
Boosting the performance of Bayesian divergence time estimation with the

Phylogenetic Likelihood Library

D. Darriba1,∗¶, A.J. Aberer†, T. Flouri2,†, T.A. Heath3,‡, F. Izquierdo-Carrasco4,† and A. Stamatakis†§

∗Department of Biochemistry, Genetics and Immunology

University of Vigo, Vigo, Spain

Email: ddarriba@uvigo.es
†Heidelberg Institute for Theoretical Studies

Heidelberg, Germany

Email: {Tomas.Flouri, Fernando.Izquierdo, Alexandros.Stamatakis}@h-its.org
‡Department of Integrative Biology, University of California, Berkeley

Email: tracyh@berkeley.edu
§Karlsruhe Institute of Technology

Institute for Theoretical Informatics

Postfach 6980, 76128 Karlsruhe, Germany
¶Department of Electronics and Systems

University of A Coruña

A Coruña, Spain

Abstract—We present a substantially improved and paral-
lelized version of DPPDiv, a software tool for estimating species
divergence times and lineage-specific substitution rates on a
fixed tree topology. The improvement is achieved by integrating
the DPPDiv code with the Phylogenetic Likelihood Library
(PLL), a fast, optimized, and parallelized collection of func-
tions for conducting likelihood computations on phylogenetic
trees. We show that, integrating the PLL into a likelihood-
based application is straight-forward since it took the first
author (DD) a programming effort of only one month, without
having prior knowledge of DPPDiv, nor the PLL. We achieve
sequential speedups that range between a factor of two to
three and near-optimal parallel speedups up to 48 threads on
sufficiently large datasets. Hence, with a programming effort of
one month, we were able to improve DPPDiv’s time-to-solution
on parallel systems by two orders of magnitude and also to
substantially improve its ability to infer divergence times on
large-scale datasets.

Keywords-phylogenetics; parallel computing; divergence time
estimation; programming effort; phylogenetic likelihood

I. INTRODUCTION

Bayesian methods for phylogenetic inference are dom-

inated by phylogenetic likelihood computations that are

used to effectively sample the joint posterior distribution of

evolutionary parameters and tree topology. Hence, Bayesian

methods require efficient, optimized, and parallelized func-

tions for calculating the likelihood of the data conditional

on a tree topology, branch lengths, and model parameters.

1Supported by MSI TIN2010-16735 & XG CN2012/211.
2Supported by DFG project STA-860/4.
3Supported by NSF DBI-0805631, NIH GM-069801 & GM-086887.
4Supported by DFG project STA-860/3.

One such Bayesian tool is DPPDiv [1], [2]. Given a fixed

tree topology, it estimates branch-specific substitution rates

and species divergence times under a nonparametric mixture

model. More specifically, DPPDiv uses a Dirichlet process

prior (DPP) to model variation of substitution rates across

the branches of the tree [1]. The Dirichlet process is useful

for modeling mixtures since it assumes that data elements

(branches of the tree) can be categorized into specific

parameter classes [3], [4]. To model variable nucleotide

substitution rates among branches, the DPP assumes that

the branches of a tree form part of distinct substitution rate

categories. Under this model, the number of rate classes,

and the assignment of branches to those classes are treated

as random variables. Special cases of this model are (i) the

so-called global molecular clock that only has one single

rate category [5], (ii) the local molecular clock model,

where closely related lineages (subtrees) share the same

substitution rate [6], [7], and (iii) the independent rates

model, where the rate for each lineage is independently

drawn from an underlying parametric distribution [8], [9].

In addition to the above models, using a DPP allows to

model scenarios where distantly related branches located in

distant subtrees evolve under the same rate of evolution.

In evolutionary biology, accurate estimates of lineage diver-

gence times are important and widely-used for investigating

biological processes such as historical biogeography, species

diversification, and rates of continuous trait (morphological

properties) evolution. Analyses under the DPP yield robust

estimates of branch rates and divergence times for simulated

data [1]. The increased flexibility of this model makes it

applicable for analyzing large phylogenetic trees.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.267

539



DPPDiv uses Markov chain Monte Carlo (MCMC) to

sample the posterior densities of the model parameters and

to estimate lineage-specific substitution rates as well as node

ages. The proposal mechanism for updating the assignment

of rates to branches and to sample the rate parameter values

associated with each rate-category for the DPP relies on

Gibbs sampling (Algorithm 8 in [10]). Each time the Markov

chain proposes a branch rate change, the Phylogenetic

Likelihood Function (PLF) is invoked. The PLF needs to

be computed for each branch in the tree and for each rate

category. In fact, DPPDiv spends over 90% of overall exe-

cution time for PLF calculations. The computational cost of

the PLF-based proposal mechanisms limits the scalability of

DPPDiv as the number of tips (branches) and/or number of

sites increases. Thus, without an optimized and parallelized

PLF implementation, divergence time analyses under the

Dirichlet process model in DPPDiv is not feasible on large-

scale datasets.

To improve performance and scalability of DPPDiv, we

optimized the compute-intensive PLF part of DPPDiv. The

code was optimized by replacing the native PLF imple-

mentation by corresponding functions from the Phyloge-

netic Likelihood Library (PLL) which we are currently

developing. Our intention is to show that (i) it requires a

relatively low programming effort to integrate the PLL with

a PLF-based program and (ii) that substantial sequential

and parallel speedups can be achieved by using the PLL

which is based on the highly efficient PLF implementa-

tion in RAxML [11]. Combining the optimized serial PLL

implementation with the parallel version of the PLL, we

obtained performance improvements with respect to the

original DPPDiv implementation ranging between a factor

of 2 and a factor of 357.

