
Exploring Parallelism in Short Sequence Mapping
Using Burrows-Wheeler Transform

Doruk Bozdağ∗, Ayat Hatem∗† and Umit V. Catalyurek∗†
∗Department of Biomedical Informatics

†Department of Electrical and Computer Engineering
The Ohio State University, Columbus, OH 43210

Email: {bozdagd,dayat,umit}@bmi.osu.edu

Abstract
Next-generation high throughput sequencing instruments

are capable of generating hundreds of millions of reads in a
single run. Mapping those reads to a reference genome is an
extremely compute-intensive process that takes more than a
day on a modern computer even when the accuracy of the
results is traded off to speed up the execution. In this work,
we explore various data distribution strategies for parallel
execution of three state-of-the-art mapping tools, namely
Bowtie, BWA and SOAP2, that are based on the Burrows-
Wheeler Transformation. We report on the performance of
these strategies and show that the best strategy depends on
the input scenario as well as the relative efficiency of the
tools in the indexing and matching steps of the mapping
process. The parallelization strategies investigated in this
paper are general and can easily be applied to different
mapping algorithms. With the availability of parallel execu-
tion methods, it will be possible to carry out more intensive
computations that cannot be accomplished in a reasonable
time using sequential tools, including mapping with larger
mismatch tolerance.

I. INTRODUCTION

Next-generation high throughput sequencing instruments,
including Roche’s 454, Illumina’s Solexa and Applied
Biosystem’s SOLiD are capable of sequencing hundreds
of millions of short sequences (reads) in a single run.
Accurate and efficient mapping of these massive amounts of
sequence data to a reference genome is the most time con-
suming step in many application workflows such as whole-
genome resequencing, targeted sequencing, DNA methy-
lation and ChIP sequencing. To address this challenging
task many short sequence mapping tools have been pro-
posed (Bowtie [1], BWA [2], SOAP [3], MapReads [4],
MAQ [5], RMAP [6], SHRiMP [7], ZOOM [8], mrFAST [9],
SOCS [10], PASS [11]). These tools are designed to take ad-
vantage of the fact that the sequences are short and therefore
they allow only a limited number of mismatches and short

This work was supported in parts by the NIH/NCI grant R01CA141090;
the DOE grant DE-FC02-06ER2775; by the NSF grants CNS-0643969,
OCI-0904809, OCI-0904802 and CNS-0403342; and an allocation of
computing time from the Ohio Supercomputer Center.

gaps. Due to the variety of mapping techniques used, each
of these tools offers a different trade-off between speed and
quality of the results. Still, even by using the fastest tool and
allowing loss of some quality, mapping hundreds of millions
of reads to a mammalian genome takes about a day when
executed on a single computer [1], [12]. Given that the goal
is to sequence the entire human genome in 15 minutes by
the year 2013 [13], parallel mapping strategies are needed
to keep up with the pace of the technology.

In this paper, we consider the three newest and fastest se-
quence mapping tools, Bowtie [1], BWA [2] and SOAP2 [3],
and explore the parallelism in these programs by evaluating
effects of different data distribution strategies to speed them
up without compromising the quality of the results. All of
these tools are based on Burrows-Wheeler Transform (BWT)
and follow a two-step mapping approach. In the first step, a
BWT-based index is built for the reference genome. Then,
in the second step reads are mapped to the genome by
searching for the matching locations in the index structure.
The accuracy of the mapping depends on several factors
such as sequencing and reading errors or existence of SNPs
and repetitive regions in DNA. Even though accounting for
these factors improves the quality of the mapping, it also
increases the computational cost dramatically. Therefore,
similar to other sequence mapping programs, Bowtie, BWA
and SOAP2 provide several options to compromise quality
in the following ways to limit the computation time:

• Limiting the number of allowed mismatches,
• Ignoring indels or limiting their count and length,
• Ignoring/under-utilizing base quality score information,
• Limiting the number of reported matching locations,
• Ignoring information about errors particular to each

sequencing technology.

