
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
978-1-4244-1694-3/08/$25.00 ©2008 IEEE 

A Parallel Architecture for Regulatory Motif Algorithm Asse ssment

Daniel Quest,◦⋆ Kathryn Dempsey,⋆ Mohammad Shafiullah,⋆ Dhundy Bastola,⋆ and Hesham Ali◦⋆

⋆ College of Information Technology, University of Nebraska at Omaha
◦ Department of Pathology and Microbiology, University of Nebraska Medical Center

Omaha, NE 68182-0694 USA
E-mail: djquest@unmc.edu

Abstract

Computational discovery of cis-regulatory motifs has be-
come one of the more challenging problems in bioinformat-
ics. In recent years, over 150 methods have been proposed
as solutions, however, it remains difficult to characterize
the advantages and disadvantages of these approaches be-
cause of the wide variability of approaches and datasets.
Although biologists desire a set of parameters and a pro-
gram most appropriate for cis-regulatory discovery in their
domain of interest, compiling such a list is a great computa-
tional challenge. First, a discovery pipeline for 150+ meth-
ods must be automated and then each dataset of interest
must used to grade the methods. Automation is challeng-
ing because these programs are intended to be used over a
small set of sites and consequently have many manual steps
intended to help the user in fine-tuning the program to spe-
cific problems or organisms. If a program is fine-tuned to
parameters other than those used in the original paper, it
is not guaranteed to have the same sensitivity and speci-
ficity. Consequently, there are few methods that rank motif
discovery tools. This paper proposes a parallel framework
for the automation and evaluation of cis-regulatory motif
discovery tools. This evaluation platform can both run and
benchmark motif discovery tools over a wide range of pa-
rameters and is the first method to consider both multiple
binding locations within a regulatory region and regulatory
regions of orthologous genes. Because of the large amount
of tests required, we implemented this platform on a com-
puting cluster to increase performance.

1. Introduction

De novocis-regulatory motif detection has evolved sig-
nificantly over the past 20 years. Currently there exists over
150 different programs that discover cis-regulatory motifs
in a set of sequences (you can find our partial list of these
programs athttp://biobase.ist.unomaha.edu).

Each of these tools have distinct advantages and disadvan-
tages but the primary differences are the scoring function
and model used by the algorithm, the representation of a
motif used by the algorithm, and the data presented to the
algorithm. A historical review of these algorithms was writ-
ten by Brazmaet al. in 1998 [1]. More recently, Sandveet
al. proposed an integrative framework for classifying motif
discovery algorithms [5].

With the large amount of options available today for cis-
regulatory motif discovery, it is increasingly important to
be able to evaluate the performance of these tools over dif-
ferent datasets. Upon publication, most tools provide their
own dataset and benchmark themselves against only a few
other approaches (e.g. approaches that most closely resem-
ble their own approach). Unfortunately, this does not in-
dicate which motif discovery methods are most successful
overall or which motif discovery programs perform well
over specific datasets. In an environment of so many op-
tions, it is difficult for biologists to know which method
will likely perform the best. This makes motif algorithm
assessment increasingly important.

In 2004, Tompaet al.presented a benchmarking strategy
to evaluate motif discovery tools by evaluating 13 tools on
transcription factors found in yeast, flies, mice, and humans.
While the study was seminal in its importance, it may not
be realistic because it only contained 8 sites fromSaccha-
romyces cerevisiae, 6 sites fromDrosophila melanogaster,
12 sites fromMus musculus, and 26 sites fromHomo sapi-
ens. When one considers that RegulonDB contains 164
known binding sites for transcription factors inEscherichia
coli K12 it appears that many motifs are not annotated in
the benchmarking dataset. Tompa attempted to address this
problem by constructing synthetic versions of his datasets
and evaluating them. However, his approach does not con-
sider the combinatorial interactions that are known to exist
in cis-regulatory modules. Also, many steps in his assess-
ment were manual. Consequently, the benchmark is lim-
ited because it can not be run hundreds of times to fine-
tune algorithm parameters, it can not easily adapt to account



