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Abstract—

I. MOTIVATION:

Due to the massive amounts of data generated from each
instrument run, next generation sequencing technologies have
presented researchers with unique analytical challenges which
require innovative, computationally efficient statistical solutions.
Here we present a parallel implementation of a probabilistic
Pair-Hidden Markov Model for base calling and SNP detection
in next generation sequencing data. Our approach incorporates
multiple sources of error into the base calling procedure which
leads to more accurate results. In addition, our approach applies
a likelihood ratio test that provides researchers with straight-
forward SNP calling cutoffs based on a p-value cutoff or a false
discovery control.

II. RESULTS:

We have developed GNUMAP-SNP, which is a highly accurate
approach for the identification of SNPs in next generation
sequencing data. By utilizing a novel probabilistic Pair-Hidden
Markov Model, GNUMAP-SNP effectively accounts for uncer-
tainty in the read calls as well as read mapping in an unbiased
fashion. Our results show that GNUMAP-SNP has both high
sensitivity and high specificity throughout the genome, which
is especially true in repeat regions or in areas with low read
coverage. In addition, we propose a statistical framework that
accounts for the background noise using straightforward statis-
tical cutoffs which filters out false-positive results. The parallel
implementation of SNP calling achieves near linear speedup on
distributed memory or shared memory platforms.

III. AVAILABILITY:

GNUMAP-SNP is available as a module in the GNUMAP
probabilistic read mapping software. GNUMAP is freely available
for download at: http://dna.cs.byu.edu/gnumap/

Index Terms—next-generation sequencing; short-read map-
ping; sequence mappers; parallel computing; biology computing

IV. INTRODUCTION

Over the past 30 years, Sanger-type sequencing [1] has been

the standard technique for DNA sequencing. This approach

has enabled, among other things, the sequencing of the first

complete human genome sequence [2]. However, recent de-

velopments in sequencing technologies have led to a second

generation of sequencing approaches, from Illumina/Solexa,

ABI/SOLiD, 454/Roche, Pacific Biosciences, which currently

produce gigabases sequence information during each instru-

ment run. These technologies are being applied in diverse

ways to address genome-wide questions and generate mas-

sive datasets under various experimental conditions. Next-

generation sequencing has accelerated the usefulness and ac-

cessibility of DNA sequencing data leading to higher volume,

lower resolution data at a much lower cost, which has already

resulted in novel biological insights and discovery.

Next generation sequencing technologies have been pro-

moted as a means to revolutionize the field of biomedical

research by overcoming many longstanding limitations of

previous genomic approaches such as Sanger sequencing and

microarrays. However, the size of the datasets generated are

much larger and the diverse nature of the dataset has produced

novel statistical and computational challenges that must be

overcome. One very important problem facing researchers

today is the identification and characterization of single nu-

cleotide polymorphisms (SNPs). Researchers are often inter-

ested in identifying SNPs that vary between one individual and

a reference genome, or in comparing the sequence composi-

tion of two individuals, strains or species at homologous or

orthologous regions. Researchers are most often interested in

associating these SNPs with disease or important phenotypes

of interest (for example, see [3]), so the accurate identification

of these SNPs is extremely important.

Compared to next generation technologies, Sanger sequenc-

ing is characterized by lower throughput but higher quality

base calls. Next generation approaches leverage a substantially

higher volume of data at the cost of lower quality reads

and base calls. Due to the size and complex nature of many

eukaryotic genomes, the increased sequencing volume is often

used to identify features in a larger number of genomic

regions, and therefore SNPs must often be called from as few

as 5-20 overlapping reads. However if the quality of the reads

is low or if the region contains repetitive elements, the accurate

identification of SNPs can be a difficult task and requires

sophisticated and powerful computational approaches.

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.84

669

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.84

669

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.84

675



Pairwise HMM 
Alignment to 

Genome

Assign Nucleotide 
Probabilities to Genome

Apply Likelihood Ratio Test to 
Genome, Obtain P-Value for SNPs

Output Base-Pair 
Resolution SNPs

A

B

C

D

A T A T G G T A G C T G C A A T T T G C A G G C A C G T T A

G C A T

Fig. 1. General GNUMAP approach. In step (A) above, positive matching locations are identified using a PHMM. In step (B), the results of the PHMM
are used to assign nucleotide probabilities to each location in the matching genomic sequence. After all of the sequences have been aligned, step (C) will use
a likelihood ratio test to determine the probability that a given nucleotide is different in the reference genome. If the p-value passes a specified cutoff, step
(D) will print this location to a file.