In this respect, parallel processing is inevitable to keep
the run-time low while achieving higher quality. Therefore,
in this work we explore different data distribution strategies
to parallelize Bowtie, BWA and SOAP2 programs and show
that the best strategy depends on the input scenario as well
as the relative efficiency of the tools in the two steps of the
mapping process.

aggcttc$

$aggcttc
aggcttc$
c$aggctt
cttc$agg
gcttc$ag
ggcttc$a
tc$aggct
ttc$aggc

c$tggatc

Figure 1. Construction of the BWT of the text T=aggcttc.

$
t
g
g
a
t
c

c
$
t
g
g
a
t
c

c

c
c

g

t
t

g

$
a $

t
g
g
a
t
c

c

c
c

g

t
t

g

$
a $

t
g
g
a
t
c

c

c
c

g

t
t

g

$
a

c
c

g

t
t

g

$
a $

t
g
g
a
t
c

c
$
t
g
g
a
t
c

c

c
c

g

t
t

g

$
a $

t
g
g
a
t
c

c

c
c

g

t
t

g

$
a

c
c

g

t
t

g

$
a

Last ColumnFirst Column

aggcttc

ttcc cttc gcttc ggcttctc

Step 2Step 1 Step 3 Step 5 Step 6Step 4

(b)(a)

Figure 2. Regeneration of the original text T=aggcttc from the BWT of T.

II. BURROWS-WHEELER TRANSFORM

Burrows-Wheeler Transform [14] of a given text T is a
reversible permutation of the characters in T. BWT was
primarily developed for data compression, however, it is
widely used by data indexing techniques due to its efficiency.
In particular, BWT allows searching through a given data
block with a relatively small memory footprint. The basic
idea is the construction of a sorted matrix M for all possible
cyclic rotations of the text T in two steps. First, a character,
denoted by $, is added to the end of T, where $ does not
belong to the alphabet of T and is smaller than any other
character in the alphabet. Next, the matrix M of all cyclic
rotations of T$ is constructed. Once the rows of M are
sorted, the last column of M becomes the output text of
the BWT. Figure 1 shows an example for constructing the
BWT of the text T=aggcttc. In general, the BWT process
is reversible, i.e., the original text can be regenerated from
the output text. In fact, the reverse process is based on
the Last First (LF) mapping property of BWT. Using LF
mapping, if a character X is ranked ith among the rows
ending with the same character in the last column, then
it will have the same rank i among the same characters
in the first column. Figure 2 shows how to use the LF
mapping property to regenerate T=aggcttc from the BWT

of T. First, the first column is generated from the output
text by ordering the BWT text as shown in Figure 1.
Then, starting with character c, we detect its location in
the first column and retrieve the previous character which
is t. After that, we detect the location of character t in the
first column and find the corresponding previous character
which is t. This process continues until the $ character
is found which indicates the end of the string. Therefore,
the original text can be regenerated. Accordingly, Ferragina
and Manizini [15] provided an exact matching algorithm on
BWT text based on the LF mapping property.

One of the key applications of BWT is sequence align-
ment in bioinformatics. In fact, several recent short se-
quence mapping tools, including Bowtie [1], BWA [2], and
SOAP2 [3] were developed based on BWT. In BWA, a
BWT based index is built using the method introduced by
Lam et al. [16]. This method tries to mimic the top down
traversal of a suffix tree using BWT. In addition, it uses
the search algorithm of Ferragina and Manzini to find the
exact matches through the index. The authors of BWA have
also introduced a modified algorithm that allows for inexact
matching. Bowtie, on the other hand, uses an index called
FM which is again based on the BWT. The FM index
uses the Ferragina and Manzini exact matching algorithm
to search through the index. Furthermore, Bowtie provides

P1,1

P2,1

P3,1

P4,1

P1,2

P2,2

P3,2

P4,2

P1,3

P2,3

P3,3

P4,3

P1,4

P2,4

P3,4

P4,4

READS

REFERENCE GENOME

P1,5

P2,5

P3,5

P4,5

g1 g2 g3 g4 g5

r1

r2

r3

r4

Figure 3. Example of an NR×NG = 4× 5 data partitioning configuration. Each compute node Pi,j is assigned the corresponding reads group ri and
genome part gj of the 2D grid.

an excessive backtracking search method to find inexact
matches through the reference genome. In SOAP2, the reads
are split into k+1 parts while searching for inexact matches
with up to k mismatches. Then, exact match is sought in at
least one of the parts.

