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Abstract—Two of the most important algorithms for Hidden
Markov Models are the forward and the Viterbi algorithms.
We show how formulating these using linear algebra naturally
lends itself to parallelization. Although the obtained algorithms
are slow for Hidden Markov Models with large state spaces,
they require very little communication between processors, and
are fast in practice on models with a small state space.

We have tested our implementation against two other imple-
mentations on artificial data and observe a speed-up of roughly
a factor of 5 for the forward algorithm and more than 6 for
the Viterbi algorithm. We also tested our algorithm in the
Coalescent Hidden Markov Model framework, where it gave
a significant speed-up.

Keywords-Hidden Markov Model; parallelization; parallel
reduction; parredhmmlib

I. INTRODUCTION

Hidden Markov models (HMMs) are a class of statis-
tical models for sequential data with an underlying hid-
den structure. They were first introduced to the field of
bioinformatics in the early 1990s [1], and have since then
been used in a wide variety of applications - for example
gene annotation [2], [3], protein structure modeling [4],
sequence alignment [5], [6] and phylogenetic analysis [7],
[8]. Because of their computational efficiency, HMMs are
one of the few widely used statistical methodologies that are
feasible for genome wide analysis, where sequence lengths
are in the millions or billions of characters. With data sets
of this size, however, analysis time is still often measured
in days or weeks. Improving on the performance of HMM
analysis is therefore important to keep up with the quickly
growing amount of biological sequence data to be analyzed.

In previous work [9] we have parallelized algorithms for
HMM analysis to increase performance, by distributing the
computations for each state among the available processors.
This works well if the number of states is large, but for
HMMs with a small number of states, the synchronization
overhead makes this approach inefficient.

In this paper we present an alternative formulation of the
forward algorithm and the Viterbi algorithm, parallelizing
the workload across the observed sequence, instead of across
the state space. This makes it feasible to give each proces-
sor a greater chunk of work and reduces communication

overhead between the processors to a minimum. We thereby
get a very efficient parallelization for HMMs with a small
number of states. The algorithms have been implemented
in a C++ library, parredhmmlib, that is freely available at
http://www.birc.au.dk/~asand/parredhmmlib. Our implemen-
tation has been tested on artificial data, and in the Coalescent
Hidden Markov Model (CoalHMM) framework [8].

II. METHODS

An HMM is a probability distribution over a sequence
O = O1O2 . . . OT ∈ V ∗, where V = {V1, V2, . . . , VM} is
an alphabet. We can formally define an HMM as consisting
of [1]:

• A finite set of (hidden) states S = {S1, S2, . . . , SN}.
At any time t, the HMM will be in any of these states,
qt = Si.

• A vector π = (π1, π2, . . . , πN ) of initial state probabi-
lities, in which πi = P (q1 = Si) is the probability of
the model initially being in state i.

• A matrix A = {aij}i,j=1,2,...,N of transition probabi-
lities, in which aij = P (qt = Sj |qt−1 = Si) is the
probability of the transition from state Si to state Sj .

• A matrix B = {bi(j)}j∈Vi=1,2,...,N , where bi(j) =
P (Ot = Vj |qt = Si) is the probability of state Si

emitting alphabet symbol Vj .

Now using this definition, a data sequence O of length T
can be generated from an HMM by performing the following
procedure:

1) Set t := 1;
2) Sample the initial state q1 according to the probability

distribution π;
3) Sample the alphabet symbol Ot from the emission

probability distribution bqt(·);
4) set t := t+ 1;
5) if t ≤ T then sample the next state qt from the

probability distribution aqt−1· and repeat from step 3;
otherwise terminate.

An HMM is parameterized by π, A and B, which we will
denote by λ = (π,A,B).
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Figure 1. The information flow in the forward algorithm. αt is computed
only from αt−1 and Ct.

A. The parredForward algorithm

One of the traditional algorithms for Hidden Markov
Models is the forward algorithm. The forward algorithm
computes the likelihood of seeing our data, given our model,
P (O|λ). First define

αt(i) = P (O1, O2, ..., Ot, qt = Si|λ) .