The remainder of this paper is organized as follows: In

Section II, we briefly review related work on PLF libraries

and cover some state-of-the-art implementations for diver-

gence time estimation. Then, we provide an overview of the

PLL in Section III. In the following Section IV we describe

how we integrated the PLL with DPPDiv. Thereafter, we

demonstrate sequential and parallel speedups obtained by

integrating PLL with DPPDiv (Section V). We conclude in

Section VI and address directions of future work.

II. RELATED WORK

A relatively large number of methods for estimating

lineage divergence times has already been proposed. For

large datasets, there exist several fast (not based on the

PLF) methods for obtaining estimates of node ages, such as

non-parametric rate smoothing or penalized likelihood [12],

[13], [14], distance-based least-squared approaches [15],

or methods that use the relative rates between sister lin-

eages [16]. Although these methods are fast and thus capable

of estimating divergence times on large datasets, they do not

rely on the PLF and therefore lack the inherent advantages

of Bayesian inference methods.

Estimating divergence times in a Bayesian framework

provides a natural way for accommodating and quantifying

uncertainty in the estimates of phylogenetic parameters

under a wide range of complex models for rate variation

and lineage diversification [17], [18], [19], [20], [21], [8].

Moreover, Bayesian methods (because of their intrinsic flex-

ibility) allow for straight-forward integration of geological

information–including fossil data–to calibrate node ages in

the tree using units of absolute time. This is achieved by

deploying so-called calibration prior densities [22], [23],

[2]. Because of these methodological advantages and despite

their high computational cost, Bayesian methods represent

the most widely-used approach to estimate the times of

species divergence events in biological studies (e.g. [24],

[25], [26], [27], [28]).

Bayesian methods for divergence time estimation are

implemented in several tools [21], [29], [30], [31], [32],

[1], [33]. Because of the computational burden of Bayesian

inference using MCMC in conjunction with the PLF, some

implementations use computational shortcuts to approximate

the PLF via a multivariate normal distribution [18], [21],

[32], [34]. These approaches provide reasonably accurate

divergence time estimates given that the assumptions of

the rate variation model are not seriously violated [34].

Because of this limitation, it is thus preferable to calculate

the exact likelihood score of the sequences given a set of

branch lengths. Furthermore, in conjunction with hardware

advances, appropriately adapted efficient implementations of

the PLF allow for accurate divergence time estimation under

more complex and parameter-rich models.

Divergence time estimation algorithms as implemented

in the popular Bayesian software programs BEAST [31]

and MrBayes 3.2 [33] leverage the efficient likelihood func-

tions available in the BEAGLE library [35]. However, the

BEAGLE library has some shortcomings in comparison to

the PLL. Firstly, it does not offer support for 256-bit wide

x86 AVX vector intrinsics, nor does it implement a fine-

grain MPI parallelization of the PLF, thereby only allowing

for exploiting intra-node shared-memory parallelism. This

is a limitation when analyzing very large datasets that may

require more RAM to compute the PLF than available on a

single node (see [36]). In addition, BEAGLE does not offer

the capability to conduct partitioned analyses where different

(independent) sets of parameters are sampled for distinct

sites (columns) of the input alignment. As a consequence,

it does also not implement appropriate load balancing

mechanisms [37], [38] to improve the parallel efficiency

of partitioned analyses. Finally, BEAGLE does not offer

some of the advanced memory saving techniques [39], [40]

that form part of the PLL. Excessive memory requirements

can constitute a limiting factor for large-scale PLF-based

analyses.

540



III. PHYLOGENETIC LIKELIHOOD LIBRARY

The design and implementation of reusable software com-

ponents in the form of software libraries has substantially

contributed to the rapid development and deployment of

software tools in the field of bioinformatics.

The advantage of such libraries is that bugs in the code

can be reduced to a minimum because of a large and

active user community. Moreover, libraries allow users to

instantly take advantage of low-level code optimizations

and thereby fully exploit the computational power of the

underlying hardware without having to re-invent the wheel.

Thus, researchers become more productive because they can

focus on developing new algorithms and models, instead of

tuning and parallelizing fundamental kernel functions.

The PLL is a parallelized and highly optimized soft-

ware library for the PLF that has been derived from the

corresponding PLF implementation in RAxML-Light [36],

a tool for inference of large phylogenies under maximum

likelihood [41].

The PLL prototype version implements functions for

computing conditional likelihood arrays and overall log

likelihood scores on phylogenetic trees for DNA and pro-

tein sequence data. Moreover, it also offers functions for

optimizing branch lengths and other model parameters that

are required for building maximum likelihood codes. It uses

manually tuned functions that rely on SSE3 and AVX vector

intrinsics. Moreover, it offers a fine-grained parallelization

of the PLF that relies either on PThreads or MPI (Message

Passing Interface) for exploiting inter-node parallelism. It

also allows for conducting partitioned analyses and uses

the aforementioned load balancing techniques [37], [38] to

improve parallel efficiency. We are currently also developing

a GPU version of the PLL.