III. PARALLELIZATION STRATEGIES

In this work, we focus on the parallelization of BWA,
Bowtie and SOAP2 tools on a cluster of distributed memory
computers. Both the indexing and the matching steps of
these algorithms can be run in parallel by appropriate
distribution of the genome and the short sequence data.

A common technique to parallelize the matching step is
to use multiple threads to simultaneously execute indepen-
dent portions of work on a multi-core computer. Basically,
different blocks of reads are assigned to each thread. This ap-
proach is comparable to partitioning the reads and assigning
each part to a different node in a compute cluster. However,
in multi-threading the amount of parallelization is limited
by the number of cores, and the efficiency decreases as the
number of threads increases.

Bowtie, BWA and SOAP2 all offer multi-threading sup-
port to parallelize the matching step, however, due to the
difficulty of parallel indexing, no such support exists for the
indexing step. In this work, in addition to read partitioning
to speed up the matching step, we also consider genome
partitioning to parallelize the indexing step of the mapping
process. By partitioning the genome and assigning only a
portion of it to each node, the indexing step is expected to
get faster due to smaller input size. Furthermore, the memory
footprint is reduced, which can be critical in non-dedicated

systems or in systems with limited memory especially when
indexing large genomes. Note that, this effect cannot be
achieved by multi-threading. Genome partitioning may also
help improve the performance of the matching step, since the
search time in a BWT-based approach also depends on the
size of the index. Yet another benefit of cluster computing
is the larger amount of aggregate cache, which is useful for
both steps.

Partitioning the reads can be very useful for cases where
a very large number of reads needs to be mapped to a small
genome. On the other hand, partitioning the genome will be
more efficient if a relatively small number of reads should
be mapped to a large genome. Between these extreme cases
better data partitioning schemes can be utilized. Here, we ex-
plore a more general two-dimensional (2D) data partitioning
scheme, where the nodes of the compute cluster are viewed
as a 2D grid (note that the 2D grid analogy is solely used
for demonstrating the data partitioning scheme; the actual
topology of the compute cluster is not required to be a
grid). Let the number of rows in this grid correspond to the
number of read partitions (NR), and the number of columns
correspond to the number of genome partitions (NG), where
NR × NG is equal to the number of nodes in the system.
Under this partitioning, parallel execution works as follows.
First, each reads group is multicast to the processors in the
corresponding row, and each genome part is multicast to
the processors in the corresponding column of the 2D grid
(see Figure 3). Then, each processor independently runs the
mapping algorithm to map the assigned group of reads to the
assigned portion of the genome. At the end of the execution,
a read may map to multiple locations. This information is

0

0.5

1

1.5

2

2.5
x 10

4

 4M 16M 64M

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(a) Zebrafish

0

2000

4000

6000

8000

10000

12000

14000

16000

 Lancelet Zebrafish Human

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(b) 16M reads

Figure 4. Bowtie execution time results on 16 nodes for mapping (a) 4M , 16M and 64M reads to Zebrafish genome; (b) 16M reads to different sized
reference genomes (lancelet: 0.9Gbp, zebrafish: 1.5Gbp, human: 3.1Gbp). Each group of five bars correspond to the following NR × NG configurations
from left to right: 1 × 16, 2 × 8, 4 × 4, 8 × 2, and 16 × 1.

combined across the row processors and returned to the user.
By choosing appropriate values for NR and NG based on the
input data sizes and the relative performance of indexing and
matching phases of the mapping tool being used, the overall
performance can be improved.