If we can compute these αts efficiently, we can compute
P (O|λ) =

∑
i αT (i). Let αt be the vector of the αt(i)s

αt =


αt(1)
αt(2)
...

αt(N)

 ,
Bt be a diagonal matrix of the emission probabilities at
time t

Bt =


b1(Ot)

b2(Ot)
...

bN (Ot)

 ,
and

Ct =

{
B1π if t = 1
BtA

T otherwise.

We can compute αt using only Ct and the previous αt−1

αt = Ctαt−1 = CtCt−1 · · ·C2C1,

as shown in Figure 1. Now, the classical implementation of
the forward algorithm computes αT as

(CT (CT−1 · · · (C4(C3(C2C1))) · · · )).

Figure 2 shows how the αt vectors are computed one at
a time along the sequence, each one being derived from
Ct and αt−1. If more than one processor is available, one
can attempt to parallelize the computation by computing the
entries of αt in parallel, which is the approach taken in
HMMlib [9]. However the processors have to synchronize
after each αt is computed, and if N is small the computation
of αt contains very little work, thus the time spent on
synchronization will dominate. We propose to compute the
matrix product using parallel reduction. The idea of reduc-
tion is to take advantage of the fact that matrix multiplication

is associative, thus the terms can be grouped arbitrarily. For
example the terms could be grouped into a binary tree

(· · · (CTCT−1) · · · ((C4C3)(C2C1)) · · · ).

Figure 3 illustrates how the final αT can be computed by
parallel reduction.

Note that not all the αts are computed, most being
replaced by matrices, and that each matrix multiplication
requires a synchronization to wait for its source data.

The traditional algorithm requires T matrix-vector multi-
plications, giving a workload of O

(
N2T

)
. In contrast the

above algorithm makes use of matrix-matrix multiplications
which are somewhat slower. If we assume, for simplicity,
that we use the naive O

(
N3
)
-time matrix multiplication the

workload becomes O
(
N3T

)
, thus it will have more actual

work to do, but will be able to do a lot of it in parallel, and
may actually be faster. If we assume we have one processor
dedicated to each matrix multiplication, we get an execution
time of O

(
N3 log T

)
on our new algorithm, which is better

than the traditional O
(
N2T

)
for small N and large T .

1) Numerical stability: All our matrices contain proba-
bilities, which are between 0 and 1. This means that our
products will tend toward zero exponentially fast. Normally
the values will be stored in an IEEE 754 floating-point
format. These formats have a limited precision, and if the
above was implemented naively the results would quickly
underflow and be rounded to zero.

If we can make do with log(P (O|λ)) instead of P (O|λ),
we can prevent this underflow by continuously rescaling
our matrices, like the way the columns are rescaled in the
traditional forward algorithm [1]. We introduce a scaling
constant ci for every matrix multiplication, setting it to the
sum of all entries in the resulting matrix. Each ci is used two
times: First we divide each entry in the resulting matrix by
it, to keep the values from underflowing, and next we use it
to restore the correct result at the end of our computations.

Assume we have l matrix multiplications and αC is the
resulting matrix, scaled to sum to one. Then

αT =

(
l∏

k=1

ck

)
αC ,

and we can compute the final likelihood as

P (O|λ) =
∑
i

αT (i)

=
∑
i

(
l∏

k=1

ck

)
αC(i)

=

(
l∏

k=1

ck

)∑
i

αC(i)

=
l∏

k=1

ck,
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Figure 2. The traditional forward algorithm, as described by Rabiner [1]. The rectangles represent matrices and vectors. The black lines denote dependencies.
The top row is the Ci matrices.
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Figure 3. Using parallel reduction on the forward algorithm. The rectangles represent matrices and vectors. The black lines denote dependencies, while
the horizontal dotted ones denote synchronization. The top row is the Ci matrices.

since αC sums to one. Taking the logarithm of this, we get

log(P (O|λ)) = log

(
l∏

k=1

ck

)
=

l∑
k=1

log (ck) .

2) Practical implementation: The above assumption that
we have one processor dedicated to each multiplication is
generally not true. In our implementation we assume the
number of processors in a machine to be on the order of
10, and the sequence length T to be on the order of 106 or
greater. We have made a number of changes to the above
algorithm to make it simple and fast on a real computer.