IV. INTEGRATION WITH DPPDIV

The integration of the PLL into DPPDiv was relatively

straight-forward. In terms of programming effort, it took the

first author of this paper (DD) approximately one month to

fully complete the integration. This was achieved without

prior knowledge of DPPDiv or the PLL. Given these cir-

cumstances, the effort in terms of man hours that were spent

is very low, particularly given the speedups in computation

gained.

In Figure 1, we provide a top-level view of the Markov

chain Monte Carlo (MCMC) proposal implementation in

DPPDiv. Note that, in DPPDiv the tree topology remains

fixed and that either the number or the values of model

parameters are being sampled/changed by a proposal. Thus,

to decide whether to reject or accept a proposal, we need

to re-compute the log likelihood score on the tree for the

altered models parameters. For this reason, we only use the

respective subset of PLL functions to compute conditional

likelihood arrays and calculate the overall log likelihood

score at the root of the tree.

�✁✂✄☎✂ ✄ ✆☎✄✁☎✝✞✟

☎✁✂✂ ✄✞✠ ✡☛✠✂☞

�✌✁✁✂✞☎ ☎✁✂✂

✄✞✠ ✡☛✠✂☞

✍✄✡✎☞✂ ✏✌✁✁✂✞☎

✆☎✄☎✂

✑✁☛✎☛✆✂ ✄ ✞✂✒ ✆☎✄☎✂

�✄☞✏✌☞✄☎✂ ☎✓✂

✎☛✆☎✂✁✝☛✁ ✔☛✁

✎✁☛✎☛✆✄☞

✕✄✞✠☛✡☞✖

✆✂☞✂✏☎ ✎✄✁✄✡✂☎✂✁

☎☛ ✌✎✠✄☎✂

✗✎✠✄☎✂ ✎✄✁✄✡✂☎✂✁

✔☛☞☞☛✒✝✞✟ ☎✓✂ ✎✁✝☛✁

✘✏✏✂✎☎ ☛✁ ✁✂✙✂✏☎

☎✓✂ ✎✁☛✎☛✆✄☞

✍☎☛✎ ✄✔☎✂✁

✚ ✏✖✏☞✂✆

✛✜✢✣✤✥✦✧✦★✩✪

✫✩✬✦✣✩✜✤✤✭

✫✩✮✯✰✯✢

Figure 1. Outline of the Markov Chain Monte Carlo (MCMC) implemen-
tation used in DPPDiv.

Our main design criterion for integrating the PLL into

DPPDiv was to obtain optimal performance with the least

amount of programming effort. For this reason we directly

used the tree and model data structures in the PLL. In or-

der to circumvent complicated, and potentially error-prone,

modifications to the way DPPDiv updates model parameters

in its native, rooted tree data structure, we designed a

one-to-one mapping of the DPPDiv tree data structure to

the unrooted PLL tree data structure (see Figure 2). Note

that, exchanging tree data structures between an application

and the PLL currently represents a challenging software

engineering issue for the library. The BEAGLE library is

completely tree-agnostic and defers the responsibility of de-

signing a tree data structure to the application programmer.

We opted for a different approach in PLL, because the

availability of such a data structure in the library allows

for rapid prototyping and facilitates the use of the library.

The tip nodes (n0 to nN−1, where N is the number of

taxa) and inner nodes (nN to n2N−3), excluding the root

node, of the DPPDiv tree data structure are mapped to the

unrooted PLL tree data structure via a bijective function.

This bijective function guarantees that each node in the PLL

tree data structure is connected to the same neighbors as the

corresponding tree in DPPDiv, once again, excluding the

root node. Branch lengths are linked in such a way that

they are guaranteed to connect corresponding nodes in the

respective tree data structures.

The root node used in DPPDiv is represented by placing

a virtual root into the unrooted PLL tree data structure.

the virtual root is located between the two children of the

541



root node. The length of the branch on which the virtual

root is located is simply the sum of the two branch lengths

that lead from the root to the children in the DPPDiv tree

representation.

Given this tree mapping from DPPDiv to the PLL, we can

now directly use the PLL likelihood function implementation

without any additional modifications to the DPPDiv source

code.

nR oot

n5

n6
n7

n5

n6

n7

n0 n1

n2 n3 n4

n0 n1

n2

n3 n4

Figure 2. Mapping of the rooted native tree representation in DPPDiv to
the unrooted internal tree representation of the PLL.

The model parameters (e.g., branch times and rates, see

Figure 3) that are changed/proposed by DPPDiv can be

mapped to corresponding PLL data structures by using the

appropriate PLL interface functions in a straight-forward

manner. Once these functions for updating model parameters

in the PLL and subsequently re-computing the overall log

likelihood using the PLL have been integrated, no further

changes to the MCMC proposal mechanism in DPPDiv are

required. The proposal mechanism initially alters one of the

model parameters shown in Figure 3. We then invoke a

function to change this model parameter accordingly in the

PLL instance. Subsequently, we use the PLL to compute the

log likelihood score of the tree for the changed parameter.

The log likelihood score is then returned to DPPDiv so that

the posterior probability of the proposal can be computed.

For DPPDiv, the execution of the PLF evaluation by the

PLL represents a black box. It is hence entirely obfuscated

to DPPDiv, whether the likelihood function is executed

sequentially, using SSE3/AVX intrinsics, or in parallel using

either PThreads or MPI. All of the above technical issues,

including data distribution to threads or processes are hidden

in the library. The user only needs to decide which type of

intrinsics (SSE3 versus AVX) and which parallel implemen-

tation (MPI versus PThreads) he wants to compile and use.

