifo

X fifo

Type fifo

Processing

Unit 2

Processing

Unit 1

Radii lookup

table

Processing

Unit n

Output

Block RAM

PCIe

.

.

.

Input

Block RAM

Figure 6. processing unit architecture

tipliers, the registers and, in particular, the block RAMs.
In table(I) outline the resources on the part Xilinx
XC6VLX240T.

Table I
DEVICE CAPABILITY

Device XC6VLX240T

Logic Cells 241,152

Conf.Logic Blocks 37,680

DSP48E1 3,650

Block RAM Blocks 768

III. JAKSTAT SIGNALING PATHWAY

We apply the current framework to study the behavior of
the JAK/STAT signal transduction pathway. The framework
is powerful enough to simulate the behavior and inter-
actions of upwards of a million independent agents. The
Janus kinase/signal transducers and activators of transcrip-
tion (JAK/STAT) pathway is one of a handful of pleiotropic
cascades used to transduce a multitude of signals for de-
velopment and homeostasis in animals. In mammals, the
JAK/STAT pathway is the principal signaling mechanism for
a wide array of cytokines and growth factors[11].

The JAK-STAT pathway is intracellular signaling path-
ways in all vertebrates. These pathways have involved in

532

R+JAK RJ

IFN

IFNRJ IFNRJ2

IFRJ2*

SHP-2

IFRNJ2*-SOCS1

STAT1C STAT1C*

PPX
SOCS1

STAT1c*-STAT1c*
mRNAc

STAT1n*-STAT1n*

STAT1n*

STAT1n

PPN

DNA

mRNAn

Nuclear membrane

(1) (2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Figure 7. Kinetic model of JAK/STAT signaling pathway

with multiple fundamental cellular processes. Fig(7)shows
the dynamic scheme of this pathway and Table (II) shows
all the biochemical reactions included in the model along
with the rates constants in Table(III). In step 1, JAK binds
to the IFN- receptor (IFNR) and forms the IFNR-JAK(RJ)
complex. In step 2, IFN- binds to extracellular domain of
IFNR-JAK complex and forms the IFN–IFNR-JAK com-
plex(IFNRJ). In next step dimerization of IFNRJ happens
and IFRJ2 is formed. The dimerization of the RJ complex
leads to the phosphorylation of several tyrosine residues
by JAK (Step4) yielding a form as IFRJ2*. The STAT1
binds to IFNRJ2* and is phosphorylated by JAK(step5).
The phosphprylated STAT1 forms a homo-dimer (step6).
The phosphorylated dimers of STAT1 are translocated to the
nucleus (step7) and work as the transcription factors(step8).
The SOCS1 is induced by JAK/STAT pathway(step9). The
SOCS1 binds to the activated receptor JAK and inhibits
its kinase activity(step10).The SHP-2 is known to be a
phosphotase for the RJ complex. In addition PPX and
PPN are known to be phosphotases for phosphorylated
STAT in the cytoplasm and the nucleus respectively[11].
In this kinetic analysis, all reactions are represented by
mass-action kinetics. A cell is divided into two compart-
ment,the cytoplasm and the nucleus. The phosphorylated
STAT1 dimers(STAT1c*-STAT1c*) are translocated to the
nucleus and dephosphorylated STAT1 monomers (STAT1n)
are transported from the nucleus to the cytoplasm.

A. Experiments and Performance

The computational framework presented here especially
suitable to simulate large and complex biological pathways
serving as a macro-molecular visual scope and helps ob-
serve key biochemical reactions, as the events unfold in

Table II
CHEMICAL REACTIONS DESCRIBING JAK/STAT SIGNALING PATHWAY

Reactions; Corresponding rate constants

[R] + [JAK]↔ [RJ]; k1, k−1

[IFN] + [RJ]↔ [IFNRJ]; k2, k−2

2[IFNRJ]↔ [IFNRJ2]; k3, k−3

[IFNRJ2]→ [IFRNJ2∗]; k4

[IFNRJ2∗] + [STAT1c]↔ [IFNRJ2∗ − STAT1c]; k5, k−5

[IFNRJ2∗ − STAT1c]→ [IFNRJ2∗] + [STAT1c∗]; k6

[IFNRJ2∗] + [STAT1c∗]↔ [IFNRJ2 ∗ −STAT1c∗]; k7, k−7

2[STAT1c∗]↔ [STAT1c∗ − STAT1c∗]; k8, k−8

[IFNRJ2∗] + [SHP − 2]↔ [IFNRJ2∗ − SHP − 2] k9, k−9;

