
Data-Driven Time-Parallelization in the AFM Simulation of Proteins

L. Ji1, H. Nymeyer2, A. Srinivasan1, and Y. Yu1

1Florida State University 2Florida State University
Dept. of Computer Science Dept. of Chemistry and Biochemistry
Tallahassee, FL 32306 USA Tallahassee, FL 32306 USA
{ji, asriniva, yu}@cs.fsu.edu hnymeyer@fsu.edu

Abstract

Molecular Dynamics is a popular technique to simu-
late the behavior of physical systems, with resolution at
the atomic scale. One of its limitations is that an enor-
mous computational effort is required to simulate to realis-
tic time spans. Conventional parallelization strategies have
limited effectiveness in dealing with this difficulty. We re-
cently introduced a more scalable approach to paralleliza-
tion, where data from prior, related, simulations are used
to parallelize a simulation in the time domain. We demon-
strated its effectiveness in nano-mechanics simulations. In
this paper, we develop our approach so that it can be used
in a soft-matter application involving the atomic force mi-
croscopy simulation of proteins. We obtain an order of mag-
nitude improvement in performance when we combine time
parallelization with conventional parallelization. The sig-
nificance of this work lies in demonstrating the promise of
data-driven time parallelization in soft-matter applications,
which are more challenging than the hard-matter applica-
tions considered earlier.

1. Introduction

Molecular Dynamics (MD) finds widespread use in
atomistic simulations in Chemistry, Materials, and Biology.
For example, MD provides an excellent method to identify
individual conformational states of proteins, and transitions
between different conformational states. In MD, forces on
atoms due to interactions with other atoms are computed
using certain empirical force fields. Once forces are com-
puted, Newton’s laws of motion are used, almost always
with an explicit time integration scheme, to determine the
trajectory of the system. The objectives of MD simulations
are two-fold: (i) to determine a statistically representative

1-4244-0910-1/07/$20.00 c©2007 IEEE.

set of conformational states, and (ii) to reproduce the dy-
namical transitions between these states.

A limitation of MD is the short time span that can be sim-
ulated. Large-scale protein conformational changes, such
as folding and allosteric transitions, typically occur in the
millisecond time scale. MD, on the other hand, can access
time scales of the order of only a microsecond, for the fol-
lowing reason. High frequency motions of atoms limit the
time step size of the numerical differential equation solver
to about a femto second (10−15s). Consequently, 1012 time-
steps are required to simulate to a millisecond of real time.
This requires an enormous computational effort, as illus-
trated later. In fact, this limitation in the time scale acces-
sible through MD has been identified as one of important
challenges in computational biology [8] and computational
nano-materials [11].

Massive parallelism can help deal with the high compu-
tational effort to a certain extent. The difficulty is in obtain-
ing high efficiencies with current parallelization strategies,
because they are more effective in dealing with large state
space, than with long time scales. For example, conven-
tional spatial decomposition methods (including atom and
force decompositions) yield high efficiencies only when the
time per iteration is of the order of ten milliseconds, as
shown in fig. 1, on the most scalable codes. These do not
scale to better than the order of a millisecond per iteration,
even if we accept low efficiencies. At granularities of 1−10
milliseconds per iteration, it will take 30−300 years to sim-
ulate to a millisecond of real time, using a femto-second
time step. This problem is magnified on codes that are less
scalable.

Typical protein simulations have on the order of 30, 000
particles with explicit solvent (that is, when the water
molecules are explicitly represented). Furthermore, signif-
icant development has gone into implicit solvent methods
which replace the explicit water molecules with an effective
force field, thereby reducing the number of particles in most
proteins to a few thousand atoms. Consequently, spatial de-

Figure 1. Scaling results on an IBM Blue Gene/L.
The solid and dashed lines show results for NAMD,
based on data from [7]. The solid line is for
a 327, 000 atom ATPase PME simulation, and the
dashed line for the 92, 000 atom ApoA1 PME simu-
lation. The dash-dotted line shows results for IBM’s
Blue Matter code on a 43, 000 atom Rhodopsin sys-
tem, based on data from [4].

composition is of limited use for these problems, because
the state space is even smaller, leading to fine granularities
on smaller numbers of processors.