The user will also have to specify how many threads or

processes to use.

Apart from improving performance (see below) the in-

tegration of the PLL also enhances the numerical stability

of DPPDiv. Unlike the native DPPDiv PLF implementation,

Branch

times

Branch

lengths

Branch

rates

Base

frequencies

PLL

model

Exchangeability

rates

Gamma

shape

PLL

tree

Calculate

likelihood

Evaluate posterior

probability

PLL

DPPDiv

DPPDiv

PLL

Figure 3. Outline of the interaction between DPPDiv and the PLL for
evaluating a proposal. This Figure also shows the different types of model
parameters that can be changed by a DPPDiv proposal.

the PLL implementation uses a likelihood scaling technique

that prevents numerical underflow. Numerical underflow in

likelihood computations (essentially we are multiplying a

large number of probabilities with each other in likelihood

computations) needs to be handled by appropriate techniques

(for details see [42]), in particular for trees where the

number of taxa is larger than approximately 100. Thus, better

numerical stability comes for free with the PLL integration.

V. EXPERIMENTAL SETUP AND RESULTS

To evaluate the performance of the PLL-based versions of

DPPDiv we measured execution times using a fixed random

number seed to generate reproducible results. We used 2 bio-

logical datasets [43] and generated several simulated datasets

using the APE package [44] for generating random non-

ultrametric tree with branches according to a exponential

with mean 1/10=0.1 and seq-gen [45] to simulate sequence

data on these trees and GTR+G models. Hence, a set of DNA

datasets with distinct numbers of taxa, sites, and unique site

patterns were available for testing which are summarized

in Table I. Note that, the number of unique site patterns is

more relevant for quantifying performance, since identical

alignments sites can and are compressed into site patterns

prior to PLF calculations by DPPDiv and the PLL.

We used two shared-memory multi-core systems for test-

ing: a Sandy Bridge node with 32GB RAM and 2 Intel

542



Xeon E5-2630 hexa-core Sandy Bridge processors (a total of

12 cores) and Hyperthreading disabled, and a Magny-Cours

node with 128GB of RAM and 4 AMD Opteron 6174 12-

core processors (a total of 48 cores). We compiled 4 PLL

instances with SSE3 and AVX intrinsics, PThreads and MPI

using gcc v4.7.0. AVX intrinsics are only available on the

Sandy Bridge node. Both nodes run Linux Red Hat 4.4.6-4.

For testing the MPI performance of the PLL we used

several nodes (e.g, an execution with 96 cores on the Sandy

Bridge cluster used 8 nodes and 12 cores per node). The

nodes are interconnected through an Infiniband QDR (8

Gbit/s) interconnect.

Table I
ALIGNMENTS USED TO BENCHMARK DPPDIV PERFORMANCE. IN

COLUMN Size, N INDICATES THE NUMBER OF SEQUENCES, L THE

LENGTH OF THE ALIGNMENT AND U.P. THE NUMBER OF UNIQUE SITE

PATTERNS. Num. cycles INDICATES THE NUMBER OF MCMC
ITERATIONS EXECUTED FOR EACH ALIGNMENT. ALIGNMENTS 1
THROUGH 5 ARE SIMULATED ALIGNMENTS, WHILE 6 AND 7 ARE

REAL-WORLD DATASETS. COLUMN Seq.exec.time SHOWS THE

EXECUTION TIME OF THE ORIGINAL DPPDIV IMPLEMENTATION, IN

HOURS.

Data set Size Seq.exec. Num.

Abbreviation N L U.P. time (h) cycles

Align1 25 7,200 3,034 1.37 100,000
Align2 82 5,167 4,763 14.69 100,000
Align3 118 924 924 3.55 100,000
Align4 10 146,875 25,014 2.85 100,000
Align5 10 333,170 43,100 4.50 100,000
Align6 125 29,149 19,436 17.47 10,000
Align7 169 35,603 29,064 20.03 2,000

We define the parallel speedup as T1/Tn, where T1

is the time required by the serial execution of the PLL

implementation, and Tn is the respective execution time with

n PThreads or MPI processes.

Performance evaluation was not carried out against other

software because the Dirichlet process prior on branch rates

is not implemented in any other program, thus it wouldn’t

make sense to compare it to BEAST or PhyloBayes, for ex-

ample. Moreover, there are several differences in the MCMC

implementations of those programs (e.g., the relative weights

of different proposals, or the amount of proposals performed

for each “generation”). Because of these differences, it’s

difficult to compare the efficiency of Bayesian inference

programs.

A. Sequential SSE3 and AVX Performance

In Figure 4 we present the sequential execution time

improvements of the PLL-based SSE3 and AVX versions

over the original DPPDiv implementation. The PLL like-

lihood implementation performs particularly well on trees

with a large number of taxa. This may also be associ-

ated with the fact that the PLL implements a numerical

scaling technique to prevent numerical underflow and is

hence numerically more stable on these large datasets. We

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Align1 Align2 Align3 Align4 Align5 Align6 Align7

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

)

Multiple Sequence Alignment

Sequential execution times

MC-ORIGINAL
MC-PLL-SSE3
SB-ORIGINAL
SB-PLL-SSE3
SB-PLL-AVX

Figure 4. Comparison between the sequential versions of the native DP-
PDiv (ORIGINAL) implementation and the sequential PLL-based DPPDiv
implementation using SSE3 (PLL-SSE3) and AVX (PLL-AVX). The suffix
indicates the system: MC for the Magny-Cours node and SB for the Sandy
Bridge.

measured the denormalized floating point exceptions in

both the original DPPDiv implementation and the PLL-

based using the Alignment7 dataset. This test shows that

the PLL-based implementation does not throw any of these

exception, while the original DPPDiv implementation throws

20 × 10
9 floating point exceptions. We assume that this

disproportional slowdown is associated with the original

DPPDiv implementation generating so many denormalized

floating point values (and hence exceptions) because it lacks

a numerical scaling procedure. Hence, we achieved the best

speedups with alignments 6 and 7. The number of unique site

patterns is not a determining factor for these tests, despite

the fact that, performance also improved slightly with an an

increasing number of site patterns. Overall, we achieve a

two- to three-fold sequential performance improvement by

using the PLL.