[IFNRJ2∗ − SHP − 2]→ [IFRNRJ2] + [SHP − 2]; k10

[PPX] + [STAT1c∗]↔ [PPX − STAT1c∗]; k11, k−11

[PPX − STAT1c∗]→ [PPX] + [STAT1c]; k12

[PPX] + [STAT1c∗ − STAT1c∗]
↔ [PPX − STAT1c∗ − STAT1c∗]

; k11, k−11

[PPX − STAT1c∗ − STAT1c∗]
→ [PPX] + [STAT1c− STAT1c∗]

; k12

[STAT1c] + [STAT1c∗]↔ [STAT1c− STAT1c∗]; k13, k−13

[STAT1c∗ − STAT1c∗]→ [STAT1n∗ − STAT1n∗]; k14

2[STAT1n∗]↔ [STAT1n∗ − STAT1n∗]; k7, k−7

[PPN] + [STAT1n∗]↔ [PPN − STAT1n∗]; k15, k−15

[PPN − STAT1n∗]→ [PPN] + [STAT1n]; k16

[PPN] + [STAT1n∗ − STAT1n∗]

↔ [PPN − STAT1n∗ − STAT1n∗]
; k15, k−15

[PPN − STAT1n∗ − STAT1n∗]

→ [PPN] + [STAT1n− STAT1n∗]
; k16

[STAT1n] + [STAT1n∗]↔ [STAT1n− STAT1n∗]; k13, k−13

[STAT1n]→ [STAT1c]; k17

[STAT1n∗ − STAT1n∗] +DNA→ [mRNAn]; k18

[mRNAn]→ [mRNAc]; k19

[mRNAc]→ [SOCS1]; k20

[SOCS1] + [IFNRJ2∗]↔ [SOCS1− IFNRJ2∗]; k21, k−21

[mRNAc]→ φ; k22

[SOCS1]→ φ; k23

[STAT1c] + [SOCS1− IFNRJ2∗]↔
[STAT1c− SOCS1− IFNRJ2∗]

; k5, k−5

[SHP − 2] + [STAT1c− SOCS1− IFNRJ2∗]↔
[SHP − 2− STAT1c− SOCS1− IFNRJ2∗]

; k9, k−9

[SHP − 2− STAT1c− SOCS1− IFNRJ2∗]
→ [SOCS1] + [IFNRJ2] + [STAT1c] + [SHP − 2]

; k10

[SHP − 2− STAT1c− SOCS1− IFNRJ2∗]
→ [SHP − 2− STAT1c− IFNRJ2∗]

; k23

space and time. For performance comparisons, the JAK-
STAT signaling pathways was initialized with 1.23 million

533

!

"

"

!

!

"

"

!

!

"

"

!

Figure 8. Particle concentration of important bio-molecular types(in thousands of particles) within the JAK-STAT signaling pathway. The annotations
refer to biologically relevant quantities such as, time(τ) to peak value(α), and peak duration(ϑ).

Table III
KINETIC PARAMETERS

Parameter Value Parameter Value

k1 = 100, k−1 = 0.05 k2 = 20, k−2 = 0.02

k3 = 40, k−3 = 0.2

k4 = 0.005 k5 = 8, k−5 = 0.8

k6 = 0.4 k7 = 5, k−7 = 0.5

k8 = 20, k−8 = 0.1 k9 = 1, k−9 = 0.2

k10 = 0.003 k11 = 1, k−11 = 0.2

k12 = 0.003 k13 = 0.0002, k−13 = 0.2

k14 = 0.005 k15 = 1.0, k−15 = 0.2

k16 = 0.005

k17 = 0.05 k18 = 0.01

k19 = 0.001 k20 = 0.01

k21 = 20, k−21 = 0.1

k22 = 0.0005 k23 = 0.0005

particles or independent reacting agents, within a simulation
space of 200×200×200 distance units. The system was
simulated for a period of 45,000 timesteps while recording
the trajectory and concentration of various chemical species.
The preliminary results shown in Fig(8) agree qualitatively
with those obtained via the ODE based framework([11],
[12]). The results show change in particle concentrations
of unactivated and activated transcription factor (STAT1c,
STAT1c*2), mRNA within the nucleus and cytoplasm and

Table IV
FUNCTION PERFORMANCE

Kernel function GPU (ms) GPU+FPGA(ms)

CleanArray 35 35

SortFeasible 5 5

ExecuteReaction 1 1

UpdatePosition 6 6

BuildCell 12 12

UpdateCell 5 4

NeighbourBuild 1423 230

CheckConstraints 2 2

Total time 1510 295

the feedback protein SOCS1, with the total number well
over a million particles. The annotations show biologically
relevant parameters, such as time to peak, duration of
peak and the peak value. For performance comparisons, we
set different initial number of particles(independent agents)
for this system from 10,000 to 1.35 Million in order to
measure the average time-per-step. In Fig(9), we compare
the performance of GPU and FPGA implementation of the
compute intensive task of calculating the FeasibleList.
The FPGA achieves approximately 5 x speedup over GPU-
only implementation for all system sizes while using the 32
bit floating point to maintain simulation quality.