Figure 1. Three example regulatory modules taken from EcoCy c. Arrows represent coding se-
quences. Green boxes represent transcription factor bindi ng positions for activators. Pink boxes
represent binding positions for repressors. Brown boxes de note a site that has a dual function.

for newly discovered transcription factors (especially those
factors that exist in the same upstream sequence), and its
method of assessment can not be changed. Sandveet al.
expanded Tompa’s original paper to include a more robust
set of machine learning benchmarks for assessment [4]. Al-
though these additions are helpful and address many impor-
tant concerns, the dataset used is the same as Tompa’s and
therefore carries the same inaccuracies. Huet al. [2] as-
sessed 5 tools inE. coli using RegulonDB [3]. Because
RegulonDB contains so many more known transcription
factor binding sites in relation to all the possible transcrip-
tion factor binding sites when compared to the Transfac [7]
data that was used to construct the Tompa test set, a more re-
alistic representation of tool performance can be expected.
Unfortunately, this study does not include Weeder, the tool
that performed best in the Tompa assessment. The assess-
ments presented here also do not consider methods that
integrate phylogentic information in the algorithm despite
the fact that phylogenetically related sequences are readily
available for both of these datasets.

Motif prediction algorithms are constantly improving
and assessments are generally made obsolete by new tools
by the time they are published. Tool developers and the
biological community would be able to more quickly un-
derstand and correct deficits in the current approaches if an
automated method for evaluating performance over many
transcription factor datasets were available. However, such
a tool has not emerged because of the difficulty in automat-
ing motif detection tools and the processing power required
to test thousands of runs over hundreds of cis-regulatory re-
gions.

This paper proposes a method that automates motif pre-
diction tools and performs benchmarks on these tools using
a computing cluster. Our goal is to perform assessments on
the genome level and consider every regulatory motif found
in an organism to evaluate motif tool performance. We be-
lieve this framework has a substantial advantage over tra-
ditional methods because it allows individual practitioners
and experimental biologists to perform benchmarks them-
selves. We feel that this approach can rapidly accelerate the
understanding of the motif discovery problem and help to
fine-tune the performance of current approaches on a wide
variety of datasets.

2. Motivation

Better automation techniques and better evaluation plat-
forms go hand in hand in their necessity for one another.
Evaluation technology could be greatly improved if it could
consider more important parameters of the problem. Dis-
covery technology can be improved if programs bench-
marking is fair and rapid. In this section, we motivate the
need for our approach by outlining the difficulties associ-
ated with automating motif discovery tools and with the
current benchmarking techniques.

2.1. Motivation for evaluation

Given a list of sets of co-expressed genes, the objective
of de novoregulatory motif detection is to mark the bind-
ing positions of regulatory proteins upstream of all genes in
the list. For example, given a set of genesS1 = g1, g2, g3



that are co-expressed under one set of environmental condi-
tions and a second set of genesS2 = g2, g3, g4 that are co-
expressed under another set of environmental conditions,
our goal is to use the listS1, S2, . . . to label the transcription
regulatory networks upstream of all genes in the genome
computationally. These binding positions can then be used
to help determine the combinatorial control on each of the
genes in the genome and to diagnose the interworkings of
the resulting cellular interaction networks.

Labeling all of the transcription factor binding positions
computationally is a very ambitious goal because it is com-
plicated by many smaller problems. First, multiple binding
positions occur upstream of any given coding sequence. In
Figure 1, we have an illustrative example of three regula-
tory regions from E. coli. CRP binds one or more times
to each one of these regulatory regions. Multiple types
of binding positions often serve to confuse algorithm ob-
jective functions that are designed to sort the binding sites
from the ’background noise’. Second, the number and lo-
cation of the binding positions relative to the transcription
start site varies to control the binding rate of the regula-
tory proteins to the DNA and therefore the level of ex-
pression of the regulated gene. Third, the variety found
in the motifs that serve as docking sites controls the fre-
quency of binding. From a computational standpoint, this
high variability makes detection of regulatory binding mo-
tifs extremely difficult because it is hard to discriminate
between binding sites and ’background noise’. Regulatory
proteins bind to DNA with different conformation profiles
depending on the type of DNA-protein interaction. The dif-
ferences in DNA-protein interaction profiles make finding
an accurate universal model of binding sites problematic.
In addition, we do not know for sure if the genes in our
set are co-expressed because they have a common regula-
tory interaction and are therefore co-regulated, or if they
are co-expressed because of similar responses to the envi-
ronmental conditions. Lastly, we do not know the context
of the DNA-protein binding within the regulatory mecha-
nism. In some instances, a protein may bind in combination
with many other factors to activate transcription. In other
cases, it may either repress transcription or activate tran-
scription of a gene on the alternative strand. For many of
these problems, techniques have been developed that solve
many of the critical issues in isolation. A key limitation in
moving motif prediction algorithms from a single target to
simultaneously consider multiple targets across the genome
is the lack of a robust benchmarking platform that compares
methods and makes context specific tool recommendations.