B. PThreads Performance

We assessed the performance of the PLL PThreads version

using SSE3 intrinsics on one of the Magny-Cours nodes and

both SSE3 and AVX intrinsics on one of the Sandy Bridge

nodes. The alignment site patterns are evenly distributed

among the threads by the PLL as described in [46]. The

scalability of the PThreads and MPI (see below) versions

of the PLL mainly depends on the number of unique site

patterns in the alignment (see, e.g., [46]). The speedup plots

in Figure 5 and the parallel efficiency plots in Figure 6

illustrate these results. For the sake of completeness we

also show the absolute execution times for the original,

sequential PLL and PThreads-based PLL versions of DP-

PDiv in Table II, and a comparison between the two node

types in Figure 7. The best overall improvement in terms of

543



 2

 4

 6

 8

 10

 12

 1  2  4  8  12

S
p
e
e
d
u
p

Number of Threads

Sandy Bridge with SSE3 intrinsics (PThreads)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

 2

 4

 6

 8

 10

 12

 1  2  4  8  12

S
p
e
e
d
u
p

Number of Threads

Sandy Bridge with AVX intrinsics (PThreads)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 1  4  8  12  16  24  32  48

S
p
e
e
d
u
p

Number of Threads

Magny-Cours with SSE3 intrinsics (PThreads)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

Figure 5. Scalability of DPPDiv using the Phylogenetic Likelihood Library with PThreads (using SSE3 and AVX intrinsics) on the Sandy Bridge and
the Magny-Cours nodes.

Table II
COMPARISON OF THE RUNTIMES (IN SECONDS) BETWEEN THE ORIGINAL DPPDIV IMPLEMENTATION AND PLL-BASED IMPLEMENTATION WITH

PTHREADS USING SSE3 INTRINSICS ON THE MAGNY-COURS NODE.

ORIG 1 4 8 12 16 24 32 48

Align1 4,928 1,715 434 235 170 139 117 101 109
Align2 52,880 13,030 3,164 1,724 1286 1,271 831 617 602
Align3 12,770 2,845 796 484 468 374 369 364 417
Align4 10,243 4,151 1,051 557 347 263 175 131 98
Align5 16,202 6,695 1,949 1,057 579 440 296 223 160
Align6 62,890 14,917 3,921 1,876 1332 1,056 680 501 428
Align7 72,105 9,217 2,361 1,214 703 605 381 293 202

time to solution of the PLL-based PThreads implementation

over the original DPPDiv implementation was observed for

alignment 7. We achieve a 357-fold (72,105 versus 202

seconds) on this dataset. Overall, given that the alignment

is long enough (has enough unique site patterns), we ob-

serve good parallel scalability for the PLL-based DPPDIV

version. For alignments 6 and 7, we observe almost linear

speedups even for 48 cores. Hence, using the fast PLL kernel

implementation in conjunction with the PThreads version

can improve DPPDiv performance by more than a factor

of 100 compared to the original, sequential version. More

importantly, the parallelism essentially comes for free with

the PLL.

C. MPI Performance

The MPI performance tests show to which extent the

speedups depend on alignment length. Note that, individual

Sandy cores are substantially faster than Magny-Cours cores

(see Table III). Hence, the performance penalty induced by

waiting for communication is larger on the Sandy cores,

since less time is required to conduct the per-process like-

lihood computations. In other words, the communication to

544



 0.6

 0.8

 1

 1.2

 1.4

 1  2  4  8  12

P
a
ra

lle
l 
E

ff
ic

ie
n
c
y

Number of Threads

Sandy Bridge with SSE3 intrinsics (PThreads)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

 0.6

 0.8

 1

 1.2

 1.4

 1  2  4  8  12

P
a
ra

lle
l 
E

ff
ic

ie
n
c
y

Number of Threads

Sandy Bridge with AVX intrinsics (PThreads)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  4  8  12  16  24  32  48

P
a
ra

lle
l 
E

ff
ic

ie
n
c
y

Number of Threads

Magny-Cours with SSE3 intrinsics (PThreads)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

Figure 6. Parallel efficiency of DPPDiv using the Phylogenetic Likelihood Library with PThreads (using SSE3 and AVX intrinsics) on the Sandy Bridge
and the Magny-Cours nodes.

Table III
COMPARISON OF THE RUNTIMES (IN SECONDS) OF THE PLL-BASED IMPLEMENTATION BETWEEN THE MAGNY-COURS (MC) AND THE SANDY

BRIDGE (SB) CLUSTERS USING MPI.