Our approach is based on the observation that simula-
tions typically occur in a context rich in data from other
related simulations. We use such data to parallelize a sim-
ulation in the time domain. This leads to a more latency
tolerant algorithm than with conventional parallelization. In
prior work, we parallelized an important nano-materials ap-
plication to over two orders of magnitude larger numbers
of processors than feasible with conventional paralleliza-
tion. The soft-matter computations typically encountered in
computational biology are more challenging than the hard-
matter simulations mentioned above. In fact, it was believed
that this approach would not be feasible in such computa-
tions. However, in this paper, we demonstrate the feasibility
of this approach on an important soft matter application in
computational biology.

The basic idea behind our approach is to have each pro-
cessor simulate a different time interval, as illustrated in
fig. 2. The difficulty is that, in an initial value problem,
a processor does not know the initial state for its time in-
terval until the previous processor has determined its final
state. We deal with this as follows. We use MD simula-
tions to determine a relationship between prior results and
the current simulation. We then use prior results to predict
the initial state for each time interval. Thus we use all the
available knowledge about the physical system’s behavior,

including the current MD computation, to predict the start-
ing state for each processor. The MD computations are then
used, again, to verify if the predictions were correct, and to
learn the relationship with prior simulations dynamically,
from differences observed. This process continues. Each
of these steps (prediction and verification) is performed in
parallel. Some communication is inevitable; however, this
overhead is small in practice, as shown later. The load is
also well balanced. This method can be combined with spa-
tial decomposition to increase the scalability over existing
methods. In fact, our results demonstrate an improvement
by an order of magnitude through such an approach.

Figure 2. Schematic of time parallelization.

The outline of the rest of this paper is as follows. In § 2,
we present background information on MD and on Atomic
Force Microscopy (AFM) simulations in biology. We then
explain our data-driven time parallelization approach, and
the unique challenges of applying it to soft-matter applica-
tions, in § 3. We present experimental results in § 4. We
summarize our conclusions in § 5.

2. Application

2.1. Molecular Dynamics

MD is a computational simulation method that deter-
mines the position and velocity of each atom that is con-
tained in a computational cell subjected to external bound-
ary conditions (force, pressure, temperature, or velocities).
At any point in time, an empirical force field is used to
compute the forces on all atoms. Then Newton’s laws of
motion are used to determine the positions and velocities of
all atoms at the next point in time, using an explicit numer-
ical differential equation solver. This process is repeated.
The time step size is required to be around a femto second
(10−15s) to ensure stability. Realistic simulations need to

be performed to microseconds or milliseconds time spans.
Thus 109 − 1012 iterations are required, which needs enor-
mous computations effort, even if the physical system is
small.

Furthermore, a single MD trajectory does not give useful
information in soft-matter computations. Rather, we com-
pute a number of trajectories, and perform some statistical
averaging of quantities of interest. This will be explained
further in section 3.3.

2.2. Atomic Force Microscopy on Titin

The biological system we consider is Titin. It is a giant
multi-domain muscle protein forming a major component
of vertebrate muscle. The properties of Titin are studied
by characterization of its individual domains. Each Titin
domain is identical. Therefore, its properties, such as mus-
cle elasticity, can be determined by studying the properties
of each individual domain using protein-unfolding experi-
ments.

In Atomic Force Microscopy of Titin, mechanical force
is applied to its two ends. This force produces changes
(such as unfolding) that are described by a force-extension
profile – how much force is applied versus the relative sep-
aration of the points at which force is applied, as shown
later in fig. 8. AFM is becoming an important biophysical
technique, to study protein unfolding events at atomic reso-
lution.