To distribute the workload over the available processors
we split it into a number of blocks. Each block will be
processed completely independently and the result of that
computation is a matrix representing that block. When all
blocks have been processed one processor multiplies the
result matrices to get the final result αT .

Notice that C1 is a vector, and not a matrix. The result
of multiplying this with another Ci is another vector. This
is important because matrix-vector multiplication is faster
than matrix-matrix multiplication, which means that the
first block, containing C1, will be processed faster than
the others, and that the result is a vector. Once we know
the resulting vector from the first block, we can use that
to also compute the second block quickly, and so on and

so forth. We use this observation by having one processor
processing the blocks from the beginning and continuously
using the results between them, while the remaining pro-
cessors consume the blocks from the other end, to retain as
much work as possible for the fast algorithm. Notice that
our algorithm reduces to the traditional forward algorithm
on these first blocks. Figure 4 shows our implementation:
In this case the sequence has been split into 11 blocks. The
first processor p = 0 simply runs the traditional forward
algorithm on the blocks, starting from the right, while the
remaining processors p = 1, 2, 3, in parallel, consumes three
blocks at a time from the left. After all the blocks have
been processed the threads are joined, and αT is found by
multiplying the final vector from p = 0 with the resulting
matrices from the other processors.

The algorithm the processor p = 0 executes has an
asymptotic running time of O

(
N2T1

)
, while the algorithm

executed by the remaining processors has a running time
of O

(
N3T2

)
. If we assume that the difference in running

time is exactly a factor of N , we expect T1 = TN
N+P−1 and

T2 = T
N+P−1 . This gives us an asymptotic running time for

our algorithm of O
(
N3 T

N+P−1

)
, which is a factor 1+ P−1

N

better than the traditional algorithm.

There can be only M different Ci matrices, besides C1.
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Figure 4. Our parredForward implementation, as run on a 4-way parallel system. The rectangles represent matrices and vectors. The black lines denote
dependencies, the horizontal dotted ones denote synchronization, and the vertical dotted ones show blocks. For each block p identifies the processor
computing it. The top row is the Ci matrices.

CtCt+1

δt−1

δt
qt+1

qt

Figure 5. The information flow in the viterbi algorithm. δt is computed
from δt−1 and Ct similarly to the forward algorithm. When backtracking
qt depends on qt+1 and the data that gave rise to that: Ct+1 and δt.

We assume M is small compared to T , and precompute all
the different possible Ci matrices.

B. The parredViterbi algorithm

Another classical algorithm, as important as the forward
algorithm is the Viterbi algorithm. The Viterbi algorithm
finds the most likely state sequence Q = q1, q2, ..., qT given
the observed data. This time define

δt(i) = max
q1,q2,...qt−1

P (q1, q2, ..., qt = i, O1, O2, ..., Ot|λ) .

Remember that matrix multiplication is defined as:

(P ×Q)ij =
∑
k

PikQkj .

Similarly we define

(P ×m Q)ij = max
k
{PikQkj}.

Note that this new operator is associative. We can now
compute

δt = Ct ×m δt−1 = Ct ×m Ct−1 ×m ...×m C2 ×m C1.

The entry in δT containing the maximal value will corre-
spond to the final state qT in Q, and the value of the entry
will be the likelihood of Q. The rest of Q can be found by
backtracking as sketched in Figure 5.

Traditionally the δs and Q would be computed linearly,
but we can reduce it in parallel in exactly the same way as
αT was in the forward algorithm. Figure 6 illustrates how
the δt vectors are traditionally computed exactly like the αt

vectors in the forward algorithm, and how Q also is found
by a simple scan. Before we show the above formally, we
will define some more notation:

Dk:l = Cl ×m Cl−1 ×m ...×m Ck+1 ×m Ck,

for 1 ≤ k ≤ l ≤ T , and note that

δt = D1:t and Dm+1:l ×m Dk:m = Dk:l.