IV. EXPERIMENTAL RESULTS

In this section, we present results from our experiments
on different parallelization strategies for Bowtie, BWA and
SOAP2 tools on a cluster of distributed memory computers.
We used version 0.10.1 of Bowtie, version 0.5.0 of BWA,
and version 2.20 of SOAP2 with their default options unless
stated otherwise. For all of these tools the default value for
the maximum number of mismatches allowed in the seed
of a read was 2. We used 28 as the seed length for BWA
and SOAP2, which is the default value for Bowtie. The
experiments were conducted on a 32-node dual 2.4 GHz
Opteron cluster with 8 GB of memory per node. The nodes
are interconnected with switched gigabit Ethernet. In all of
the tests reported in this section, we used two threads per
node in the matching step of all three tools.

In our tests we used three reference genomes, human,
zebrafish and lancelet, with sizes approximately 3.1Gbp,
1.5Gbp and 0.9Gbp, respectively 1. As for the reads, we
used synthetic datasets for scalability experiments generated
by the wgsim tool as well as a real dataset. wgsim tool
is a part of SAMtools package2, and it generates sample
reads for a given reference genome. In particular, for each
genome in our testbed, we generated 70bp reads each with

1http://genome.ucsc.edu
2http://samtools.sourceforge.net

0.09% SNP mutation rate, 0.01% indel mutation rate and
2% uniform sequencing base error rate. The real reads
data were generated by a single run of a SOLiD system
where total RNA was isolated from human brain tissue,
converted to double stranded DNA templates suitable for
sequencing using the Ambion’s Legend technology. The
library was clonally amplified by ePCR and run on Applied
Biosystem’s SOLiD instrument [17]. The final reads file has
approximately 130M reads of length 50bp.

In our experiments on synthetic datasets, we used 16
compute nodes and tested the performance of the tools using
the following read and genome distribution configurations:
NR × NG = 1 × 16, 2 × 8, 4 × 4, 8 × 2, and 16 × 1. For
each configuration we measured the time to distribute reads
and genome data to nodes as well as indexing and matching
times of the mapping tools. In Figure 4(a), parallel execution
time for Bowtie is given for mapping 4M , 16M and 64M
reads to zebrafish genome (M = million). Corresponding
results for BWA and SOAP2 are given in Figures 5(a)
and 6(a), respectively. The detailed timing results corre-
sponding to those figures are also displayed in Tables I–
III. From these charts, one can see that as the number
of reads increases, matching time becomes more dominant
relative to the indexing time. Therefore, using configurations
with larger NR becomes more efficient. However, the ratio
of indexing time to matching time is also important in
selecting the best configuration. As the results indicate,
the ratio of indexing time to matching time for Bowtie
is larger than that for BWA. Hence, Bowtie is likely to
benefit more from larger NG values relative to BWA. For
instance, while mapping 16M reads to the zebrafish genome,

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

 4M 16M 64M

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(a) Zebrafish

0

2000

4000

6000

8000

10000

12000

 Lancelet Zebrafish Human

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(b) 16M reads

Figure 5. BWA execution time results on 16 nodes for mapping (a) 4M , 16M and 64M reads to zebrafish genome; (b) 16M reads to different sized
reference genomes (lancelet: 0.9Gbp, zebrafish: 1.5Gbp, human: 3.1Gbp). Each group of five bars correspond to the following NR × NG configurations
from left to right: 1 × 16, 2 × 8, 4 × 4, 8 × 2, and 16 × 1.