AFM measurements are limited in their pulling speed,
and the use of a finite pulling speed directly affects the
mechanism of folding [12]. Unfortunately, traditional MD
simulations are limited to rates of pulling that are several or-
ders of magnitude faster than possible experimentally due
to the lack of computational power. Current simulations
are limited to reproducing pulling rates in the range of 1-
10 m/s, compared with typical experimental rates of 10−7–
10−5 m/s. Our aim is to use such high pulling rate results to
time-parallelize lower pulling rate experiments. We use 10
m/s runs to time-parallelize 1 m/s computations. Simulating
at even lower speeds requires more computational resources
than we have available.

3. Data-Driven Time Parallelization

In this section, we first describe the data-driven time par-
allelization approach. Many strategies can be implemented
within the framework of this approach. We describe the ap-
proach used in our earlier hard-matter applications. We then
describe the challenges of soft-matter applications, and then
present the specific strategy used in the AFM application.

3.1. The Approach

Figure 2 illustrates our approach. Let us call a few itera-
tions, say 1, 000 or 10, 000 time steps of a differential equa-
tion solver, as a time interval. We divide the total number
of time steps needed into a number of time intervals. Ide-
ally, the number of intervals should be much greater than
the number of processors. Let ti−1 denote the beginning of
the i th interval. Each processor i ∈ {1 · · ·P}, somehow
(to be described later) predicts the states at times ti−1 and
ti in parallel (except for the known state at t0), using data
from prior simulations. It then performs accurate MD com-
putations, starting from the predicted state at time ti−1 up
to time ti, to verify if the prediction for ti is close to the
computed result. Both prediction and verification are done
in parallel. If the predicted result is close to the computed
one, then the initial state for processor i + 1 was accurate,
and so the computed result for processor i + 1 too is accu-
rate, provided the predicted state for time ti−1 was accurate.
Note that processor 1 always starts from a state known to be
accurate, and so the algorithm always progresses at least
one time interval, since the MD computations on processor
1 lead to accurate results on that processor. In fig. 2, the
predicted state for t3 was inaccurate, and we say that pro-
cessor 3 erred. Computations for subsequent points in time
too have to be discarded, since they might have started from
incorrect start states. The next phase starts from time t3,
with the initial state being the state computed by processor
3 using MD at time t3, and we compute states for times t4,
t5, t6, and t7 in parallel.

Note the following: (i) Processor 1’s MD result is always
correct, since it always starts from a state known to be ac-
curate. So the computation always progresses. (ii) All pro-
cessors must use a consistent prediction mechanism, so that
the predictions for time ti are identical on processors i and
i + 1. (iii) A global communication operation (AllReduce
call in Algorithm 1) is used to detect the smallest ranked
processor to err. (iv) The initial state for processor 1 needs
to be sent by another processor, except during the first phase
of the computation. (v) If a time interval consists of a large
number of time steps, then the communication and predic-
tion overheads are relatively negligible, leading to a very
latency tolerant algorithm.

3.2. Prior Work

Our prior work was on the tensile test of a Carbon Nan-
otube (CNT), where a CNT is pulled at one end, keeping
the other end fixed. Conventional parallelization of the ap-
plication we considered scales to only 2 − 3 processors (at
a granularity under 10 ms per iteration). Our computations
scaled to two to three orders of magnitude greater number of
processors, with efficiencies typically over 90%. One sim-

Figure 3. AFM pulling of TI 127 mutant. Left: Initial state. Center: State before a strand breaks apart. Right: State
after a strand breaks apart.

ulation yielded a granularity of 13.5 µs per iteration, which
we believe is the finest granularity achieved in classical MD
computations. Prediction was based on first reducing the di-
mensionality by finding a low-dimensional subspace where
changes happen slowly, making them easier to predict.

3.3. Challenges in Soft-Matter Applications

Soft-matter applications, as typically encountered in
computational biology, are more difficult to time-parallelize
than the hard-matter applications described above, for the
following reasons. In hard-matter simulations, MD trajec-
tories started under slightly different initial conditions (such
as different velocities) or using different random number
sequences, follow trajectories that are close to each other,
at least for substantially long periods of time. In contrast,
soft-matter simulations exhibit diffusive heterogeneous be-
havior. The trajectories are extremely sensitive to initial
conditions. Two different simulations with slightly differ-
ent initial conditions will diverge exponentially as time pro-
gresses. Similar divergence is caused by numerical errors in
the differential equation solver. In fact, a single MD trajec-
tory does not give much useful information in soft-matter
simulations. Instead, one requires statistics from a large
number of simulations.