1 4 8 24 48 96

MC SB MC SB MC SB MC SB MC SB MC SB

ALIGN1 1,715 1,177 480 345 247 251 133 156 158 192 197 224
ALIGN2 13,030 8,462 3,712 2,370 1,856 1,605 747 839 820 908 940 1,070
ALIGN3 2,845 1,926 912 572 590 634 639 696 704 929 963 1,132
ALIGN4 4,151 2,636 1,101 689 541 418 188 146 111 106 92 90
ALIGN5 6,695 4,726 1,712 1,144 880 685 279 225 169 144 119 111
ALIGN6 14,917 9,139 3,978 2,239 1,984 1,370 664 501 420 365 342 326
ALIGN7 9,217 4,453 2,309 1,107 1,208 557 383 232 203 135 161 98

computation ratio on these nodes is less favorable than on the

Magny-Cours system. In Figure 8 we show the scalability

and parallel efficiency results for the PLL-based version

of DPPDiv that uses MPI. However, the scalability of the

MPI version of the PLL will increase with an increasing

number of distinct site patterns. Such large whole-genome

scale datasets already exist and are being analyzed (e.g.,

www.1kite.org). The MPI version in the PLL has been

adapted from RAxML-Light [36] and shows good scalability

using a large number of processes on whole-genome align-

ments. The MPI version will also help to accommodate the

immense memory requirements of large genomic alignments

that can not typically be handled by a single node.

VI. CONCLUSION AND FUTURE WORK

We have presented an initial version of our phyloge-

netic likelihood library and used it to boost performance

of DPPDiv, a new program for Bayesian inference of di-

vergence times estimates using a Dirichlet process prior.

Source code and datasets are available at https://github.

545



 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1  4  8  16  24  32  48  96

S
p
e
e
d
u
p

Number of Processes

Magny-Cours with SSE3 intrinsics (MPI)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  4  8  16  24  32  48  96

P
a
ra

lle
l 
E

ff
ic

ie
n
c
y

Number of Processes

Magny-Cours with SSE3 intrinsics (MPI)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 48

 2 4  8  24  48  96

S
p
e
e
d
u
p

Number of Processes

Sandy Bridge with AVX intrinsics (MPI)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4  8  24  48  96

P
a
ra

lle
l 
E

ff
ic

ie
n
c
y

Number of Processes

Sandy Bridge with AVX intrinsics (MPI)

Align1
Align2
Align3
Align4
Align5
Align6
Align7

Figure 8. Performance and parallel efficiency of DPPDiv using the Phylogenetic Likelihood Library with MPI and SSE3 and AVX intrinsics.

2

4

6

8

10

 1  2 4 8 12

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
 x

 1
0

3
)

Number of threads

SSE3 vs AVX and Magny-Cours vs Sandy Bridge comparison

Magny-Cours SSE3
Sandy Bridge SSE3
Sandy Bridge AVX

Figure 7. Comparison between the absolute runtimes on Sandy Bridge
(with SSE3 and AVX intrinsics) and Magny-Cours nodes (with SSE3
intrinsics) using PThreads on up to 12 cores.

com/ddarriba/pll-dppdiv. Since DPPDiv heavily relies on

likelihood computations it represented an ideal candidate

to demonstrate the advantages of the PLL. Integrating the

PLL into DPPDiv took a visiting PhD student in our lab

(DD) only about a month without having prior knowledge

of DPPDiv or the PLL. By integrating the PLL, we ob-

tained sequential speedups of 2.4 to 7.8 over the original

DPPDiv implementation. By deploying fine-grain loop-level

parallelism with PThreads, that comes for free with the PLL

and is transparent to the developer of the target application,

we obtained near-optimal speedups on sufficiently large

input datasets. Using the PThreads version on a 48-core

multi-core system in conjunction with the fast sequential

implementation that relies on vector intrinsics, we were able

to reduce the time to solution of DPPDiv by more than a

factor of 100 (over factor 350 in the best case), that is, by

two orders of magnitude.

Regarding future work, we intend to closely collaborate

with the developers of DPPDiv to design a version of the

code that can handle partitioned alignments, a feature that is

546



already available in the PLL. Furthermore, we will improve

the documentation of the PLL, add additional models and

data-types, and design a production-level GPU implementa-

tion of our kernels.

REFERENCES

[1] T. A. Heath, M. T. Holder, and J. P. Huelsenbeck,
“A dirichlet process prior for estimating lineage-specific
substitution rates,” Molecular Biology and Evolution, vol. 29,
no. 3, pp. 939–955, 2012. [Online]. Available: http:
//mbe.oxfordjournals.org/content/29/3/939.abstract

[2] T. A. Heath, “A hierarchical Bayesian model for calibrating
estimates of species divergence times,” Systematic Biology,
vol. 61, pp. 793–809, 2012.

[3] T. S. Ferguson, “A Bayesian analysis of some nonparametric
problems,” Annals of Statistics, vol. 1, pp. 209–230, 1973.

[4] C. E. Antoniak, “Mixtures of Dirichlet processes with ap-
plications to non-parametric problems,” Annals of Statistics,
vol. 2, pp. 1152–1174, 1974.

[5] E. Zuckerkandl and L. Pauling, “Molecular disease, evolution,
and genetic heterogeneity,” in Horizons in Biochemistry,
M. Kasha and B. Pullman, Eds. Academic Press, New York,
1962, pp. 189–225.