There are several existing approaches for calling bases and

identifying SNPs in next generation sequencing data. We

will only show comparisons with MAQ [4], because other

methods have similar results (such as [5] and [6]). Although

these methods are based on sound statistical approaches, their

algorithmic implementations rely on ad hoc cutoffs and lack

comparisons with background noise, leading to many false-

positive results. In addition, these methods remove reads with

low-quality bases and either remove or randomly assign reads

that map to multiple locations which may lead to biased

results. Finally, these methods rely on the single, although

most plausible, mapping of the read to the genome and

therefore do not use all the available information in the data

expressed by other highly plausible local alignments which

provide greater information and uncertainty in SNP calls.

In this research, we present GNUMAP-SNP, which utilizes

a probabilistic Pair-Hidden Markov Model (PHMM) for base

calling and SNP detection in next generation sequencing data.

This novel methodology incorporates base uncertainty based

on the quality scores from the sequencing run, as well as

mapping uncertainty from multiple optimal and sub-optimal

alignments of the read to a given location to the genome. This

leads to more unbiased and more accurate SNP calls, as well as

more accurate measures of the variance of each feature. In ad-

dition, our approach applies a likelihood ratio test that provides

researchers with straight-forward SNP calling cutoffs based on

a p-value cutoffs or a false discovery controls. This feature

is not included in other existing SNP calling approaches.

This framework makes GNUMAP-SNP highly sensitive and

specific and more appropriate for the noisy data generated

by current next generation sequencing platforms. Parallel per-

formance results indicate that GNUMAP-SNP achieves nearly

linear scalability on distributed memory and/or shared memory

platforms. The GNUMAP-SNP software is freely available for

download at: http://dna.cs.byu.edu/gnumap/.

V. APPROACH

GNUMAP-SNP applies a three-step approach for identify-

ing SNPs in next-generation sequencing data. The first step is

to create a genomic hash table of k-mers (default k=10), and

then reference k-mers in the reads into this hash for efficient

identification of putative mapping regions. Next, GNUMAP-

SNP utilizes a probabilistic PHMM for a marginal alignment

which allows for effective and accurate base calling and SNP

detection. The third step is to apply a likelihood ratio test for

SNP calling based on a p-value cutoffs or a false discovery

controls. The first step is thoroughly discussed by [7], and

a detailed justification of steps two and three is given below.

Figure 1 contains a work-flow cartoon for the GNUMAP-SNP

algorithm.

A. PHMMs for sequence alignment

PHMMs are a common alternative for sequence alignment

to the standard Needleman-Wunsch Algorithm [8]. They have

been applied in many different scenarios in biomedical re-

search such as gene finding [9], and sequence alignment [10].

670670676



In order to apply a PHMM to align two sequences, re-

searchers assume a data generating process by which two

DNA sequences, x and y, are generated simultaneously as

an aligned pair. This process assumes a sequence of latent

or hidden state variables, consisting of match and gap states,

which have a Markov Chain correlation structure and emit the

aligned elements of x and y. However, only the sequences

are observed whereas the alignment (i.e. the hidden state

sequence) must be inferred in the analysis. Figure 2 provides a

visual representation of this process in relation to a pair-wise

sequence alignment.

Formally, we can assume a Hidden Markov process with

three states, denoted M , GX , and GY , where M is the

match state which generates nucleotides that are paired in

the alignment, and GX and GY represent gap states where

either an x and y nucleotide is generated and aligned with

a gap. Letting xi and yj be the ith and jth elements of x
and y, respectively, we assume that in a match state, the

probability of generating an xiyj nucleotide pair is given by

pxiyj
, where higher probability is associated with pairs where

xi = yj . In the gap states, nucleotides are generated and

matched with the gaps with probability qxi and qyi (usually

qxi
= qyi

= q). Finally we assume that Tab represents the

Markov Chain transition probability of moving from state a to

state b for a, b ∈ {M,GX , GY }. Using this PHMM approach,

the expected state sequence can be estimated using a forward-

backward dynamic programming algorithm.
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Fig. 2. Illustration of using a PHMM for aligning two sequences. We assume
a PHMM with match state M , gap states GX and GY , emission probabilities
pxiyj and q, and transition probabilities TMM , TMG, TGM , and TGG.