3.4. Specific Approach in the Biological
Problem

In this section, we present our implementation of the
data-driven time-parallelization approach for AFM pulling
of proteins (Algorithm 1). The primary difference from the
CNT application is in prediction. Simple dimensionality re-
duction techniques are not effective for this application. In-
stead we use the actual data from previous simulations. As
the simulation proceeds, we determine the prior simulation
which the current simulation is behaving like, and use that
prior simulation to predict the initial states.

During the verification phase, we have to choose some
criteria to determine an acceptable error threshold. We have
results of faster pulling runs, with different seeds to the ran-
dom number generator used in the thermostat, and also dif-
ferent initial states (initial velocities of the atoms). We note
the differences between simulations with different random
number seeds. We set error thresholds for the difference
between predicted state and computed state based on the
above differences. That is, a prediction is considered suffi-
ciently accurate if its difference with the computed state is
similar to the difference observed if we had used a different
random number sequence.

We use two metrics for the differences. One is the max-
imum difference in positions between the same atom in the
two states, defined by MAXD = maxi di, where di is the
difference in positions of the i th atom in the two states.
The other is the root mean square deviation, which is de-
fined as RMSD =

√

1

N

∑N
i=1

d2
i , where N is the number

of atoms. In computing these differences, only the atoms in
Titin were considered, and not the solvent atoms. Further-
more, before the states were compared, they were aligned to
remove the effects of rigid body motion (rotation and trans-
lation), as is conventionally done with RMSD calculations.

Figure 4 shows the variation of RMSD and maximum
difference with time, for two faster pulling runs using dif-
ferent seeds. Based on such results, we set the RMSD
threshold to 0.2 nm and the maximum difference threshold
to 1 nm in step 9 of algorithm 1.

3.5. Combining Space and Time Paralleliza-
tion

Time and space parallelization can be combined, so that
time parallelization is used to improve scalability over what
is possible through just spatial parallelization. Instead of a
single processor computing for one time interval, a group of
processors computes for a time interval. We had mentioned
the potential for such combination in earlier work. In the

Figure 4. Difference between two trajectories that
are identical, except that they use different seeds to
the random number generator used in the thermostat.

current work, we actually implemented this feature. This re-
quired some changes to the GROMACS 3.3.1 [5] Molecular
Dynamics code, which we used in our simulations. In par-
ticular, the code was not designed to be composed with it-
self or with other code. We modified it so that it can be com-
posed with itself. We also need some additional tools pro-
vided by GROMACS, to remove solvent atoms, align Titin
states through rigid body motion, and compute RMSD. It
was difficult to compose these with the main program, and
so we instead used the system call to call these programs
(which are run sequentially and independently on one pro-
cessor of each group). They interact with the main program
through file I/O. While this is much slower than would be
possible if they had been integrated with the main program,
the overhead associated with this is relatively insignificant,
because each time interval of 10, 000 time steps requires
several hours of computing time, even when spatially par-
allelized, because GROMACS does not scale well to very
fine granularities.

Algorithm 1 Time Parallelize (Initial State S0, Number of
processors P , Number of time intervals m)

1: t← 0
2: while t < m do
3: for each processor i ∈ [1,min(P,m− t)] do
4: if i 6= 1 then
5: St+i−1 ← Predict(t + i− 1)
6: end if
7: St+i ← Predict(t + i)
8: Ŝt+i ← AccurateMD(StartState =

St+i−1, StartT ime = t + i − 1, EndT ime =
t + i)

9: if RMSD or MAXD too large(Ŝt+i, St+i)
then

10: Next← i
11: else
12: Next← P
13: end if
14: end for
15: k ← AllReduce(Next,min)
16: St+k on processor 1← Ŝt+k computed by processor

k.
17: for each processor i ∈ [1, P] do
18: t← t + k
19: end for
20: end while

4. Experimental Results

The aim of our experiments is to evaluate the potential
of data-driven time parallelization in soft-matter MD simu-
lations, in terms of scalability and accuracy.

