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Abstract—Wild populations of organism are often difficult
to study in their natural settings. Often, it is possible to infer
mating information about these species by genotyping the
offspring and using the genetic information to infer sibling, and
other kinship, relationships. While sibling reconstruction has
been studied for a long time, none of the existing approaches
have targeted scalability. In this paper, we introduce the first
parallel approach to reconstructing sibling relationships from
microsatellite markers. We use both functional and data do-
main decomposition to break down the problem and argue that
this approach can be applied to other problems where columns
are independent and simple constraint-based enumeration is
required. We discuss algorithmic and implementation choices
and their effects on results. We show that our approach is
highly efficient and scalable.

I. INTRODUCTION

Many wild species, from large marine animals
to small terrestrial plants, are often difficult to
study in their natural settings. In particular, it
is challenging to track the mating patterns of
such species, yet understanding these patterns is
essential for understanding many aspects of popu-
lation biology, ecology, and evolution. Population
biologists studying plants and animals in the field
want to know how individuals survive, acquire
mates, reproduce, and disperse to new populations.
With the availability of genetic sampling tech-
niques, genetic asseys are increasingly being used
to help elucidate these mating patterns. However,
the power and potential of genotypic information
often rests in our ability to reconstruct genealog-
ical relationships among individuals. These rela-
tionships include parentage, full and half-sibships,
and higher order aspects of pedigrees [14], [9], [8].

The goal of the sibling reconstruction problem
is, given genotypic data of a cohort, infer the full-
sibling relationships among individuals. However,
reconstructing minimum number of sibling groups
is NP-hard and inapproximable [3]. The sequential
algorithms are not scalable and computing on

even moderately large datasets (> 600 individuals
sampled at 10 loci) can be infeasible both in terms
of memory and space. For example, for a dataset
of 10 families, 50 offspring per family, 4 loci, and
10 alleles per locus, it takes 70 minutes on an
Intel Pentium D to enumerate maximal feasible
sibling groups and 2 minutes to compute the
minimum set cover. Now consider a similar dataset
with 5 alleles per locus, all the other parameters
being the same. On the same machine it takes
12 hours to enumerate maximal feasible sibling
groups. The resulting set cover problem is too
large for standard optimization software using the
standard set cover Integer Linear Programming
(ILP) formulation! Online availability of such
approaches to facilitate collaborative and rapid
progress among computer scientists and biologists
is not feasible unless high performance computing
solutions are made available. Recently, we have
made our sequential approach available online [4]
and received hundreds of requests for computation
over a period of few weeks.

In this paper, we investigate scalable ap-
proaches to compute sibling reconstruction on
multicore/multiprocessor platforms. Our proposed
solution utilizes parsimony-based sequential ap-
proach, and employs domain and functional de-
composition techniques to partition the computa-
tion over multiple threads. Novel hashing tech-
niques are developed to compute intersection of
maximal sibling groups across multiple threads.
The proposed techniques have been implemented
on multicore/multiprocessor Linux platforms. Our
results show linear speedups over single-core ex-
ecution, particularly for large datasets, and are far
more efficient than the original serial algorithm.



II. BACKGROUND AND SEQUENTIAL APPROACH

Currently the most widely used DNA mark-
ers for inferring relatedness in wild populations
are microsatellites. Unlike other markers, such as
Single Nucleotide Polymorphisms (SNP’s) or Re-
striction Fragment Length Polymorphism (RFLP),
microsatellites have the advantage of being highly
variable, relatively easy to develop, and exhibiting
codominant, Mendelian inheritance. Recently, it
has been increasingly easy and cheaper to imple-
ment microsatellite genotyping.

With the increasing use of microsatellites to
study wild populations, there is an increased inter-
est in developing mathematical and computational
techniques for reconstructing kinship from those
data. Some areas of genealogical inference, such
as parentage, have been the subject of extensive
investigation[8]. Recently, a number of analytical
methods have been introduced to study sibling
reconstruction [1], [21], [7], [19], [20], [11], [5],
[10], [17], [6], [2]. Most of the methods are based
on statistical likelihood models which require prior
information on population such as allele frequen-
cies, family sizes, and the mating pattern.