2.2. Motivation for automation

The traditional goal of a cis-regulatory motif discovery
program is to mark the positions (start position, end posi-

tion, regulator profile, and strand) on the DNA where regu-
latory proteins bind. These programs accept a set of genes
Si = g1, g2, . . . , gk that we believe to be co-regulated,
user defined parametersP , and the set of sequencesU =
u1, u2. . . . upstream of those genes. The program outputs
a mapping of regulatory motifs found on the sequences to
positions onU . In the process of marking the binding posi-
tions, the motif discovery program runs a series of steps to
distinguish putative binding positions from all possible po-
sitions in the input set. Performance of a method is not just
the method itself but the entire pipeline of steps performed
by the user.
Performance variations can be caused by the following:

• Pre-Processing: Users may select a different series of
steps to produce the upstream sequences, background
sequences, phylogentic upstream sequences, and re-
peat masked sequences.

• Manual Steps: Users may be required to manually ex-
tract sequence information or provide input informa-
tion.

• Paramater Tuning: Experts set parameters based on
information in Transfac, protien structure data, bind-
ing assays and other biological information that allows
them to narrow down their search.

• Advancements: A tool found in one step along the mo-
tif detection pipeline may undergo revision or another
method may substantially improve in performance and
replace a step.

Many would argue that these attributes increase the value
of motif detection software because users can fine-tune pro-
grams for their needs. We feel that there is value in explic-
itly defining each step in the pipeline to be used because
the performance can then be benchmarked and we can im-
prove prediction quality based on training data and formal
methods from the machine learning community.

3. Problem Description

Given a set of dataD = G1, G2, . . . , K1, K2, . . ., a set
of pre-processing functions,R, and a set of motif detec-
tion algorithm pipelines,M = M1, M2, . . . , Mi, we wish
to construct tests,T = T1, T2, . . ., that we will use to eval-
uate the performance ofMi on Tl. This run will create a
marking of predicted sites forMi onTl. We will then gen-
erate the marking ofMi over all elements inTl. The data
contains genome sequences in Genbank format,Gj , and ex-
pression profiles. It is possible to include chromatin imuno-
surpression on arrays, transcription factor binding assays,
or data found in databases such as Transfac [7], however we



Figure 2. An overview of the MTAP architecture. Parallel com ponents and scheduling exists both in
computing orthologs between genomes and in running motif di scovery pipelines. Paramaters for
what pipelines are to be run, genomes, and known transcripti on factor binding positions enter the
platform and the run creator creates a set of unique runs in th e run database. The run creator also
creates the upstream files needed. The run database is querie d to spawn independent instances of
the run manager that can be run on any node of the cluster. Run m anager instances run the pipeline,
reformat the results and evaluate sensitivity and specifici ty for the run.

instead choose to use this data to validate ourde novostrat-
egy. So, we reduce this data into a validation dataset,K.
Kk contains features that label subsequences inGi based on
a binding position of protienk. The set of pre-processing
functions are utility functions that allow algorithms to col-
lect more relevant data from public resources or mask bi-
ologically relevant data. Our goal is to provide the user
with the performance in terms of runtime and a sensitiv-
ity/specificity trade-offs so that they can evaluate the best
approach for their problem.