B. Probabilistic extension of PHMMs for next generation
sequencing

PHMMs are very advantageous for SNP detection in next

generation sequencing. In addition to producing an optimal, or

most plausible alignment given the data, they can also yield a

marginal alignment across all possible alignments. In the case

of next-generation sequencing applications, this implies that

we can obtain the marginal probability that a specific base

in the genome is aligned to a A,C,G, or T nucleotide in the

read across all high scoring alignments. This is particularly

useful in cases where there are multiple optimal or sub-optimal

alignments for a read to the genome. Existing approaches use

only a single possible alignment based on a fixed decision rule,

whereas a PHMM can marginalize across all alignments and

thus is not forced to choose between high-scoring alignments,

potentially leading to less biased results than methods based

on a single alignment.

In addition, GNUMAP-SNP employs a novel extension of

PHMMs for sequencing data with quality scores. To account

for uncertainty in the reads due to sequencing and mapping

errors, we adapt the PHMM process described above to emit

a vector of probabilities or quality scores associated with

each base. Equivalently, we can assume that the emissions

for each read base follow a continuous negative multinomial

distribution. With this extension of the PHMM, we are able

to effectively integrate the base quality scores into the PHMM

marginal alignment, thus relying on higher quality bases when

aligning the read to the genome and leading to more accurate

alignments.

C. Likelihood Ratio Test for significance

GNUMAP-SNP applies a likelihood ratio test (LRT) to

call the bases from the mapped reads and to identify SNPs

compared to the reference genome. Specifically, for each

base location in the genome, we obtain the marginal base

contributions for all the reads that align to the location of

interest. Denote these as z = (zA, zC , zG, zT , zgap). For

example, suppose that there are 20 reads that map to the

genomic base of interest. Now suppose that 14, 1, 3, and 2 of

the reads align an A, C, G, and T to the base, respectively,

and that no reads align a gap to the base. Then in this case

z = (14, 1, 3, 2, 0). We assume that z follows a continuous

negative multinomial distribution with read base proportions

pA, pC , pG, pT , and pgap.

LRT for monoploid genomes: Using the assumptions

GNUMAP-SNP applies a LRT to identify bases above back-

ground in the reads. Namely, let p(5), p(4), p(3), p(2), and

p(1) be the ordered values of pA, pC , pG, pT , and pgap. In

monoploid genomes we wish to test the null and alternative

hypotheses:

H0 : p(5) = p(4) = p(3) = p(2) = p(1)
H1 : p(5) > p(4) = p(3) = p(2) = p(1),

(1)

or in other words that the highest read base proportion is

statistically larger than the others (background) and therefore

there is enough information to call the base at this location.

The base from the read can then be compared with the genome

at this location and it can be determined if the base is a

SNP. This comparison with the background provides the user

with a statistical comparison with the background and allows

users to control for false positive SNPs using a stringent p-

value cutoff or an FDR control method. Such a comparison

is a novel contribution of GNUMAP-SNP, as a comparison

with the background is not included in other SNP calling

approaches (e.g. MAQ, SOAP-SNP).
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LRT for diploid genomes: In the diploid genomes, we test

the hypotheses consist of the following H0 and H1:

H0 : p(5) = p(4) = p(3) = p(2) = p(1)
H1 : p(5) > p(4) = p(3) = p(2) = p(1) or

p(5) = p(4) > p(3) = p(2) = p(1),
(2)

where the first alternative hypothesis implies a single sig-

nificant base is present, suggesting that both alleles in the

diploid genome are the same base (homozygous). The second

alternative hypothesis suggests that the allele is heterozygous

at that particular location.

VI. METHODS

A. General Implementation

We have added the SNP calling with a PHMM function-

ality into GNUMAP, a previously-developed program used

to probabilistically align next-generation sequencing reads to

a reference genome [7]. In our approach, an array of floats

representing the entire genomic sequence is stored in the

program’s memory, with space allocated for each nucleotide. A

read is aligned to the genome with the probabilistic PHMM.

The resulting alignment is a set of probabilities identifying

how likely it is for each base in the read to align to a

genomic position. As each read is aligned to the genome,

probabilities are summed to obtain a complete alignment.

When the program is finished, the genome is post-processed,

and a LRT is applied to determine the significance at each

base. If the p-value obtained from the LRT is significant and

differs from a comparison genome, the base is identified as a

potential SNP. A more complete description of the method is

given below.