0

1

2

3

4

5

6
x 10

4

 4M 16M 64M

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(a) Zebrafish

0

2000

4000

6000

8000

10000

12000

14000

16000

 Lancelet Zebrafish Human

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(b) 16M reads

Figure 6. SOAP2 execution time results on 16 nodes for mapping (a) 4M , 16M and 64M reads to zebrafish genome; (b) 16M reads to different sized
reference genomes (lancelet: 0.9Gbp, zebrafish: 1.5Gbp, human: 3.1Gbp). Each group of five bars correspond to the following NR × NG configurations
from left to right: 1 × 16, 2 × 8, 4 × 4, 8 × 2, and 16 × 1.

the best configuration for Bowtie was NR × NG = 4 × 4,
whereas the best configuration for BWA and SOAP2 was
NR ×NG = 16×1. Note that these results also give insight
about application scenarios in which the same index can be
used multiple times for mapping different sets of reads to
the same reference genome. If the total number of reads that
will be mapped to the same reference genome is large, larger
NR values should be preferred.

To assess the impact of varying genome size, we designed
a second set of experiments, where 16M reads generated
by wgsim tool were mapped to the corresponding three
reference genomes. The results for these tests are given in
Figures 4(b), 5(b) and 6(b) for Bowtie, BWA and SOAP2
respectively. From these results one can observe that, for all
of the tools, the indexing time is slightly more than doubled
either when NG is halved or when a two times larger

Table I
DETAILED TIMING RESULTS CORRESPONDING TO FIGURE 4 FOR EXECUTING BOWTIE IN PARALLEL USING 16 NODES. SEQUENTIAL EXECUTION TIME

FOR EACH EXPERIMENT IS INCLUDED IN PARENTHESIS.

Zebrafish genome
4M reads 16M reads 64M reads

(Index=7197, Match=951, Total=8148) (Index=7197, Match=3878, Total=11075) (Index=7197, Match=16438, Total=23635)
1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1

Data dist. 41 29 28 30 47 122 123 104 86 83 661 590 531 487 475
Indexing 259 580 1263 2624 5718 259 580 1263 2624 5718 259 580 1263 2624 5718
Matching 1051 627 356 176 50 4222 2519 1430 689 187 20404 11422 6478 3252 1010
Total 1351 1236 1648 2830 5815 4603 3222 2797 3398 5988 21324 12592 8272 6362 7204

16M reads
Lancelet genome Zebrafish genome Human genome

(Index=3297, Match=2337, Total=5634) (Index=7197, Match=3878, Total=11075) (Index=20775, Match=3961, Total=24736)
1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1

Data dist. 46 55 34 29 30 122 123 104 86 83 198 202 156 150 196
Indexing 155 318 716 1588 3230 259 580 1263 2624 5718 580 1253 2856 6338 14653
Matching 2031 1168 654 315 98 4222 2519 1430 689 187 5314 3244 1988 1316 322
Total 2233 1541 1405 1932 3358 4603 3222 2797 3398 5988 6092 4698 5000 7805 15170

Table II
DETAILED TIMING RESULTS CORRESPONDING TO FIGURE 5 FOR EXECUTING BWA IN PARALLEL USING 16 NODES. SEQUENTIAL EXECUTION TIME

FOR EACH EXPERIMENT IS INCLUDED IN PARENTHESIS.

Zebrafish genome
4M reads 16M reads 64M reads

(Index=2297, Match=3071, Total=5368) (Index=2297, Match=10938, Total=13235) (Index=2297, Match=49676, Total=51973)
1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1

Data dist. 41 29 28 30 47 122 123 104 86 83 661 590 531 487 475
Indexing 109 222 494 1049 2408 109 222 494 1049 2408 109 222 494 1049 2408
Matching 1896 1402 939 546 231 7600 5583 3787 2179 811 30675 22353 15099 8758 2917
Total 2046 1652 1462 1626 2685 7831 5928 4384 3314 3302 31446 23165 16124 10294 5800

16M reads
Lancelet genome Zebrafish genome Human genome

(Index=1613, Match=6785, Total=8398) (Index=2297, Match=10938, Total=13235) (Index=7096, Match=15650, Total=22746)
1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1

Data dist. 46 55 34 29 30 122 123 104 86 83 198 202 156 150 196
Indexing 74 163 401 777 1740 109 222 494 1049 2408 384 745 1506 3389 6680
Matching 2086 1584 1274 867 478 7600 5583 3787 2179 811 10973 8077 5834 4948 1100
Total 2206 1802 1709 1673 2248 7831 5928 4384 3314 3302 11555 9024 7496 8487 7975

Table III
DETAILED TIMING RESULTS CORRESPONDING TO FIGURE 6 FOR EXECUTING SOAP2 IN PARALLEL USING 16 NODES. SEQUENTIAL EXECUTION TIME

FOR EACH EXPERIMENT IS INCLUDED IN PARENTHESIS.