Assume we have found some δt and its corresponding qt.
This is enough information to find all qt−1, ..., q1. δt must
have been computed by some computation

δt = D1:t

= Dk+1:t ×m D1:k

= Dk+1:t ×m δk,

for some k and this allows us to find qk as the entry in δk
that would give rise to qt,

qk = argmax
j
{(Dk+1:t)qtj δk(j)} .

The values qk−1, ..., q1 can be found by recursion. For the
values qt−1, ..., qk+1 note that Dk+1:t must also be some
product Dl+1:t ×m Dk+1:l. Thus

δt = Dk+1:t ×m δk

= Dl+1:t ×m Dk+1:l ×m δk

= Dl+1:t ×m δl.

Using the above ql can be found, and the entire range qt−1,
..., qk+1 can be found by recursion. Since we started out
showing how to find qT we can find all of Q.
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Figure 6. The traditional viterbi algorithm, as described by Rabiner [1]. The rectangles represent matrices and vectors, and the circles the qt states. The
black lines denote dependencies. The top row is the Ci matrices – to minimize clutter most dependencies on these are left out.
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Figure 7. Our parredViterbi implementation, as run on a 4-way parallel system. The rectangles represent matrices and vectors, and the circles the qt
states. The black lines denote dependencies, the horizontal dotted ones denote synchronization, and the vertical dotted ones show blocks. For each block
p identifies the processor computing it. The top row is the Ci matrices – to minimize clutter most dependencies on these are left out.

1) Practical implementation: Note that any D1:i will be
a vector, while Di:j is a matrix, that takes up N times
as much space, for i > 1. For a large T this could use
a lot of memory. To conserve memory we store only one
D1:t1 , Dt1+1:t2 , ..., Dtn+1:T , from each block. From these
we compute D1:t1 , D1:t2 , ..., D1:T , and between these we
fill out linearly, such that the majority of the matrices we
store are of the form D1:i and we do not use significantly
more memory than a traditional implementation.

Figure 7 depicts our implementation of parredViterbi:
The upper half of the figure is similar to the figure for
parredForward (Figure 4), and indeed δT is found like αT

was. qT can be found directly from δT , and the last state in
each preceding block can be found by backtracking through
the vectors just computed and the result matrices that gave

rise to them. Once these states are found we start another
parallel phase: p = 0 simply backtracks through the blocks
it processed in the first phase, and p = 1, 2, 3 executes
the traditional Viterbi algorithm on each of the remaining
blocks. For p = 1, 2, 3 the initial vector for the Viterbi
algorithm is based on the result vector δt from the preceding
block, and the backtracking is started from the state found
in the single threaded phase.

Also note that since we only do multiplication and maxi-
mum of scalars, and no addition, numerical stability is much
easier to handle – simply do all computations directly in
logarithmic space.

III. RESULTS

We have implemented the above algorithms in the
parredhmmlib package. The package is written in C++ and
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C) Sequence length versus time.
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Figure 8. Results from our experiments. In A) we tested running time versus state space size, M = 10, T = 366210, parredhmmlib use 16 threads,
HMMlib use 8 threads, with SIMD enabled and GHMM is inherintly single threaded. B) shows results from our experiment testing running time as a
function of number of threads used, with N = 4, M = 10, T = 10000000 and HMMlib using 1 thread with SIMD disabled. Finally C) shows results
from an experiment testing running time as a function of sequence length, using N = 4, M = 10, parredhmmlib with 16 threads, HMMlib and GHMM
both running single threaded and HMMlib having SIMD disabled.
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Python bindings are provided. The package is available from
http://www.birc.au.dk/~asand/parredhmmlib. We have com-
pared our implementation to GHMM [10], and our previous
work HMMlib [9]. HMMlib is an implementation that takes
advantage of all the features of a modern computer, such as
SIMD instruction and multiple cores. The individual features
of HMMlib can be turned on or off by the user, and we
recommend only enabling these features for HMMs with
large state spaces. Comparison with HMMlib is especially
interesting because HMMlib also use parallelization, but
does so at the level of each time-step instead of across
them as presented in this paper. GHMM is a straight-
forward, but general implementation of the classical HMM
algorithms [1], that does not use any kind of parallelization.
Our experiments were run on a Mac-Pro with two Intel quad-
core Xeon processors (256kB L2 cache, 8MB L3 cache)
running at 2.26GHz and 8GB main memory. In total there
are eight hyper-threaded cores allowing us to execute up to
16 processes in parallel.