We have introduced the first purely parsimony-
based approaches in [10], [17], [5], [6]. Our
approaches are very successful in reconstructing
sibling relationships when the genetic signal is low
and/or little or no assumptions can be made about
the population [17], [6]. Our approach presented
in [6] reconstructs sibling relationships by search-
ing for the minimum number of sibling groups
necessary to explain the given cohort. While the
formulation is very effective, it is not scalable and
analyzing even moderately large datasets can be
computationally infeasible.

Formally, the problem of sibling reconstruction
is stated as follows:

Definition 1: Let U = {X1, ...Xn} be a popu-
lation of n diploid individuals of the same gener-
ation genotyped at l microsatellite loci:

Xi = (〈ai1, bi1〉, ..., 〈ail, bil〉)

where aij and bij are the two alleles of the indi-
vidual i at locus j represented as some identifying

string. The goal of the SIBLING RECONSTRUC-
TION PROBLEM is to reconstruct the full sibling
groups (groups of individuals with the same par-
ents). We assume no knowledge of parental infor-
mation. Formally, the goal is to find a partition of
individuals P1, ...Pm such that

∀1 ≤ k ≤ m,∀Xp, Xq

Xp ∈ Pk∧Xq ∈ Pk ↔ Parents(Xp) = Parents(Xq)

Note, that we have not defined the function
Parents(X). This is a biological objective which
various computational approaches formalize dif-
ferently.

Table I: An example of input data for the sibling reconstruc-
tion problem. The five individuals have been sampled at two
genetic loci. Each allele is represented by a number. Same
numbers represent the same alleles.

Individual Alleles (a/b) at locus1 Alleles (a/b) at locus2
Radish 1 144/144 255/223
Radish 2 111/166 214/231
Radish 3 133/122 255/214
Radish 4 122/122 231/223
Radish 5 133/155 214/231

A. Sequential Approach

Minimum Full-Sibs Reconstruction formulation
presented in [6] is based on parsimony. The goal
is to search for the minimum number of sibling
groups necessary to explain the population. We
presented the first purely parsimony-based ap-
proaches in [10], [6] and developed parsimony-
based consensus approach to tolerate genotyping
errors in [16]. The errors tolerant approach again
relied on the MIN-FULL-SIBS formulation to pro-
vide error-tolerant solutions to partial data.
Problem name: MIN-FULL-SIBS
Input: A set S of n individuals each with `
sampled loci.
Valid Solutions: A partition A of S such that
each partition is a full sibling group (satisfies the
2-ALLELE Property).
Objective: minimize |A|.

We refer to this formulation as the MIN-FULL-
SIBS objective hereon. Please see [6] for a descrip-
tion of the 4-ALLELE and 2-ALLELE proper-
ties, which are the formalizations of Mendelian



inheritance constraints, as well as the 2-ALLELE
MIN SET COVER algorithm in [6], consisting of
the following two main steps:

1) Enumerate all maximal feasible sibling
groups C in S

2) Use Min Set Cover to find out the minimum
number of sibling groups from C necessary
to cover the entire cohort S

B. Enumeration: 2-ALLELE algorithm

The first step is performed by generating an ini-
tial set of feasible sibling groups consisting of all
pairs of individuals. Then every group is compared
to every individual to see if the individual can be
assigned to the set without violating Mendelian
laws at any locus. The process continues until no
individuals can be assigned to any set.

Biologically, any pair of individuals necessarily
satisfies the 2-ALLELE property. Thus, initially
we use all

(
n
2

)
pairs of n individuals to generate

the candidate sets. Each set is generated using
the initial possible canonical sets from a table of
canonical possibilities[6] for each locus j. Each
allele is assigned a number between 1 and 4 based
on the order of its occurrence. Then, for each pair
of individual alleles we search for all matching
canonical sets in the canonical table to determine
the set of possibilities, PossibilitiesSet.

After generating these initial sets based on pairs
of individuals, the algorithm repeatedly iterates
through all the individuals, testing each set for a
possible assignment of the individual to the set.
In each cycle of the iterations, only the sets that
were present at the beginning of the cycle are
considered for each individual. An individual is
assigned to a set if its alleles match the possibil-
ities of the set as defined by the extended table
of possibilities. An individual may be assigned to
more than one canonical set.