534

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

500

1000

1500

2000

2500

Number of particles

T
im

e
 i
n
 m

s

Figure 9. Performance of the kernel with respect to the total number of
particles (40k, 350k, 600k, 1.3M and 2M independent agents). The GPU-
FPGA performance is shown in red bars while the GPU only performance
is shown in blue.

IV. DISCUSSION

In this paper we present a novel heterogeneous computa-
tional framework to study a large and complex biological
pathways in 3D process space. The explicit simulation
of the pathways in 3D space offers deeper understanding
than simple ODE or PDE based models. The ODE based
model assume the reagents to be well mixed while ignoring
boundary effects, while the PDE based model completely
ignore the discrete effects. For example within the nucleus
there are only a few discrete copies of the DNA which
cannot be captured by PDEs as they assume continuum of
concentration values. Furthermore, DNA transcription is a
highly discrete process as it is first unfolded and undergoes
chromatin dynamics. Such effects can be accurately captured
by process simulation and the above framework aims to
pave the way for routine simulation of large and complex
pathways. To that end we present a computational frame-
work capable of handling large and complex pathways via
a heterogeneous platform. The GPU-FPGA implementation
shows five times speedup over our original single GPU-
only platform. Besides, the extensible architecture is general
enough to be used to study a variety of computationally
intensive systems. The future work will include a variety
of optimization strategies for both GPU and FPGA and
application to other biomolecular systems.

V. ACKNOWLEDGEMENTS

The authors would like to thank the Xilinx University
Program(XUP) and the NVIDIA-Professor partnership for

their generous support and donation helpful in carrying out
this research.

REFERENCES

[1] D. T. Gillespie, “Exact stochastic simulation of coupled chem-
ical reactions,” The Journal of Physical Chemistry, vol. 81,
no. 25, pp. 2340–2361, Dec. 1977.

[2] D. R. Cox and H. D. Miller, The Theory of Stochastic
Processes. Methuen, London, 1965.

[3] A. Phillips and L. Cardelli, “Efficient, correct simulation of
biological processes in the stochastic pi-calculus,” in Compu-
tational Methods in Systems Biology, ser. LNCS, vol. 4695.
Springer, September 2007, pp. 184–199.

[4] J. Li, V. Sharma, N. Ganesan, and A. Compagnoni, “Simu-
lation and study of large-scale bacteria-materials interactions
via bioscape enabled GPUs,” in Proceedings of ACM-BCB
2012, 2012.

[5] M. Taufer, N. Ganesan, and S. Patel, “GPU enabled macro-
molecular simulations: Challenges and opportunities,” IEEE
Computing in Science and Engineering, vol. 15, no. 1, Jan
2012.

[6] R. Erban and S. J. Chapman, “Stochastic modelling of
reaction-diffusion processes: algorithms for bimolecular re-
actions,” Physical Biology, vol. 6, no. 046001, 2009.

[7] L. Verlet, “Computer Experiments on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules,”
Physical Review, vol. 159, no. 1, pp. 98–103, 1967.

[8] J. Li, A. Salighehdar, and N. Ganesan, “Simulation of com-
plex biochemical pathways in 3D process space via heteroge-
neous computing platform: Preliminary results,” in Intl. Symp.
on Applied Reconfigurable Computing, April 2014.

[9] M. Chiu and M. C. Herbordt, “Molecular dynamics
simulations on high-performance reconfigurable computing
systems,” ACM Trans. Reconfigurable Technol. Syst., vol. 3,
no. 4, pp. 23:1–23:37, Nov. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1862648.1862653

[10] Y. Gu, T. VanCourt, and M. C. Herbordt, “Explicit design of
fpga-based coprocessors for short-range force computations
in molecular dynamics simulations,” Parallel Computing,
vol. 34, no. 45, pp. 261 – 277, 2008, reconfigurable
Systems Summer Institute 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819108000215

[11] S. Yamada, S. Shiono, A. Joo, and A. Yoshimura, “Control
mechanism of JAK/STAT signal transduction pathway,” FEBS
Letters, vol. 534, pp. 190–196, 2003.

[12] A. Gambin, A. Charzyska, A. Ellert-Miklaszewska, and
M. Rybiski, “Computational models of jak1/2-stat1 signal-
ing,” JAK-STAT, vol. 2, 2013.

535