4. Parallel Architecture

In this section, we will discuss the design of our motif
tool assessment platform (MTAP). The software was de-
signed to provide for the requirements of a wide variety
of motif detection tools while simultaneously running over
many architectures and operating systems in a clustered en-
vironment. We constructed a run manager for executing
motif detection pipelines that considers many platforms and
a run creator that runs on a small subcluster of nodes. The
run creator generates unique tuples that completely describe
Tl. A unique tuple,Tup, is of the form[D, R, Mi]. The run
creator then generatesTl andKl that we will use to score
Mi. The run manager then executesMi on any computer
in the cluster. We chose this setup because in our proto-

type tests, we found running motif prediction algorithms to
be the rate-limiting step. We therefore wanted a central-
ized set of powerful homogeneous nodes to compute the
pre-processing and generate the runs because many of these
operations are not independent. For runningMi, we opted
to manage the program dependencies across many architec-
tures and to separate runs as independent units that can be
run at will.

4.1. Pre-processing

The goal of pre-processing is to generate all testsTl

that we will use to benchmark motif discovery pipelines.
GeneratingTl requires a different set of operations depend-
ing on the input required by motif prediction tools inTl.
A test consists of a set of sequences each of a predeter-
mined lengthn. Windows are defined by two methods
’Completely-realistic’ (the sequencen bases upstream of
the gene) and ’Semi-realistic’ (the sequencen bases around
the motif.

Given n and a data generation method, we generate a
testTl by selecting a regulatorKk and generating an up-
stream sequenceUq for every elementKj such that the
regulator name ofKj = Kk. All tests in the genome are
constructed given initial inputsGj , Gj+1, Gj+2, . . . andK.
MTAP then constructs a list of all proteins in each genome



Figure 3. An overview of the pre-processing steps taken in MT AP: A. The source genome Gj with
genes g1, g2, g3 with known binding sites k1, k2, k3, k4, k5 (found clockwise around the genome from
the origin); K1 and K2 are the known regulatory proteins that bind to the transcrip tion factors B. Two
additional genomes, Gj+1, and Gj+2 that are phylogentically closely related to Gj . Gj+1, and Gj+2

also have binding sites C. The background phylogenetic tree constructed via extracting 16S rRNA
D. Two tests T1 and T2 corresponding to known positions from K1 and K2

Gj , Gj+1, Gj+2, . . . and constructs a sequence databaseQj

for each genome. For each protein database, we construct
an orthalog mapping using RSD betweenQj and Qj+1.
Then, when given a test forGj containing several upstream
sequences (for exampleu1, u2 in Figure 3 D.) we com-
pute the downstream gene (or first member of downstream
operon) and lookup the protein product inQj . MTAP
then uses the translation table generated by RSD to find
orthologs for all proteins downstream of the elements in
Tj. Lastly, MTAP computes upstreams of each of the pro-
teins found inGj+1. MTAP continues this procedure for
all genomesGj , Gj+1, Gj+2, . . . to construct the testTj .
This procedure is then repeated to constructT1, T2, . . . An
example result is found in Figure 3 D.

Several important points should be made about phylo-
gentic footprinting. First, just because a set of regulatory
binding sites exists inGj it does not imply that this set of
regulatory binding positions exist inGj+1 in the same po-
sitions. In our example in Figure 3,T1 does not contain a
binding position forK2 in Gj+2. It is possible that our cri-
teria to classify orthalogs is too stringent to find an actual
ortholog inGj+1. Notice that in our exampleT1 contains
no upstream corresponding tog1 in Gj+2. In our example,
this occurred because the homology threshold criteria ex-
cludedg2 from Gj+2. These are problems that will exist
in any method that uses phylogeny, however at the present

time we have been unable to explore these problems be-
cause of the challenges involved in integrating all of these
steps and evaluating motif prediction pipelines. We believe
an advantage of our method is that it integrates all of these
steps together into one platform and allows us to consider
for the first time the impact of including different species at
different time points in evolution.

Many programs have different background sequence re-
quirements. Phylogenetic programs require a background
phylogenetic tree constructed from extracting 16S rRNA
from each genome in the study. Some programs require
pre-processing steps to calculate an HMM or GC content
of the test sequences. Other programs require a background
probability distribution of all upstream sequences inGj . We
compute each of these requirements for the programs in our
pre-processing stage.