Our primary computing platform is a 32-node dual-
processor (but not dual-core) Opteron cluster with Gigabit
Ethernet interconnect. The processors run at 2.0 GHz, have
2 GB ECC DDR SDRAM memory per node, 64 KB L1
cache, 1024 KB L2 cache, and run Red Hat Linux kernel
2.6.9. The MPI implementation used was LAM, and gcc
was used for compilation.

Combined space-time parallelism was evaluated on the
Tungsten Xeon cluster at NCSA. This cluster consists of
Dell PowerEdge 1750 servers, with each node contain-
ing two Intel Xeon 3.2 GHz processors, 3 GB ECC DDR
SDRAM memory, 512 KB L2 cache, 1 MB L3 cache, run-
ning Red Hat Linux. The file system used is Lustre. Myrinet
2000 and Gigabit Ethernet interconnects were available. We
used the Myrinet interconnect. The ChaMPIon/Pro MPI
implementation was used with the gcc compiler, and code
compiled with ’-O3’ optimization flag set.

The simulation setup was as described below. We used
the GROMACS software to perform the MD simulations.
The input was a protein native structure TI 127 (a 1TIT

Titin mutant with A-strand deleted) from the Protein Data
Bank [9]. A total of 9, 525 TIP4 water molecules were
added as solvent. Na+ and Cl− ions were added to
maintain charge neutrality. The total number of atoms
was around 40K. The simulations were performed under
NVT conditions, with temperature kept at 400 K using a
Langevin thermostat. Springs were attached to the first and
last Carbon atoms under a force constant of 400kJ/(mol×
nm2).

4.1. Speedup

Figure 5 shows that spatial parallelization does not scale
beyond a small number of processors. The results show that
the time parallel code can scale well to 16 processors. The
prediction is usually sufficiently accurate, with minor er-
rors, yielding efficiencies around 90% or higher on up to 10
processors. With 12 and 16 processors, there is a set of pre-
diction errors before and after peaks on the force extension
curve, which lowers the efficiency to the 75%−80% range.
The loss in efficiency is primarily due to prediction errors.
The parallelization overheads are themselves relatively in-
significant, because the time taken for each time interval is
around 5 hours, while the overheads are in seconds.

Figure 6 compares spatial parallelization with combined
time and spatial parallelization. The overheads of the time
parallelization associated with prediction, verification, and
I/O are insignificant, accounting for around 0.1% of the to-
tal time. Some of the loss in efficiency is due to prediction
errors, as shown in Figure 5 (solid line). However, the main
loss in efficiency is due to the spatially parallelized code it-
self having poor efficiency of 46.5% on 8 processors on the
Xeon cluster.

A sequential run requires around 5000 hours to simulate
to ten nanoseconds (we need to simulate to around 9 ns to be
sure that the one of the peaks of the force-displacement code
is observed). This would take close to a year of sequential
computing time. In order to obtain speedup results faster on
the spatially parallelized code, we simulated for a nanosec-
ond to get the speedup results. We also performed complete
spatially parallel runs on 16 processors each, which took
a little less than a month of computing time per run. For
the time parallel runs, a few complete runs were performed
on 10 processors. Prediction errors typically occur closer
to where the force-displacement curves peak, as expected.
In order to determine the speedup, runs were started a little
before the peak, and then simulated for 2 ns. This makes it
feasible to compute the speedup on small numbers of pro-
cessors too. However, the speedup over the whole run will
likely be larger, because then we would include the initial
region where prediction errors do not occur. The speedup

TIP4 is a water molecule model which has 2 Hydrogen atoms and 2

Oxygen atoms.