Zebrafish genome
4M reads 16M reads 64M reads

(Index=2657, Match=7221, Total=9878) (Index=2657, Match=28522, Total=31179) (Index=2657, Match=119499, Total=122156)
1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1

Data dist. 41 29 28 30 47 122 123 104 86 83 661 590 531 487 475
Indexing 150 272 574 1222 3056 150 272 574 1222 3056 150 272 574 1222 3056
Matching 3520 2908 2694 1897 561 14437 11659 10686 7133 1956 56590 46596 43382 29698 7931
Total 3711 3210 3297 3150 3664 14709 12054 11364 8441 5095 57401 47459 44488 31406 11462

16M reads
Lancelet genome Zebrafish genome Human genome

(Index=1633, Match=1903, Total=3536) (Index=2657, Match=28522, Total=31179) (Index=6591, Match=5107, Total=11698)
1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1 1x16 2x8 4x4 8x2 16x1

Data dist. 46 55 34 29 30 122 123 104 86 83 198 202 156 150 196
Indexing 83 172 367 802 1811 150 272 574 1222 3056 286 600 1315 2975 5895
Matching 1504 995 631 357 142 14437 11659 10686 7133 1956 6530 5000 3887 3611 458
Total 1633 1222 1032 1188 1983 14709 12054 11364 8441 5095 7013 5802 5359 6736 6549

0

0.5

1

1.5

2

2.5
x 10

4

Parallel configurations

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(a) Bowtie

0

0.5

1

1.5

2

2.5
x 10

4

Parallel configurations

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(b) BWA

0

0.5

1

1.5

2

2.5
x 10

4

Parallel configurations

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

Matching
Indexing
Data distribution

(c) SOAP2

Figure 7. Execution time results on 32 nodes for mapping 130M reads from our real data set to human genome for (a) Bowtie, (b) BWA and (c) SOAP2
programs. Each group of six bars correspond to the following NR × NG configurations from left to right: 1 × 32, 2 × 16, 4 × 8, 8 × 4, 16 × 2, and
32 × 1.

Table IV
DETAILED EXECUTION TIME RESULTS ON 32 NODES FOR MAPPING 130M READS FROM OUR REAL DATA SET TO HUMAN GENOME USING BOWTIE,

BWA AND SOAP2 PROGRAMS. THE RESULTS IN THIS TABLE CORRESPOND TO THE ONES IN FIGURE 7.

Bowtie BWA SOAP2
Configuration Data dist. Index Match Total Data dist. Index Match Total Data dist. Index Match Total

1x32 1131 447 9961 11538 1131 243 8572 9944 1131 184 7434 8748
2x16 592 757 6118 7466 592 364 6065 7020 592 344 4784 5719
4x8 519 1766 3901 6186 519 1142 4473 6134 519 653 3262 4434
8x4 439 3874 3018 7331 439 1994 3164 5597 439 1615 2232 4286
16x2 405 8820 3165 12390 405 3476 2270 6151 405 3183 1590 5178
32x1 377 19500 838 20715 377 7398 3357 11132 377 6915 2148 9440

reference genome is used. This indicates that partitioning the
genome may help speeding up the indexing phase more than
expected. On the other hand, when NR ≤ 8, the matching
time is less than doubled when NR is halved. This can
be explained by the fact that the matching time not only
depends on the number of read sequences assigned to a
node but also on the index size. The index size at each
node increases with increasing NR (since NG is decreased),
which results in an increase in the matching time. As a result,
one can conclude that parallelization of the indexing step
may also help reducing the execution time due to reduced
index size. The only special case for this observation occurs
for the 16 × 1 configuration. In this case, the matching
time is much lower than what can be predicted from the
other configurations. Since NG = 1 in this configuration,
all of the processors use the same reference genome. In the
other configurations, where NG > 1, the matching time is
larger than expected due to an additional imbalance caused
by genome partitioning. Although the size of the genome
segments assigned to the nodes are equal, some segments
get more hits than the others resulting in this imbalance.