However, the most challenging problem in assessing reg-
ulatory motif prediction tools is that it is not guaranteed that
all binding sites in the genome will be used to assess the
tool. It is often desirable to exclude unknown sites from the
tests. To do this we construct a Markov chain (of orderm)
and use this chain to construct a synthetic test (one for ev-
ery lengthm provided by the user). The idea is to use the
Markov chain to scramble the upstream sequences in the
test and then re-insert the known motifs back into the se-
quences at the same positions found in the source genome.



We also keep a set of similarly constructed tests without
the motifs inserted to check false positive rates. Orthologus
upstream sequences need not be scrambled if they are not
scored. These synthetic sequences serve to make a more
fair test in those cases where very few of the known motifs
are marked.

4.2. Constructing a pipeline

The objective of a pipeline is to markT with regula-
tory motif predictions. We feel that the most flexible and
powerful way to construct pipelines is through a scripting
language interface. Scripting languages are flexible, power-
ful, widely used and easily understood. MTAP provides a
library of utilities that supports all of the pre-processing,
post-processing and motif discovery algorithms currently
installed. Writing a new pipeline only requires instantia-
tion of a new class inherited from the MTAP library and a
series of system calls from within that class to control ex-
ecution of pipeline steps. The MTAP scheduler automates
mapping of resources, dependencies and sequences to steps
within the pipeline.

4.3. Running motif pipelines

The MTAP architecture does not enforce any language
input parameters or format onMi. This flexibility im-
plies thatMi must write intermediate results as is passes
through each stage in execution. It is important when run-
ning pipelines not to create a bottleneck by storing interme-
diate results in a shared resource, such as a DBMS running
on the master node. Our solution ensures that once pre-
processing is complete,Mi can execute in parallel without
inter-process dependencies.

The run creator first creates an object oriented database,
DB, that stores the program dependencies and require-
ments of each pipeline. The characteristics of the run are
then loaded into theDB. This allows us to trim the exe-
cution hierarchy tree. For example, a run can contain only
tests generated using using the completely-realistic method.
The run creator then generates a run listQ for every pipeline
Qi to be executed. The pre-processing manager then cre-
ates a directory structure on a network file structure that is
accessible across the cluster. This directory structure tree
contains all elements described in theDB. Once the di-
rectory structure is generated, the pre-processing manager
populates each leaf in the tree with a set of tests for all mo-
tifs in K. The pre-processing manager then collects the file
dependencies for each pipeline run inQ and constructs the
necessary files (e.g. it makes a fasta file of all sequences
upstream to a gene inG for background training, it con-
structs a rRNA file for the phylogenetic distances, etc.).
When all dependencies forQi are met,Qi is thrown to the

PBS server to handle the runs FIFO. The PBS server then
starts an instance of the run manager that will runQi and
the post-processing processes to evaluate the run. At this
time, the scheduler presents substantial overhead. Optimiz-
ing scheduling algorithms based on runtime properties of
individual motif discovery pipelines is a interesting research
problem beyond the scope of this paper.

Once the run manager is spawned on a node, each step of
the pipeline is executed and intermediate results are written
to a unique position on the file system. Upon completion of
the run, results are combined back into the shared file sys-
tem and remaining post-processing is handled by the slave
node.

4.4. Post-processing

The purpose of post-processing is to reformat the output
from the motif tool to a standard format for visualization
and evaluation. Once the raw predictions forTl are gener-
ated, they are re-mapped to global positions onGx andTl is
scored. Because there are more than 100 different file for-
mats (one for each motif prediction software) and we can
not force authors to adopt a universal format, we employ
a three tiered parsing strategy. First, for those tools where
there already exists a parser or a converter to gff format,
we convert the tool’s output to gff and then parse it with
the gff parser present in our Java scoring framework. For
those tools that do not currently have a parser, but do have
a simple regular format, we employ martel from the biopy-
thon package to generate a regular grammar for parsing the
file and map the output to gff format. For those tools that
require assembly of information from multiple parts of the
file, we employ a recursive decent parser implemented in
our java framework to parse the tool. The need for a stan-
dard interchange format for presenting prediction results
can not be stressed enough. However in the absence of such
a format, we feel the best chance for evaluating motif pre-
diction tools is to provide as many opportunities in as many
languages as possible to convert tool output into a universal
format (in our case gff). Once we have a mapping from the
predictions, we score the predicted motif predictions versus
the known motif predictions forTl and dump the gff file for
Tl for visualization (using GBrowse for example).