Figure 5. Speedup results. Time parallelization on
the Opteron cluster (solid line), spatial paralleliza-
tion on the Opteron cluster (dashed line), and spatial
parallelization on the Xeon cluster (dash-dotted line).

for the combined space-time parallel code was computed
as follows. From the purely time-parallel result described
above, the number of iterations required for the loop in step
2 of algorithm 1 was computed, for each value of the num-
ber of processors, P . The combined parallel code used P
groups of processors, where each group performed a spa-
tially parallel computation on 8 processors. The simula-
tion results (but not the timing results) are the same as a
time parallel computation on P processors, but performed
faster. We performed shorter runs to determine the time
taken for one time interval of the combined time-space par-
allel code, and multiplied it by the number of iterations ob-
tained through pure time parallelization, to determine the
total time. As mentioned above, since the pure time paral-
lelization results underestimate the speedup over the whole
run, the combined results too probably underestimate the
speedup over the entire run.

4.2. Validation

We next need to validate the correctness of the time par-
allelized runs. This is more difficult than for the hard matter
computation, because a single MD trajectory is not mean-
ingful. Instead, we are interested in the statistical average
of a number of trajectories. We use the peak force, for the
first peak, to validate the time-parallel results.

There are different theories to explain the variation of
peak force with pulling speed, such as the following. The
rupture force is predicted to grow proportionally with the
logarithm of the pulling speed in [3]. Hummer and Sz-
abo [6] predict that it will be proportional to (ln v)

1/2,
where v is the pulling speed. Dudko et al. [2] predict it

Figure 6. Speedup results. Combined time and spa-
tial parallelization on the Xeon cluster, with each
group being 8-way spatially parallelized (solid line)
and spatial parallelization on the Xeon cluster (dash-
dotted line).

to be proportional to (ln v)
2/3. Peak rupture forces under

different pulling rates yield two important constant proper-
ties of the protein: (i) the unfolding rate constant and (ii)
the distance from folded state to transition state. These two
properties provide a simplified interpretation of a particu-
lar protein’s energy landscape and allows one to compare
mechanical strengths of different proteins.

We can validate the correctness of the time parallel runs
by verifying that the output rupture forces have a range of
values consistent with the spatially parallelized runs, and
that they occur at correct points in time. Figure 7 shows
that the rupture forces from our time parallelized code have
a similar range as the spatially parallelized code, and that
their averages too are close.

We also wished to validate the MD simulations, to see
if their results are consistent with experiments, even though
it is not directly related to time parallelization. It is diffi-
cult to do this directly, since the pulling speeds in the two
cases differ by several orders of magnitude. Instead, we ex-
trapolate experimental results, and see that the MD results
are in the range predicted by a logarithmic variation with
pulling speed. While the exact values appear a little above
the extrapolation line, they are in an acceptable range.

We next show results that demonstrate that the time-
parallel code shows transitions at similar points in time
as the spatially parallelized code. Figure 8 compares the
force extension profiles obtained from the GROMACS spa-
tially parallelized code and our time parallelized code. Both
codes show transitions (inferred from the peaks) at similar
points in time. Figure 9 shows that the RMSD differences
between a time-parallel run and the exact trajectory are sim-

Figure 7. Squares are rupture forces obtained from
experiments [1]. Triangles are rupture forces ob-
tained from spatially parallelized runs. Diamonds
are results of the time parallelized code (four data
points at the slowest MD pulling speed). Circles are
the means from spatially parallelized runs. The five-
pointed start, almost coinciding with a circle and two
diamonds, is the mean for the time-parallel run. The
dashed line shows the linear least square best fit line
of the experimental data.

ilar to the differences obtained using different random num-
ber sequences.