We did three experiments on artificially generated HMMs.
All the plotted points are averages over 10 runs. In the
first experiment we varied the state space of the HMM,
while keeping the sequence length T constant at 366210
and the alphabet size M at 10. We set HMMlib up for
running on HMMs with large state spaces to demonstrate
what happens when that kind of parallelization is applied to
HMMs with small state spaces. The relative short sequence
length T was chosen because HMMlib stores the entire
forward table in memory, and as N grows this can take
up a very large amount of memory. As explained earlier
we expect parredhmmlib to be fast for small states spaces,
and HMMlib to be fast for large state spaces. GHMM
is not optimized for neither small nor large state spaces,
and thus we do not expect it to be able to compete with
parredhmmlib or HMMlib in those cases. Figure 8A shows
our experimental results, in which the algorithms to a large
extend behave as expected. The slowdown of parredhmmlib
around 28 states may be because that is the point where the
8MB of L3 cache of the processor is exceeded.

We have also tested how the number of threads influence
the running time of our algorithms, shown in Figure 8B. We
ran the parredForward and parredViterbi on HMMs with 4
states and an alphabet of size 10 and sequences of length
107, varying the number of threads from one to 128. To
compare our algorithms to HMMlib, we set HMMlib up to
run as fast as possible on the models with small state spaces
that we use. That is SIMD optimizations and parallelization
was turned off. Curiously we see that our implementations
are actually fastest even for one thread. This is probably
because we precomputed the Ci matrices, while HMMlib
and GHMM do not. We also note that both parredForward
and parredViterbi run fastest with 16 threads, which again
is what we expected. Using all eight cores of the machine
the parredForward gains a speed-up of a factor of 2.9, and

using hyper-threading and running on 16 cores a speed-up
of a factor of 3.4. For parredViterbi the numbers are 3.1 and
3.2 respectively.

Finally we have tested how the sequence length L affects
the execution time. As above we have set the number of
states N to four and the alphabet size M to 10. The running
time is expected to be linear in the sequence length, which
also is what we see in Figure 8C. For the forward algorithm
we are 5.5 times faster than HMMlib and 4.6 times faster
than GHMM. For the Viterbi algorithm those numbers are
6.4 and 6.8 respectively.

We have also merged our method into the CoalHMM
framework, where the existing implementation is based on
HMMlib. CoalHMM is a framework that uses an HMM
parameterized by coalescent theory, to infer changing ge-
nealogy along an alignment of DNA sequences [8]. The
hidden states represent different genealogies, and the prob-
ability of change in genealogy, between two neighboring
loci, is computed based on the probability of coalescence
and recombination events. The observations are the columns
of the alignment. We have benchmarked our method by
running the model on an alignment of chromosome 22
of a Bornean and a Sumatran Orangutan [11], [12]. The
HMM used in this experiment had N = 10 states and the
length of the alignment was T = 35 · 106. The analysis
using the old implementation took 2.95 hours while the
implementation using parredForward took 1.94 hours, giving
a speed-up of a factor of 1.52. The relatively meager speedup
can be explained by the CoalHMM framework having a
quite significant overhead, especially the derivation of the
transition matrices from the coalescent takes a long time.

IV. CONCLUSION

We have demonstrated how Hidden Markov Models with
small state spaces can be parallelized. Although the obtained
speed-up is not proportional to the number of processors, our
approach actually does provide a significant improvement, as
opposed to previous methods that were counter-productive
for such HMMs. Speeding up processing of HMMs with a
small state space is highly relevant because many HMMs
are handcrafted and have small state spaces.

One important aspect of our method is that it requires
very little communication between processors, making it a
candidate for use on general purpose graphical processing
units, or distribution over a network. Other future work
would include applying our method to the Baum-Welch
parameter estimation and the posterior decoding algorithms.
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