However, adding an individual to a potential
sibling set may reduce the matching canonical
patterns associated with that set. .Thus, when
adding a new individual to a set, we check if a
new valid set can be created to accommodate all
of the individuals already assigned to the set as
well as the new individual. The validity of the new

set is determined by the 4-ALLELE property and
the extended table of possibilities. The alleles at
every locus of the new individual must match at
least one of the canonical patterns that collectively
satisfy all the previous individuals assigned to
the set. Once we determine that the set can be
expanded (and its set of possible matching parents
reduced) to accommodate the new individual in
a valid way, we create a modified copy of the
set. The individual is then checked against this
new set for all the remaining loci. After we have
verified that the new individual does not violate
the 2-ALLELE property of the new set at every
locus, as explained above, and verifying that the
set doesn’t already exist, we add the new set to
the collection of potential sibling sets.

We repeat this process, cycling through all the
individuals in the population. Once a set present
at the beginning of the cycle has been inspected
against all the individuals, the set is marked and is
not revisited. This ensures that all feasible sibling
pairs are evaluated, and that no sibling sets are
generated that never occur in data.

After all the potential sibling sets are generated
we apply the minimum set cover to find the
minimum number of sibling groups whose union
contains all the individuals.

C. Minimum set cover

Minimum set cover is one of the classical
problems in computer science presented in Karp’s
seminal paper on NP-complete problems [15]. The
goal of this problem is, given an input universe of
elements U and a collection of covering sets C, to
find the minimum number of covering sets from C
necessary to cover all the elements in U . We use a
commercial ILP solver1 to solve the minimum set
cover optimally using a standard ILP formulation.

III. PARALLEL SIBLING RECONSTRUCTION

In our experience the CPLEX ILP solver is very
efficient and almost all of the time solving the
MIN-FULL-SIBS problem using 2-ALLELE MIN
SET COVER algorithm is spent in enumerating all
maximal feasible sibling groups. Even though the

1GAMS CPLEX



number of sets itself can be very large too, for the
most part we are concerned with the efficiency of
enumerating all maximal feasible sibling groups.
We will address the issue related to exploding
number of sets as a memory management issue.

We address the problem of enumeration of the
maximal feasible sibling groups by using domain
decomposition. Towards this end, we compute
maximal groups at each locus in parallel. We
then find the intersection instead of maintaining
a table at each sibling group which ensures that
the 2-ALLELE Property is not violated. We
now present a parallel algorithm based on these
observations.

A. Parallel Enumeration of Full-sibling Groups

The new algorithm decomposes the data with
respect to loci as shown in Figure 1. The maximal
feasible sibling groups for each locus are com-
puted in parallel using the sequential enumeration
algorithm presented in the preceding section. We
then identify groups that are present at all loci. As
a result of this formulation, a large number of set
intersections need to be computed in order to find
maximal feasible sibling groups that are common
across loci.

The intersects between loci can be computed in
a tree-based fashion. However, the tree converges
very fast and the heaviest computation are in the
last few steps, near the root of the tree, severely
hampering the degree of parallelism.

Rather than decomposing the data based on
loci, i.e., columns, it is also possible to distribute
the individuals (rows) of the data amongst differ-
ent processors. Such an approach may not yield
extensive parallelization, since maximal feasible
sibling groups from one subpopulation may not
be independent from others. This may result in an
extensive overhead of merging maximal feasible
sibling groups from different subpopulations. It
is easily possible to split an actual sibling group
amongst different threads and spend a lot of
computation in reassembling it later due to the
combinatorial nature of the problem. Moreover,
the cost of all the data structures will be higher
since all the loci are being managed.

Figure 1: Data Decomposition

input : S1, S2 sets of individuals
output: L linked list of sets in common
S ← ∅;
Threads: t0 . . . tp;
Divide S1 equally among threads S1|0, . . . , S1|p;
Initial hashtable S|i for each thread i;
foreach thread i// In Parallel
do

foreach si ∈ S1|i do
foreach sj ∈ S2 starting with j ← i|U|

p
do

S|i ← S|i ∪ {sj ∩ si} // maintained
using a hashmap

end
end

end
foreach thread i// In Parallel
do

Convert S|i into linked list Li;
Prune Li for overlaps;
// See implementation issues

end
foreach thread i// In Serial
do

Append Li to L;
end

Algorithm 1: Parallel Intersection Algorithm

B. Parallel Intersection

As discussed above, the formulation of the
parallel implementation of 2-ALLELE MIN SET
COVERresults in a large number of set intersec-
tions. All of these intersections are independent
and can be performed in parallel. We use func-
tional decomposition at this level to distribute the
intersections. The resulting algorithm is presented
in Algorithm 1. Since all comparisons among all



sets need to be made, each of them can be done in
parallel. Care needs to be taken in avoiding repe-
titions. In order to do so, every thread maintains
its own hash of sets it has already computed and
all new sets are compared to it.