[6] Z. Yang and A. D. Yoder, “Comparison of likelihood and
Bayesian methods for estimating divergence times using
multiple gene loci and calibration points, with application to
a radiation of cute-looking mouse lemur species,” Systematic
Biology, vol. 52, pp. 705–716, 2003.

[7] A. J. Drummond and M. A. Suchard, “Bayesian random local
clocks, or one rate to rule them all,” BMC Biology, vol. 8, p.
114, 2010.

[8] A. J. Drummond, S. Y. Ho, M. J. Phillips, and A. Rambaut,
“Relaxed phylogenetics and dating with confidence,” PLoS
Biology, vol. 4, p. e88, 2006.

[9] T. Lepage, D. Bryant, H. Philippe, and N. Lartillot, “A general
comparison of relaxed molecular clock models,” Molecular
Biology and Evolution, vol. 24, pp. 2669–2680, 2007.

[10] R. M. Neal, “Markov chain sampling methods for Dirich-
let process mixture models,” Journal of Computational and
Graphical Statistics, vol. 9, pp. 249–265, 2000.

[11] A. Stamatakis, “RAxML-VI-HPC: maximum likelihood-
based phylogenetic analyses with thousands of taxa and mixed
models,” Bioinformatics, vol. 22, no. 21, pp. 2688–2690,
2006.

[12] M. J. Sanderson, “Estimating absolute rates of molecular evo-
lution and divergence times: a penalized likelihood approach,”
Molecular Biology and Evolution, vol. 19, pp. 101–109, 2002.

[13] M. J. Sanderson, “r8s: inferring absolute rates of molecular
evolution and divergence times in the absence of a molecular
clock,” Bioinformatics, vol. 19, no. 2, pp. 301–302, 2003.

[14] S. A. Smith and B. C. O’Meara, “treepl: divergence time
estimation using penalized likelihood for large phylogenies,”
Bioinformatics, vol. 28, no. 20, pp. 2689–2690, 2012.
[Online]. Available: http://bioinformatics.oxfordjournals.org/
content/28/20/2689.abstract

[15] X. Xia and Q. Yang, “A distance-based least-square method
for dating speciation events,” Molecular Phylogenetics
and Evolution, vol. 59, no. 2, pp. 342 – 353, 2011.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1055790311000443

[16] K. Tamura, F. U. Battistuzzi, P. Billing-Ross, O. Murillo,
A. Filipski, and S. Kumar, “Estimating divergence times in
large molecular phylogenies,” Proceedings of the National
Academy of Sciences, 2012. [Online]. Available: http://www.
pnas.org/content/early/2012/10/31/1213199109.abstract

[17] Z. Yang and B. Rannala, “Bayesian phylogenetic inference
using DNA sequences: a Markov chain Monte Carlo method,”
Molecular Biology and Evolution, vol. 14, pp. 717–724, 1997.

[18] J. Thorne, H. Kishino, and I. S. Painter, “Estimating the rate
of evolution of the rate of molecular evolution,” Molecular
Biology and Evolution, vol. 15, pp. 1647–1657, 1998.

[19] J. P. Huelsenbeck, B. Larget, and D. L. Swofford, “A com-
pound Poisson process for relaxing the molecular clock,”
Genetics, vol. 154, pp. 1879–1892, 2000.

[20] H. Kishino, J. L. Thorne, and W. Bruno, “Performance of
a divergence time estimation method under a probabilistic
model of rate evolution,” Molecular Biology and Evolution,
vol. 18, pp. 352–361, 2001.

[21] J. Thorne and H. Kishino, “Divergence time and evolutionary
rate estimation with multilocus data,” Systematic Biology,
vol. 51, pp. 689–702, 2002.

[22] Z. Yang and B. Rannala, “Bayesian estimation of species
divergence times under a molecular clock using multiple
fossil calibrations with soft bounds,” Molecular Biology and
Evolution, vol. 23, pp. 212–226, 2006.

[23] S. Y. W. Ho and M. J. Phillips, “Accounting for calibration
uncertainty in phylogenetic estimation of evolutionary diver-
gence times,” Systematic Biology, vol. 58, pp. 367–380, 2009.

[24] J. Bahl, M. I. Nelson, K. H. Chan, R. Chen, D. Vijaykrishna,
R. A. Halpin, T. B. Stockwell, X. Lin, D. E. Wentworth,
E. Ghedin, Y. Guan, J. S. Malik Peiris, S. Riley, A. Rambaut,
E. C. Holmes, and G. J. D. Smith, “Temporally structured
metapopulation dynamics and persistence of influenza a h3n2
virus in humans,” Proceedings of the National Academy of
Sciences, 2011.

[25] S. Shultz, C. Opie, and Q. Atkinson, “Stepwise evolution of
stable sociality in primates,” Nature, vol. 479, no. 7372, pp.
219–222, 2011.

[26] D. Eastwood, D. Floudas, M. Binder, A. Majcherczyk,
P. Schneider, A. Aerts, F. Asiegbu, S. Baker, K. Barry,
M. Bendiksby et al., “The plant cell wall–decomposing
machinery underlies the functional diversity of forest fungi,”
Science, vol. 333, no. 6043, pp. 762–765, 2011.

547



[27] M. dos Reis, J. Inoue, M. Hasegawa, R. Asher, P. Donoghue,
and Z. Yang, “Phylogenomic datasets provide both precision
and accuracy in estimating the timescale of placental mammal
phylogeny,” Proceedings of the Royal Society B: Biological
Sciences, vol. 279, no. 1742, pp. 3491–3500, 2012.