5. Results

In this section we will provide illustrative examples of
how our benchmarking technology can be used to eval-
uate several important parameters in cis-regulatory motif
discovery. To construct a series of tests for evaluation,
we extracted 2247 known transcription factor binding po-
sitions from RegulonDB [3] corresponding to known po-
sitions fromEscherichia coli K12, and 680 known motifs



Figure 4. ROC curves for Ann-Spec (20 (blue), 50 (green), 100 (red), 200 (cyan), 300 (magenta), 400
(yellow), 500 (black), and 800 (lower red) basepairs upstre am of the gene

from DBTBS corresponding to positions fromBacillus sub-
tilis. Then, we extracted 522 positions from Eukaryotes
from the dataset developed by Tompaet al. [6].

To justify the need for clustered computing, we ran
MTAP on one node of our cluster and then over 21 nodes.
Running MTAP over RegulonDB on a single AMD Opteron
with 4 gigabytes or ram required 3 weeks and 5 hours. The
same case study ran over the cluster finished in 7hours 37
minutes using the AMD Opteron as the master node and 20
Pentium D machines as the slave nodes.

Preliminary results (not shown) indicated that the size of
Tl plays a roll in motif detection performance. In this sec-
tion we wanted to determine if the length of the upstream
sequences or the number of upstream sequences caused the
performance discrepancy. For each motif database, we ran
our assessment procedure and generated ROC graphs for
lengths 20bp, 50bp, 100bp, 200bp, 300bp, 400bp, 500bp,
and 800bp upstream of the gene for DBTBS and Reg-
ulonDB. We generated both completely-realistic (cr) and
semi-realistic (sr) data. This procedure was run for ANN-
Spec, Weeder, ELPH and Glam, however due to space con-
siderations, we have provided the results for ANN-Spec in
Figure 4 (which is illustrative of these results). The distri-
bution of performance over the curves as the length of the
upstream regions increases is particularly interesting. In the

case of 20 bases upstream, the program is forced onto the
known motif position, resulting in satisfactory performance.
As the window increases, the corresponding performance
(AUC) rapidly degrades such that at 300-400bp, very lit-
tle confidence remains in the predictions at the nucleotide
level. The distribution of the motif relative to the transcrip-
tion start site is important as cr data has a slight perfor-
mance advantage over sr data. In the site level distribution
curve for sr on RegulonDB it appears that site identification
is not impacted significantly by window length. However,
this performance curve does not remain consistent when the
transcription start site in the cr data is considered. This im-
plies that sites are most likely predicted almost by random
chance without the help of the transcription start site. The
clustering of performance curves from longer upstream files
at the site level in Figure 4d gives additional evidence to-
wards this hypothesis. ANN-Spec appears to be selecting a
set of regions with high information content and then ran-
domly selecting from those putative sites. Consequently,
performance appears random because ANN-Spec can not
reliably distinguish statistically significant sites fromtrue
sites. Lengthening the upstream sequence to 800bp sig-
nificantly degrades nucleotide performance but without site
level performance being impaired. It is most likely that for
for this test in RegulonDB, ANN-Spec’s scoring algorithm



(and not upstream sequence length) is the key contributor
to poor performance. However, at the nucleotide level a
large value ofn is a key factor in performance degrada-
tion. DBTBS performance benchmarks are much more dif-
ficult to interpret because of the sparse site annotation den-
sity over DBTBS. This indicates that dense motif annota-
tion databases are a key in building accurate motif discov-
ery algorithms. However, using RegulonDB exclusively for
algorithm testing has a significant disadvantage in that al-
gorithms will be over-fit to problems specific toE. coli.

The result presented in this section is one of many results
generated by our pipeline. These results will be discussed
more completely in future work.