Step 1: Genome Storage and MPI Implementation

At each location in the genome, five floating-point values are

stored, representing the likelihood of each character (including

n’s) from a given read at that base. Since this requires nearly

five times the memory for a single run, we have updated the

program to use MPI, an interface that allows GNUMAP to be

run simultaneously on several different machines, thus splitting

the memory requirements (see [11] for a more complete de-

scription of the parallel improvements applied to GNUMAP).

MPI (Message Passing Interface) is a method for com-

municating between several different machines. On a single

computer, all the communication is done by sharing memory

locations; when more than one machine is used (either to

obtain more processors or because insufficient memory is

available), messages must be sent to synchronize the pro-

gram running on each machine. GNUMAP utilizes both the

expanded memory and the multiple processors available with

many machines to dramatically decrease the running time.

If the genome is small enough to fit on a single computer,

each machine will process the entire genome, then map a

different portion of the reads.1 At the end of the run, each

of the machines will communicate the state of their genome

and SNPs will be called accordingly. In this way, using four

machines will decrease the runtime by approximately one

fourth.

The second use of MPI takes advantage of the increased

memory available across several machines, but is slightly

more difficult. First, the genome is split into equal segments

and distributed across the participating machines so no one

machine performs more work than any other. In order to find

the normalized posterior probability score for each read at a

given location, GNUMAP must find all locations throughout

the entire genome to which a given read aligns (see [7] for

a complete description of the posterior probability scoring

method). Communication between machines via message pass-

ing determines this additional locations and calculates the final

score. In this manner, each read is scored accurately and with

significantly reduced memory requirements.

Further methods to decrease memory requirements are dis-

cussed in Section VI-B.

Step 2: Align Reads to the Genome

In order to obtain the greatest accuracy on the output, the

probability from each nucleotide obtained from base quality

scores is used to create a position-weight matrix (PWM) for

each read. Using this PWM in conjunction with the PHMM,

we are able to determine the probability that any nucleotide

in the read matches to a specific location in the genome. In

other words, in the resulting alignment matrix, position i, j
gives the probability that the character in the read at position

i matches the genome at position j. Summing the rows of

the matrix gives a total probability for each character at each

genomic location. As more reads are matched to the genome,

these probabilities are summed, giving a complete alignment

(see Figure 3).

We use an approach and notation similar to that used by

[12]. Let x denote a read to be mapped to the genome and

y denote a portion of the genome that is a candidate region

for mapping x. Let xi be the ith element of x and let x[a:b]

be the subsequence of x that starts at nucleotide a and ends

on nucleotide b. Similarly define yj and y[c:d]. The marginal

probability that xi and yj are matched in the alignment,

denoted xi � yj , is given by

P (xi � yj |x,y) ∝ fM (i, j)bM (i, j), (3)

where fM (i, j) is the forward probability, which is the condi-

tional probability that xi � yj given all possible alignments of

the subsequences x[1:i] and y[1:j], and where bM (i, j) is the

backward probability, which is the conditional likelihood of

observing the subsequences x[i+1:N ] and y[j+1:M ] given that

xi � yj .

1With a mer-size of 10 (default), the 150Mb human X chromosome requires
approximately 12GB of RAM. The entire human genome requires nearly
90GB RAM on a single machine; split among 30 machines (a realistic number
in many cluster-computing environments), each machine uses just over 4GB
RAM.
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In addition, the marginal probabilities that xi or yj are

aligned to a gap, denoted xi �Gj (xi aligned to a gap between

yj−1 and yj) and yj �Gi respectively, are given by

P (xi �Gj |x,y) ∝ fGX
(i, j)bGX

(i, j), and

P (yj �Gi|x,y) ∝ fGY
(i, j)bGY

(i, j),
(4)

where fGX
(i, j), fGY

(i, j) are forward gap probabilities and

bGX
(i, j), bGY

(i, j) are backward probabilities. In order to

estimate the probabilities above, we use a forward-backward

dynamic programming algorithm as given below.

Forward Algorithm: To estimate the forward probabilities,

we first let pxiyj
, q and Tab be as defined previously. Also,

for a given read, let rik be the quality score for base k ∈
{A,C,G, T} at position i, and assuming that x is the read

and y is the genome, let

p∗(i, j) = riApAyj
+ riCpCyj

+ riGpGyj
+ riT pTyj

.