In the case of zebrafish experiments using SOAP2, the
matching time was found to be significantly larger than
expected. After additional tests we concluded that this is due
to the combination of the fact that the zebrafish genome had
many fewer ambiguous characters than the human and the

lancelet genomes (0.2% as opposed to 7% and 10%) and
the way that SOAP2 handle ambiguous characters during
matching.

Tables I–III, also include sequential execution times, in
parenthesis, for each scenario we ran. As seen in the tables,
parallel execution always leads to speedup but it is far from
ideal linear speedup. On 16 nodes, speedup ranges from 2.18
to 10.65. Please also note that, the matching time for almost
all of the configurations, including 1x16, is better than the
sequential matching time. Therefore, even if the indexing
is done once for the different genomes, the parallelization
helps in executing the experiments faster. Obviously, if the
same reference genome will be used multiple times to match
against multiple reads dataset, one should prefer partitioning
reads (e.g., 16x1 configuration in our tests), to achieve best,
almost linear, speedup.

In our experiments on the real reads data, we used the fol-
lowing configurations using 32 nodes to evaluate the parallel
performance of the tools: NR × NG = 1 × 32, 2 × 16, 4 ×
8, 8×4, 16×2, and 32×1. The results of these experiments
are illustrated in Figure 7 and detailed in Table IV. The
outcome of these experiments were in line with those from
our synthetic datasets. The best configuration for Bowtie for
this particular test case was NR × NG = 4 × 8, whereas it
was NR × NG = 8 × 4 for BWA and SOAP2.

V. CONCLUSION AND FUTURE WORK

In this work, we extensively analyzed different data dis-
tribution strategies for mapping massive amounts of reads to
a reference genome in parallel. We considered partitioning
both the reads and the genome data on different number of
parts for mapping on a compute cluster arranged as a 2D
grid. The parallelization strategies are tested on three new
and fast mapping algorithms: Bowtie, BWA and SOAP2,
all of which are based on the Burrows-Wheeler Transform.
The results revealed that the best data distribution strategy
depends on the input scenario as well as the relative effi-
ciency of the tools in the indexing and matching steps of the
mapping process. Furthermore, the size of the genome part
assigned to each node turned out to have a significant impact
on the performance of the tools in the matching phase.

The parallelization techniques investigated in this paper
can easily be applied to different mapping algorithms to
speed up their execution time and to reduce memory re-
quirement without compromising the accuracy of the results.
With the availability of parallel execution methods, it will
be possible to carry out more intensive computations that
cannot be accomplished in a reasonable time using sequen-
tial tools, including mapping with larger mismatch tolerance.
In the future, we plan to investigate analytical cost models
for parallel execution of the mapping tools considered in
this paper in order to automatically predict the best data
partitioning strategy for given data sizes and number of
available nodes.

REFERENCES

[1] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg,
“Ultrafast and memory-efficient alignment of short dna
sequences to the human genome.” Genome biology, vol. 10,
no. 3, pp. R25+, 2009. [Online]. Available: http://dx.doi.org/
10.1186/gb-2009-10-3-r25

[2] H. Li and R. Durbin, “Fast and accurate short read alignment
with burrows-wheeler transform.” Bioinformatics (Oxford,
England), vol. 25, no. 14, pp. 1754–1760, July 2009. [Online].
Available: http://dx.doi.org/10.1093/bioinformatics/btp324

[3] R. Li, C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen,
and J. Wang, “SOAP2: an improved ultrafast tool for short
read alignment.” Bioinformatics (Oxford, England), vol. 25,
no. 15, pp. 1966–1967, August 2009. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/btp336

[4] mapreads: SOLiD System Color Space Mapping Tool,
Applied Biosystems, http://solidsoftwaretools.com/gf/project/
mapreads/.