6. Discussion

In this paper we have presented a method that has several
advantages over previous attempts in cis-regulatory motif
discovery. First, our method is completely automated. This
allows us to evaluate motif prediction tools over many pa-
rameters in a way not previously possible. Second, our
method considers multiple binding sites that may occur in
other regulatory regions. Third, our method can score motif
prediction algorithms on a genome scale for the first time.
In the past, training data has been very hard to obtain for
genome based assessments. Now, with the advent of ChIP-
chip data, such training data can be more rapidly obtained.
We feel that this contribution will become more important
in coming years. MTAP does not allow manual fine-tuning
of motif prediction tools to specific problems. We feel this
is an asset because authors must provide a robust and flexi-
ble methods that can adapt to different scenarios over many
types of transcription factor binding profiles. Our method
provides a way of assessing what methods have the high-
est sensitivity and specificity with the least amount of data
collection and execution time. This presents a great oppor-
tunity because both data collection and tool evaluation are
extremely laborious. MTAP is currently only available in
a clustered computing environments because of the large
scale of parameters that are explored in evaluating motif
pipelines. We presented many practical techniques for large
scale integration of hundreds of bioinformatics standalone
applications and deployment in a clustered computing en-
vironment. More importantly, because of the large amount
of components installed in our platform, we have provided
a model for rapid construction and deployment of motif
discovery pipelines. These pipelines can be deployed and
executed in heterogeneous clusters with different operating
systems and different underlying architectures. We believe
that the advent of high density training data combined with
MTAP can greatly increase motif discovery pipeline per-
formance. Our goal is to use clustered computing environ-
ments to explore the parameter space for motif discovery

pipelines with high sensitivity and specificity. This will en-
able methods to emerge that correctly solve this very chal-
lenging problem. These methods will also most likely re-
quire fast parallel algorithms to survey genomes for regula-
tory binding motifs.

7 Acknowledgements

We would like to thank the authors of the motif tools in
our pipeline for providing the tools open source and helpful
suggestions. We would also like to thank Laura{A.|R.}
Quest for help with the manuscript. This research project
was made possible by the NSF grant number EPS-0091900
and the NIH grant number P20 RR16469 from the INBRE
Program of the National Center for Research Resources.

References

[1] A. Brazma, I. Jonassen, I. Eidhammer, and D. Gilbert. Ap-
proaches to the automatic discovery of patterns in biose-
quences.J Comput Biol, 5(2):279–305, 1998.

[2] J. Hu, B. Li, and D. Kihara. Limitations and potentials of
current motif discovery algorithms.Nucleic Acids Research,
33(15):4899–4913, 2005.

[3] H. Salgado, S. Gama-Castro, A. Martez-Antonio, E. Dz-
Peredo, F. Schez-Solano, M. Peralta-Gil, D. Garcia-Alonso,
V. Jimez-Jacinto, A. Santos-Zavaleta, C. Bonavides-Martez,
and J. Collado-Vides. Regulondb (version 4.0): transcrip-
tional regulation, operon organization and growth conditions
in escherichia coli k-12.Nucleic Acids Res, 32(Database is-
sue), January 2004.

[4] G. K. Sandve, O. Abul, V. Walseng, and F. Drablos. Improved
benchmarks for computational motif discovery.BMC Bioin-
formatics, 8:193+, June 2007.

[5] G. K. Sandve and F. Drabls. A survey of motif discovery
methods in an integrated framework.Biology Direct, 1(11),
2006.

[6] M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. D. De Moor,
E. Eskin, A. V. Favorov, M. C. Frith, Y. Fu, J. J. Kent, V. J.
Makeev, A. A. Mironov, W. S. Noble, G. Pavesi, G. Pesole,
M. Rnier, N. Simonis, S. Sinha, G. Thijs, J. v. van Helden,
M. Vandenbogaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu.
Assessing computational tools for the discovery of transcrip-
tion factor binding sites.Nature Biotechnology, 23(1):137–
144, January 2005.

[7] E. Wingender, P. Dietze, H. Karas, and R. Knppel. Transfac:
a database on transcription factors and their dna binding sites.
Nucleic Acids Res, 24(1):238–241, January 1996.