[28] A. Crottini, O. Madsen, C. Poux, A. Strauß, D. R. Vieites, and
M. Vences, “Vertebrate time-tree elucidates the biogeographic
pattern of a major biotic change around the K–T boundary
in madagascar,” Proceedings of the National Academy of
Sciences, vol. 109, no. 14, pp. 5358–5363, 2012.

[29] Z. Yang, “PAML 4: Phylogenetic Analysis by Maximum
Likelihood,” Molecular Biology and Evolution, vol. 24,
no. 8, pp. 1586–1591, 2007. [Online]. Available: http:
//mbe.oxfordjournals.org/cgi/content/abstract/24/8/1586

[30] N. Lartillot, T. Lepage, and S. Blanquart, “Phylobayes 3: a
bayesian software package for phylogenetic reconstruction
and molecular dating,” Bioinformatics, vol. 25, no. 17, p.
2286, 2009.

[31] A. J. Drummond, M. A. Suchard, D. Xie, and A. Rambaut,
“Bayesian phylogenetics with beauti and the beast 1.7,”
Molecular Biology and Evolution, vol. 29, no. 8, pp. 1969–
1973, 2012.

[32] S. Guindon, “Bayesian estimation of divergence times from
large sequence alignments,” Molecular Biology and Evolu-
tion, vol. 27, no. 8, pp. 1768–1781, 2010.

[33] F. Ronquist, M. Teslenko, P. van der Mark, D. L. Ayres,
A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard,
and J. P. Huelsenbeck, “Mrbayes 3.2: Efficient bayesian
phylogenetic inference and model choice across a large model
space,” Systematic Biology, vol. 61, no. 3, pp. 539–542, 2012.

[34] M. dos Reis and Z. Yang, “Approximate likelihood calculation
on a phylogeny for bayesian estimation of divergence times,”
Molecular Biology and Evolution, vol. 28, no. 7, pp. 2161–
2172, 2011.

[35] D. L. Ayers, A. Darling, D. J. Zwickl, P. Beerli, M. T.
Holder, P. O. Lewis, J. P. Huelsenbeck, F. Ronquist, D. L.
Swofford, M. P. Cummings, A. Rambaut, and M. A. Suchard,
“BEAGLE: An application programming interface and high-
performance computing library for statistical phylogenetics,”
Systematic Biology, vol. 61, pp. 170–173, 2012.

[36] A. Stamatakis, A. Aberer, C. Goll, S. Smith, S. Berger, and
F. Izquierdo-Carrasco, “Raxml-light: a tool for computing
terabyte phylogenies,” Bioinformatics, vol. 28, no. 15, pp.
2064–2066, 2012.

[37] A. Stamatakis and M. Ott, “Load balance in the phylogenetic
likelihood kernel,” in Parallel Processing, 2009. ICPP’09.
International Conference on. IEEE, 2009, pp. 348–355.

[38] J. Zhang and A. Stamatakis, “The multi-processor schedul-
ing problem in phylogenetics,” in Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW),
2012 IEEE 26th International. IEEE, 2012, pp. 691–698.

[39] F. Izquierdo-Carrasco, S. Smith, and A. Stamatakis, “Algo-
rithms, data structures, and numerics for likelihood-based
phylogenetic inference of huge trees,” BMC bioinformatics,
vol. 12, no. 1, p. 470, 2011.

[40] F. Izquierdo-Carrasco, J. Gagneur, and A. Stamatakis, “Trad-
ing memory for running time in phylogenetic likelihood
computations,” Heidelberg Institute for Theoretical Studies,
2011.

[41] J. Felsenstein, “Evolutionary trees from dna sequences: a
maximum likelihood approach,” Journal of molecular evo-
lution, vol. 17, no. 6, pp. 368–376, 1981.

[42] A. Stamatakis, “Orchestrating the phylogenetic likelihood
function on emerging parallel architectures,” Bioinformatics–
High Performance Parallel Computer Architectures, B.
Schmidt, Ed. CRC Press, pp. 85–115, 2011.

[43] R. W. Meredith, J. E. Janečka, J. Gatesy, O. A. Ryder, C. A.
Fisher, E. C. Teeling, A. Goodbla, E. Eizirik, T. L. L. Simão,
T. Stadler, D. L. Rabosky, R. L. Honeycutt, J. J. Flynn, C. M.
Ingram, C. Steiner, T. L. Williams, T. J. Robinson, A. Burk-
Herrick, M. Westerman, N. A. Ayoub, M. S. Springer, and
W. J. Murphy, “Impacts of the cretaceous terrestrial revolution
and kpg extinction on mammal diversification,” Science, vol.
334, no. 6055, pp. 521–524, 2011.

[44] E. Paradis, J. Claude, and K. Strimmer, “APE: analyses of
phylogenetics and evolution in R language,” Bioinformatics,
vol. 20, pp. 289–290, 2004.

[45] A. Rambaut and N. Grass, “Seq-gen: an application for
the monte carlo simulation of dna sequence evolution along
phylogenetic trees,” Comput Appl Biosci, vol. 13, no. 3, pp.
235–238, 1997.

[46] A. Stamatakis and M. Ott, “Efficient computation of the
phylogenetic likelihood function on multi-gene alignments
and multi-core architectures,” Philosophical Transactions of
the Royal Society B: Biological Sciences, vol. 363, no. 1512,
pp. 3977–3984, 2008.

548