[5] H. Li, J. Ruan, and R. Durbin, “Mapping short dna
sequencing reads and calling variants using mapping
quality scores.” Genome research, vol. 18, no. 11, pp.
1851–1858, November 2008. [Online]. Available: http:
//dx.doi.org/10.1101/gr.078212.108

[6] A. D. Smith, Z. Xuan, and M. Q. Zhang, “Using quality
scores and longer reads improves accuracy of solexa read
mapping.” BMC bioinformatics, vol. 9, no. 1, pp. 128+,
February 2008. [Online]. Available: http://dx.doi.org/10.1186/
1471-2105-9-128

[7] S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume,
A. Sidow, and M. Brudno, “Shrimp: Accurate mapping
of short color-space reads,” PLoS Comput Biol, vol. 5,
no. 5, pp. e1 000 386+, May 2009. [Online]. Available:
http://dx.doi.org/10.1371/journal.pcbi.1000386

[8] H. Lin, Z. Zhang, M. Q. Zhang, B. Ma, and M. Li, “ZOOM!
zillions of oligos mapped.” Bioinformatics (Oxford, England),
vol. 24, no. 21, pp. 2431–2437, November 2008. [Online].
Available: http://dx.doi.org/10.1093/bioinformatics/btn416

[9] C. Alkan, J. M. Kidd, T. Marques-Bonet, G. Aksay,
F. Antonacci, F. Hormozdiari, J. O. Kitzman, C. Baker,
M. Malig, O. Mutlu, S. C. Sahinalp, R. A. Gibbs, and
E. E. Eichler, “Personalized copy number and segmental
duplication maps using next-generation sequencing.” Nature
genetics, vol. 41, no. 10, pp. 1061–1067, October 2009.
[Online]. Available: http://dx.doi.org/10.1038/ng.437

[10] B. D. Ondov, A. Varadarajan, K. D. Passalacqua, and
N. H. Bergman, “Efficient mapping of applied biosystems
solid sequence data to a reference genome for functional
genomic applications,” Bioinformatics, vol. 24, no. 23,
pp. 2776–2777, December 2008. [Online]. Available: http:
//dx.doi.org/10.1093/bioinformatics/btn512

[11] D. Campagna, A. Albiero, A. Bilardi, E. Caniato, C. Forcato,
S. Manavski, N. Vitulo, and G. Valle, “PASS: a program
to align short sequences,” Bioinformatics (Oxford, England),
vol. 25, no. 7, pp. 967–968, April 2009. [Online]. Available:
http://dx.doi.org/10.1093/bioinformatics/btp087

[12] D. Bozdag, C. C. Barbacioru, and U. Catalyurek, “Parallel
short sequence mapping for high throughput genome sequenc-
ing,” in Proc. of the International Parallel and Distributed
Processing Symposium, May 2009.

[13] K. Davies, “Pacific Biosciences preparing the 15-minute
genome by 2013,” Bio IT World, Feb. 2008.

[14] M. Burrows and D. J. Wheeler, “A block sorting lossless data
compression algorithm,” Technical report 124 Palo Alto, CA:
Digital Equipment Corporation, 1994.

[15] P. Ferragina and G. Manzini, “Opportunistic data structures
with applications,” in Proc. of the 41st Annual Symposium on
Foundations of Computer Science, 2000.

[16] T. Lam, W. Sung, S. Tam, C. Wong, and S. Yiu, “Compresses
indexing and local alignment of dna,” Bioinformatics, vol. 24,
no. 6, pp. 791–797, 2008.

[17] “Applied Biosystems SOLiD system,” http://marketing.
appliedbiosystems.com/mk/get/SOLID KNOWLEDGE
LANDING.