Define three (N +1)× (M +1) matrices, namely {fM (i, j)},
{fGX

(i, j)}, and {fGY
(i, j)} for i = 0 . . . , N and j =

0 . . . ,M . Now apply the following algorithm:

1) Initialization: Set fM (0, 0) = 1, fGX
(0, 0) =

fGY
(0, 0) = 0. Also for k ∈ {M,GX , GY } set

fk(i, 0) = 0 for i = 1, . . . , N and fk(0, j) = 0 for

j = 1, . . . ,M .

2) Recursion: For i = 1, . . . , N and j = 1, . . . ,M

fM (i, j) = p∗(i, j)[TMMfM (i− 1, j − 1)

+TMGfGX
(i− 1, j) + TMGfGY

(i, j − 1)]

fGX
(i, j) = q[TMGfM (i− 1, j) + TGGfGX

(i− 1, j)]

fGY
(i, j) = q[TMGfM (i, j − 1) + TGGfGY

(i, j − 1)]

Backward Algorithm: For the backward probabilities, we

define three (N +1)× (M +1) matrices, namely {bM (i, j)},
{bGX

(i, j)}, and {bGY
(i, j)} for i = 1 . . . , N + 1 and

j = 1 . . . ,M + 1. Set p∗(i,M + 1) = 0 for i = 1, . . . , N
and p∗(N + 1, j) = 0 for j = 1, . . . ,M . We then apply the

following algorithm:

1) Initialization: For k ∈ {M,GX , GY } set fk(i,M+1) =
0 for i = 1, . . . , N + 1 and fk(N + 1, j) = 0 for j =
1, . . . ,M + 1. Also set bM (N,M) = bGX

(N,M) =
bGY

(N,M) = 1.

2) Recursion: For i = N, . . . , 1 and j = M, . . . , 1 except

(N,M), let

bM (i, j) = p∗(i+ 1, j + 1)TMMbM (i+ 1, j + 1)

+qTMG[bX(i+ 1, j) + bY (i, j + 1)]

bGX
(i, j) = p∗(i+ 1, j + 1)TGMbM (i+ 1, j + 1)

+qTGGbGX
(i+ 1, j)

bGY
(i, j) = p∗(i+ 1, j + 1)TGMbM (i+ 1, j + 1)

+qTGGbGY
(i, j + 1)

Calculating Marginal Alignment Probabilities: Once the

forward and backward probabilities are obtained, alignment

and gap probabilities can be calculated based on Equations 3-

4. However, in the SNP and genome base calling, we are not

particularly interested in the alignment. For each base position

in the genome sequence, we want to calculate the probability

that an A, C, G, or T, in the read is aligned to the genome

position. Assuming that x is the read and y is the genome,

for a given genomic position and for a read k of length N ,

we let zk = (zkA, zkC , zkG, zkT , zk,gap) be the probabilities

that read k aligns a given base to the genomic location. These

marginal probabilities can be calculated for the fixed genomic

position j as

zkA =

∑
{i:xi=A} P (xi � yj |x,y)∑N

i=1 P (xi � yj |x,y) +
∑N

i=1 P (xi �Gj |x,y)
,

and similarly for zkC , zkG, zkT , and zk,gap. These proba-

bilities are then summed across the reads to obtain z =
(zA, zC , zG, zT , zgap) (where zA =

∑
k zkA) and are then

used for base and SNP calling in the following step.

Step 3: Apply the LRT to Identify SNPs

We apply a likelihood ratio test (LRT) to each genomic lo-

cation separately. We assume that z follows a continuous Neg-

ative Multinomial distribution with parameters pA, pC , pG, pT ,
and pgap as previously described. In monoploid genomes we

wish to test the null and alternative hypotheses given in Equa-

tion 1. Under H0 the probabilities of each base should be equal

to each other and therefore the maximum likelihood estimators

of the ps are p̂k = 0.2 for all k ∈ {A,C,G, T, gap}. Under

H1, the maximum likelihood estimators are p̂(5) = z(5)/n,

where n = zA + zC + zG + zT + zgap and p̂(4) = p̂(3) =
p̂(2) = p̂(1) = (n − z(5))/4n. Now we obtain the the LRT

statistic, λ(z), given by

λ(z) =
0.2n

p̂
z(5)
(5) p̂

n−z(5)
(4)

.

To obtain a p-value for this test, we appeal to the commonly

used an asymptotic properties of LRTs, namely that

−2 log(λ(z))→ χ2
1.