We now give possible reasons to explain the accurate
statistics observed through time-parallelization, despite dif-
ferences between predicted and computed states. Any nu-
merical integration scheme for MD will not yield an ex-
act trajectory, because small numerical errors will cause
the simulated trajectory to diverge from the true one, as
mentioned in § 3.3. Instead, we want the statistical prop-
erties for a collection of computed trajectories to be close
to those of the exact trajectories. This is typically at-
tempted using symplectic integrators (which are volume
preserving in phase space). Such methods yield solutions
that are close to the exact solution of an approximation
to the force field used, over a time interval whose length
is O(1/time step size) [10]. Note that being symplectic
is a property of the time-integrator; if the time-integrator
is symplectic, then this property is preserved in the time-
parallel scheme.

The numerical integration scheme is also usually re-
quired to be time-reversible. A volume preserving and
time-reversible integrator ensures detailed balance. Time-
reversibility is not preserved in the time-parallel scheme.
We now explain why this does not appear to affect our re-
sults. The set of conformations of the protein can be roughly

Figure 8. Plot of force versus time (or equivalently,
extension). The solid lines are forces for three spa-
tially parallelized runs, and the dashed lines are
forces for three time parallelized runs.

partitioned into a number of basins. Major transitions hap-
pen when the protein moves from one basin to another, but
most of the time is spent in a single basin. The error thresh-
olds ensure that the predicted and computed states are con-
sidered equivalent only if they are close to each other in the
same basin. The time-scales involved in going from the pre-
dicted state to the computed state (when the differences are
below the thresholds) would be very short compared with
the length of a time interval (which is 10 ps). This, perhaps,
causes the results to be accurate.

5. Conclusions

We have showed the promise of data-driven time paral-
lelization in a practical biological soft-matter application –
AFM simulation of proteins. When combined with conven-
tional parallelization, it extends the latter’s scalability by an
order of magnitude.

Acknowledgments

We acknowledge NSF for providing funding under
awards CMMI0403746, CNS0551472, and DMS0626180,
and NCSA, ORNL, and NERSC, for providing computing
time. A.S. expresses his gratitude to Sri Sathya Sai Baba for
his help and inspiration in performing this work.

References

[1] R. B. Best and J. Clarke. What can atomic force microscopy
tell us about protein folding? Chem. Commun., pages 183–
192, 2002.

Figure 9. Plot of RMSD versus time. The solid line
shows the RMSD between GROMACS spatially paral-
lelized run and our time parallelized run. The dashed
line shows the RMSD between two GROMACS runs
with the same pulling rate, but with different seeds to
the random number generator used in the thermostat.

[2] O. K. Dudko, G. Hummer, and A. Szabo. Intrinsic rates and
activation free energies from single-molecule pulling experi-
ments. Physical Review Letters, 96:108101, 2006.

[3] E. Evans and K. Ritchie. Dynamic strength of molecular ad-
hesion bonds. Biophys, 72:1541–1555, 1997.

[4] B. G. Fitch, et. al. Blue Matter: Strong scaling of molecular
dynamics on Blue Gene/L. Technical Report RC23688, IBM
Research, 2005.

[5] GROMACS: http://www.gromacs.org.
[6] G. Hummer and A. Szabo. Kinetics from nonequilibrium

single-molecule pulling experiments. Biophys, 85:5–15,
2003.

[7] S. Kumar, C. Huang, G. Almasi, and L. V. Kale. Achieving
strong scaling with NAMD on Blue Gene/L. In Proceedings
of IPDPS. IEEE, 2006.

[8] Computational science: Ensuring America’s competitiveness,
May 2005. Report of the President’s Information Technology
Advisory Committee.

[9] Protein Data Bank: http://www.rcsb.org/pdb.
[10] R. D. Skeel. Symplectic integration with floating-point arith-

metic and other approximations. Applied Numerical Mathe-
matics, 29:3–18, 1999.

[11] Theory and modeling in nanoscience, May 2002. Report
of the May 10-11, 2002 Workshop conducted by the basic
energy sciences and advanced scientific computing advisory
committees to the Office of Science, Department of Energy.

[12] P. M. Williams, S. B. Fowler, R. B. Best, J. L. Toca-Herrera,
K. A. Scott, A. Steward, and J. Clarke. Hidden complexity
in the mechanical properties of Titin. Nature, 422:446–449,
2003.