In order to compute these intersection in parallel
we distribute collections S1, S2, ... of input sets
equally amongst threads. Each thread then com-
pares all the sets assigned to it to all the sets in
the other input collection. Each threads maintains
its own collection of resulting intersected sets and
a hash map to avoid collisions. This approach
results in creating memory hotspots, in order to
reduce these hotspots each thread starts comparing
elements in Si starting from a relative index based
on its thread id. That is, thread with id j from a
total of T threads, would start from an index of
j
T
× n. Each of these threads also maintains its

own hash table which are merged at the end.
1) Merging Threads: Since the results are main-

tained in form of a hash table they must be
converted into a linked list, in order to merge data
from multiple hash tables. We convert the hash
table of each thread into linked list in parallel,
and then simply connect the linked lists. While
this may result in duplications, but we expect such
duplications to be low in practice. Also, duplicates
created in any intersect operation, except the last
one, are screened out by the subsequent intersect
operation. We refer to this over thread merging
strategy as parallel serialization. While this allows
a very high degree of parallelism, it means there
may be duplicates in the serialized linked list. In
our current implementation we do not remove the
duplicates in this serialized link list because the
number of groups is relatively small and does not
warrant parallel operation.
C. Implementation Issues

We now discuss some implementation issues
and choices made in implementing the proposed
algorithm. The algorithm has been implemented in
C and OpenMP and the code was compiled using
both the Intel C Compiler 10.0 with optimizations
enabled as well as the GNU C Compiler with
optimizations enabled. No explicit settings were
made regarding hyper-threading.

1) Efficient Intersection: Since the algorithm relies
heavily on intersection of integer sets, we encoded
the sets as binary strings of length n bits. Each bit
represented the membership of an individual in
the set. This allowed us efficient intersection by
using the binary AND operation to find out which
individuals were common in two given sibling
groups. While this does greatly improve the speed,
the number of intersections to be computed is still
very large and needs to be parallelized for efficient
computation.

2) Memory Management: Note that a number of
threads will try to access different sets in S1 and S2

at the same time. If these sets are stored as arrays
this will result in simultaneous accesses to nearly
contiguous memory locations. Therefore, every set
in S1 and S2 must be allocated separately, making
S1 and S2 linked lists. Also, in order to prevent
memory allocation calls causing inefficiencies, a
large contiguous piece of memory of size |S1||S2|

p
n
8

bytes is allocated for each thread in advance. Each
thread then uses this memory as a heap to assign
memory locations. While it is possible to store the
tables as hash tables throughout, it makes iterating
through the sets and merging them very difficult.

The parallel implementation of 2-ALLELE MIN
SET COVER Algorithm presented thus far did not
resolve all the memory issues and we still were
unable to efficiently compute feasible sets for
most datasets. Recall that the 2-ALLELE MIN SET
COVER Algorithm generated all closed maximal
feasible sibling groups. This results in a very large
number of sets, and when the intersections are
computed the number of sets grows exponentially.
In order to keep the number of sets under control,
the sets must be pruned for overlaps. Since we are
encoding the sets in binary, it allows us to easily
detect overlaps using binary operations.

Another issue is the implementation of the
hashtables that maintain the uniqueness. We cur-
rently use a chained table implementation publicly
available2. This choice results in significant mem-
ory being used, however, in our experiments we
have found it be highly computationally efficient.
We also note that the memory footprint of the

2http://www.cl.cam.ac.uk/ cwc22/hashtable/



data structure depends on a number of parameters;
it decreases significantly with the decrease in the
number of distinct alleles per locus, but increases
with the number of loci, offspring and families. In
the future, if memory management becomes more
important for even larger datasets, this speed can
be sacrificed for memory by using a more space
efficient data structure.