For our application, to obtain a test that preserves a SNP-wise

false-positive rate of α, we compare −2log(λ(z)) with the (1−
α/5)th quantile of the χ2

1 distribution, as test above actually

violates the identifiability condition for the convergence of the

LRT. However, this can be avoided by merely testing each base

(A, C, G, T, gap) vs. background (5 tests) and adjusting the

α for multiple testing.

For diploid genomes, we test the hypotheses given in

Equation 2. Thus the maximum likelihood estimators of the ps

are p̂k = 0.2 for all k ∈ {A,C,G, T, gap} as in the previous

case. Under the alternative, we observe that the maximum

likelihood estimators are p̂(5) = z(5)/n, and p̂(4) = p̂(3) =
p̂(2) = p̂(1) = (n− z(5))/4n, or p̃(5) = z(5)/n, p̃(4) = z(4)/n
and p̃(3) = p̃(2) = p̃(1) = (n− z(5) − z(4))/3n. Therefore the

LRT statistic is given by

λ(z) =
0.2n

max
(
p̂
z(5)
(5) p̂

n−z(5)
(4) , p̃

z(5)
(5) p̃

z(4)
(4) p̃

n−z(5)−z(4)
(3)

) .
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Probabilities”). In this specific example, all the nucleotides in the next-generation sequencing read contribute a certain (if not insubstantial) probability to the
conclusion that the genomic location contains a C, but only the closest nucleotides contribute a significant amount. Also, since the second C in the read
could align well to the specified position, the probability contribution is significantly higher than the G to the left.

This test statsitic is then compared with a with the (1−α/5)th
quantile of the χ2

1 distribution as above.

B. Memory Distribution

A large portion of this work was dedicated to decreasing

the memory requirements on distributed memory machines.

Most important, this work sought to develop a version of

GNUMAP with significantly decreased memory requirements

and minimal loss to time and accuracy.

One of the unique aspects of GNUMAP is the ability to

call SNPs online, instead of requiring several post-processing

events. Online SNP calling in GNUMAP requires not only

the basic objects (genome and hash table) to reside in main

memory, but also floating point values for each base in

the genome. This isn’t an issue for a small genome, but

for the entire human genome or larger polyploid organisms,

this quickly becomes intractable. (When run on the 155Mbp

human X-chromosome, GNUMAP only uses 5GB of RAM;

when run on the entire 3Gbp human genome, over 100GB

RAM is required.) As described above, there is a GNUMAP

implementation that spreads the memory across several nodes,

allowing genomes of larger sizes to be analyzed. However, as

is shown in Figure 4, spreading the memory across multiple

nodes is not as efficient as spreading the reads.

For this reason, we developed two additional methods to

reduce the memory requirements. First, we designed an algo-

rithm that only requires a single byte per nucleotide (instead

of 4 bytes for floating-point precision). Second, we applied

more extreme discretization based on practical nucleotide

distributions (as described in [13]). Here we will describe the

two methods.

1) Nucleotide-Byte Discretization: The memory required

for the nucleotide-byte discretization is a single floating point

value and single byte values for each nucleotide. The floating

point value contains the total number of (possibly partial)
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Fig. 4. Sequence processing times for two different MPI methods without any
optimizations (higher is better). The solid red lines represents perfect linear
performance, and the solid black line shows the performance of GNUMAP
with all the genome in shared memory for every process. The solid blue line
shows performance when only the memory is spread across nodes. Note that
the spread memory mode does not process as many sequences, so the shared
memory mode should be used when possible.

sequences that match to the given genomic position, and

the single byte values contain the percentage present for

each nucleotide. When updating a genomic position, Gi,

with the probabilistic distribution from each nucleotide, δ =
[0.9, 0.1, 0, 0, 0], each nucleotide-byte value is converted to

real space (dividing by 128 and multiplying by the total score),
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and updated by the corresponding δ values. Each value is then

converted back to nucleotide-byte space with the updated total

score (
∑

i δi).
One possible limitation to this method is speed: The normal

method only requires a single addition when scoring a read

at a given location; the nucleotide-byte method requires two

additional multiplications and divisions. However, because the

memory footprint is smaller, we can take advantage of locality

caching to negate most of this loss.

The second limitation is what happens to the discretization

in an online algorithm. As the total number of sequences

assigned to a particular location increases beyond 255 (the

maximum number of values in a byte), the amount changed at

a single character becomes zero. For example, let T represent

the total amount, and φ = [a, c, g, t, n] represent the single-

byte values at each nucleotide. If T were 1 and there were

only a single a, then the assigned discretization would be

φ = [255, 0, 0, 0, 0]. If there were one a and one t, then the dis-

cretization would be φ = [128, 0, 0, 127, 0]. If there were 254

a’s and a single t, φ = [254, 0, 0, 1, 0], adding an additional

a would require either rounding up to φ = [255, 0, 0, 0, 0]
or φ = [254, 0, 0, 1, 0]. The former would remove any signal

from t, and the latter would imply that any future addition of

a would also have no effect.

While online discretization provides a serious problem when

the total value is high, this is acceptable in most cases. The

optimal sequencing depth (or coverage) for resequencing is

anywhere from 10-40x [14], [15]. Since this is far below

the maximum values for a single byte, the average genome

position can expect to have values lower than this. Further,

if a given location does exceed this threshold, based on the

random placement of sequences we can assume that the first

255 occurrences are an accurate approximation of what will

later occur. We will show in the results section that this is a

valid assumption.

2) Centroid Discretization: Centroid discretization follows

from the research of [13]. When using nucleotide-byte dis-

cretization, there are many character states that are not used

(such as φ = [0, 0, 0, 0, 0], φ = [128, 128, 128, 128, 128],
etc). In addition, there are many more states that are not

biologically relevant. For example, SNP transitions (from

a purine to a purine or pyrimidine to another pyrimidine)

are far more likely than transversions (from a purine to a

pyrimidine, etc). Creating a discrete sampling from the con-

tinuous possibilities takes both the practicality and biological

relevance into account, sampling biologically-relevant states at

a higher rate than those which are not as likely. For example,

the single-byte discretization, γ, for a single a nucleotide

would be represented as γ = [0.84, 0.04, 0.04, 0.04, 0.04]. A

purine SNP from an a to a g might be represented as such:

γ = [0.28, 0.08, 0.48, 0.08, 0.08].
Because of the irregular sampling described above, convert-

ing from continuous values to the discretized γ either requires

approximation or a somewhat exhaustive search to find the

closest discrete neighbor. This leads to some of the same

problems in the previous section, especially during the MPI

reduction phase, where the discretized values from different

processors are added together. This sum is not just an addition,

but must be converted from and into the single-byte γ space

before and after the actual sum is performed. Since there

are only 256 discrete possibilities for γ, the sum can be

a pre-computed table lookup, reducing the number of steps

significantly.

VII. PERFORMANCE EVALUATION

A. Simulation Study for Accuracy
In order to validate GNUMAP’s SNP caller, we created a

data set with specific SNPs locations that we could verify. To

make this more biologically relevant, these SNPs occur at lo-

cations that had been discovered in previous biological studies.

The dbSNP file for build 37 of the human genome2 contains

roughly 800k SNPs, including insertions, deletions, and micro-

satellite repeats. From this file, we randomly selected 14,501

evenly-spaced SNPs from the X chromosome to occur in our

simulated individual.
To create an individual with these mutations, we again used

build 37 of the human X-chromosome (available from UCSC

at http://hgdownload.cse.ucsc.edu, then go to the directory

goldenPath/hg19/chromosomes), changing it at each location

in the previously-created SNP file. We then used Metasim

[16] to simulate 31M 62-bp reads with an error profile similar

to that seen by the Solexa/Illumina platform. This produced

9.1Gb of sequencing data, which is almost a 12x coverage of

the 153Mb X-chromosome.
We used this simulated data set to compare the accuracy of

GNUMAP with MAQ [4], one of the leading mapping/SNP-

calling programs. (We also made an attempt to use SOAPsnp

[5], but were unable to produce any SNPs under several model

conditions so we will not include this in our results) . As can

be seen in Table I, GNUMAP’s SNP caller is highly accurate

on the experimental data, calling 75% of the total SNPs with

only 6% false positives. These results are very similar to those

achieved by MAQ.

TABLE I
EXPERIMENTAL RESULTS FOR SIMULATED DATA

Program Time (m)* TP FP FN Precision
MAQ 990.1 11322 830 3179 93.2%
GNUMAP-SNP 218.6 11070 676 3431 94.2%

Experimental results for simulated X-chromosome data in terms of true and
false positives (TP and FP respectively) false negatives (FN), and precision
(TP/(FP+TP)). There were a total of 14,501 SNPs inserted into the simulated
genome. GNUMAP and MAQ performed similarly in terms of accuracy,
identifying nearly 80% of the total SNPs present in the dataset. Note: The
running times have not been normalized by the number of processors (to show
absolute capabilities), and MAQ ran on 1 processor while GNUMAP utilized
a cluster of 30 machines.