D. Complexity Analysis

Let us now consider the running time taken
by different steps of the algorithm. The first step
of calculating all maximal feasible sibling groups
for each locus, assuming that there are O(n4)
(4-ALLELE Property) maximal feasible sibling
groups at each locus, the first step takes O(n4dk

p
e)

time. The second step involves iterative intersec-
tions and takes Σi≤kn

4i = O(n4k) intersections.
We assume that intersections take constant time
due to the procedure described above, therefore it
takes each intersection takes O(n4i

p
) time, a total

of O(n4k

p
) time.

IV. PERFORMANCE ANALYSIS

We test our approach on both biological datasets
where pedigree is known, and simulated datasets
generated according to controlled parameters.

A. Setup

We tested our approach on two machines:

1) Dell PowerEdge 2900 III Server with two
Quad Core Processors(Intel Xeon E5430,
2x6MB Cache, 2.66GHz, 1333MHz FSB),
32GB RAM.

2) Dell PowerEdge 2900 Server with one Quad
Core Processor (Quad Core Xeon Processor
X53552x4MB Cache, 2.66GHz, 1333MHz
FSB), 24 GB RAM

Both the machines were running Ubuntu Linux
with kernel 2.6+. We tested both Intel and GNU
C Compilers, with OpenMP, the performance was
comparable. We show results for both compilers
in the next section.

Figure 2: Computation Times on Biological Datasets on 8-
core machine

Biological Datasets

We test our approach on datasets where off-
spring were collected and genotyped at several mi-
crosatellite loci, with known parental information:
Ants Leptothorax acervorum [12]: 377 Individu-
als sampled at 6 loci.
Atlantic Salmon Salmo salar [13]: 351 Individu-
als sampled at 4 loci.

Simulated Datasets

To validate our approach using random data,
we follow the same protocol as in [5]. We first
create random diploid parents and then generate
complete genetic data for offspring varying the
number of males, females, alleles, loci, number
of offspring and juveniles. For a given number
of females, males, loci, and a number of alleles
per locus, we generate a set of diploid parents
with independent identical uniform distribution of
alleles in each locus. A male and a female are
chosen independently, randomly, and uniformly
from the parent population. For these parents a
specified number of offspring is generated. Each
offspring randomly receives one allele each from
its mother and father at each locus. While this is a
rather simplistic approach, it is consistent with the
genetics of known parents and provides a baseline
for the accuracy of the algorithm since biological
data are generally not random and uniform.

B. Results

The results for the biological datasets are sum-
marized in Figure 2. As the figure shows, our algo-
rithm performs very efficiently and scales well too.



The computation times of the original sequential
algorithm, 2-ALLELE MIN SET COVER for the
Ants and Salmon datasets exceeded 15 minutes,
therefore is not included in this graph.

The results for the simulated datasets are sum-
marized in Figure 3. In order to demonstrate scal-
ability in terms of problems size and number of
processors/threads, we show the running times as
a function of number of loci, number of offspring
per family, number of alleles per locus, and the
number of threads. Once again, the running times
of 2-ALLELE MIN SET COVER were not plotted
because they far exceeded the parallel algorithm,
even with a single thread. However, note that
the performance results on 8-core machine vs 4-
core machine are for different data sets. In the
case of 4-core, the data sets has less number
of families and more individuals which generates
more number of maximal feasible groups to be
merged. Thus the problem size is relatively larger
in this case.

We also note that while the performance gains
slowed after the number of processes exceeded 4,
they continued even after the number of threads
exceeded the number of cores on the machine. The
reason for continued increase in the case of fewer
cores and more threads is better CPU utilization.

V. CONCLUSIONS AND DISCUSSION

We have presented the first parallel approach
to reconstruct sibling relationships. We used both
data and functional decomposition techniques to
develop an efficient and scalable technique. This
approach automatically translates to reconstructing
half-sibling groups by applying similar decom-
position to our approach presented in [18]. The
domain decomposition approach presented here
can be applied to a number of other problems
in population genetics and kinship analysis from
microsatellite data.

We showed that the approach performs well
for different datasets, especially the ones with a
large number of individuals and fewer loci. This
makes our approach particularly appropriate for
our target applications since there are typically
few loci known for non-model organisms and the
number of individuals can be high.

Note that our parallel algorithm performs much
faster than the serial algorithm, even on a single-
core machine. Moreover, it is much more memory-
efficient and can handle datasets of up to 400
individuals sampled at 6 on modern desktop and
notebook computers. This will enable field biolo-
gists to run quick simulations at their own end
without the need for internet access to analyze
their data using our techniques.
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