B. Performance Evaluation of Memory Optimizations
There are three criteria to test when evaluating the per-

formance of the two memory reductions: speed, memory

consumption, and accuracy.

2SNP file available from UCSC at
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/snp131.txt.gz
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TABLE II
MEMORY USAGE FOR OPTIMIZATIONS

optimization chrX human
NORM 4.76g 100g
CHARDISC 2.58g 58g
CENTDISC 2.91g 40g

Virtual memory used for normal (NORM), nucleotide-byte (CHARDISC) and
centroid discretization (CENTDISC) for the human X chromosome (155Mbp)
and entire human genome (3.1Gbp). As was expected, the most significant
reduction is seen in the centroid discretization method.

1) Speed: As can be seen in Figure 5, all three methods

perform at about the same rate, with the centroid discretization

method performing slightly worse on a few instances.

2) Memory Footprint: Table II shows the virtual memory

required. As was expected, the centroid discretization method

performed the best, exhibiting the smallest memory footprint

out of each of the methods. While 40GB is still too large

for a desktop machine, this type of memory requirement is

not uncommon for a typical cluster (for example, there are

Amazon cloud instances with up to 68GB of RAM3). In

addition, similar memory reductions can be see when the

genome is spread across multiple nodes instead of entirely

contained on a single node.

3) Accuracy: The biggest difference between these meth-

ods is the accuracy. Table III shows an overview of the speed

and memory consumption in addition to accuracy for a single

SNP calling run. There are two things to note. First, there was

not a significant loss in accuracy when using the byte-per-

3http://aws.amazon.com/ec2/instance-types/

TABLE III
MEMORY USAGE, WALL CLOCK, AND ACCURACY FOR GNUMAP WITH

AND WITHOUT OPTIMIZATIONS

Optimization MEM WT TP FP Precision
NORM 4.76GB 04:25:55 1309 127 91%
CHARDISC 2.58GB 04:36:58 677 0 100%
CENTDISC 2.01GB 04:27:29 166 9058 0.08%

Memory usage (MEM), wallclock times (WT), and accuracy (true and false
positives (TP and FP, respectively) and precision: TP/(TP+FP)) for a single
run of GNUMAP, without memory optimizations (NORM), discretization to
a single byte per nucleotide (CHARDISC) and discretization with centroids
to a single byte (CENTDISC). The genome used was human X chromosome,
155Mbp in length, and the reads were a subset of those used in the simulated
accuracy analysis in Section VII-A. While all methods take about the same
time to finish, the accuracy of the centroid discretized method is unacceptable.

nucleotide discretization method. In fact, in terms of precision,

this method out-performed the original method. It only found

about half as many true positives, but when resources are

limited, this method seems to perform well.

The second point to note is that, while the centroid dis-

cretization method was able to keep up with the other methods

in speed and used noticeably less memory, the accuracy was

horrible. One reason for this significant drop in accuracy is

that the discretization method employed is only meant to

be used a few times. While the nucleotide-byte method was

robust for coverage up to 255x without degrading performance

significantly, the centroid method performs significant round-

ing approximations each time a new sequence is added to

the genome. For this reason, while the memory footprint is

significantly lower, this method is not be recommended for

practical use.

VIII. CONCLUSIONS

In this research, we present GNUMAP-SNP, which utilizes

a probabilistic Pair-Hidden Markov Model (PHMM) for base

calling and SNP detection in next generation sequencing data.

This novel methodology incorporates base uncertainty from

the quality scores from the sequencing run, as well as mapping

uncertainty from multiple optimal and sub-optimal alignments

of the read to a given location to the genome. This leads to

more unbiased and more accurate SNP calls, as well as more

accurate measures of the variance of each feature. In addition,

our approach applies a likelihood ratio test that provides

researchers with straight-forward SNP calling cutoffs based

on a p-value to provide false discovery controls. This feature

is not included in other existing SNP calling approaches.

This framework makes GNUMAP-SNP highly sensitive and

specific and more appropriate for the noisy data generated by

current next generation sequencing platforms.

The parallel implementation of SNP calling achieves near

linear speedup. Although several methods for discretizing the

probability values significantly reduce the memory footprint,

these methods do not increase performance. In addition, the

accuracy is not adversely affected by a mild discretization

approach, so these methods could be used in environments

where memory is limited and performance is not as critical.
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