
Exploring the Viability of the Cell Broadband Engine for Bioinformatics
Applications

Vipin Sachdeva1, Michael Kistler1, Evan Speight,1 and Tzy-Hwa Kathy Tzeng2

1IBM Austin Research Lab 2IBM Systems and Technology Group
Austin, TX 78759 Poughkeepsie, NY

{vsachde, mkistler, speight}@us.ibm.com tzy@us.ibm.com

Abstract

This paper evaluates the performance of bioinformatics
applications on the Cell Broadband Engine recently devel-
oped at IBM. In particular we focus on two highly popu-
lar bioinformatics applications – FASTA and ClustalW. The
characteristics of these bioinformatics applications, such
as small critical time-consuming code size, regular mem-
ory accesses, existing vectorized code and embarrassingly
parallel computation, make them uniquely suitable for the
Cell processing platform. The price and power advantages
afforded by the Cell processor also make it an attractive al-
ternative to general purpose processors. We report prelim-
inary performance results for these applications, and con-
trast these results with the state-of-the-art hardware.

1 Computational Biology and High-
Performance Computing

With the discovery of the structure of DNA and the
development of new techniques for sequencing the entire
genome of organisms, biology is rapidly moving towards a
data-intensive, computational science. Biologists search for
biomolecular sequence data to compare with other known
genomes in order to determine functions and improve un-
derstanding of biochemical pathways. Computational bi-
ology has been aided by recent advances in both algo-
rithms and technology, such as the ability to sequence short
contiguous strings of DNA and from these reconstruct the
whole genome [1, 24, 26]. In the area of technology, high-
speed micro array, gene, and protein chips [21] have been
developed for the study of gene expression and function de-
termination. These high-throughput techniques have led to
an exponential growth of available genomic data. As a re-
sult, the computational power needed by bioinformatics ap-
plications is growing exponentially and it is now apparent

1-4244-0910-1/07/$20.00 c©2007 IEEE.

that this power will not be provided solely by traditional
general-purpose processors.

The recent emergence of accelerator technologies like
FPGAs, GPUs and specialized processors have made it pos-
sible to achieve an order-of-magnitude improvement in exe-
cution time for many bioinformatics applications compared
to current general-purpose platforms. Although these ac-
celerator technologies have a performance advantage, they
are also constrained by the high effort needed in porting the
application to these platforms.

In this paper, we focus on the performance of sequence
alignment and homology applications on the Cell Broad-
band Engine. The Cell Broadband Engine (Cell BE) (tm)
processor, jointly developed by IBM, Sony and Toshiba, is
a new member of the IBM Power/PowerPC processor fam-
ily [10]. The primary target is the PlayStation 3 (tm) game
console, but its capabilities also make it well suited for vari-
ous other applications such as visualization, image and sig-
nal processing and a range of scientific/technical workloads.

In previous research, we presented BioPerf [2], a suite
of representative applications assembled from the compu-
tational biology community. Using our previous workload
experience, we focus on two critical bioinformatics appli-
cations – FASTA (ssearch34) and ClustalW (clustalw). The
FASTA package uses the ssearch34 Smith-Waterman ker-
nel to perform pairwise alignment of gene sequences, and
ClustalW is used for multiple sequence alignment. A key
issue in porting any application to the Cell processor is pro-
grammer productivity: the highly specialized nature of the
Cell processor, such as multiple vectorized cores as well as
programmer-managed caches make the porting of an appli-
cation to the Cell platform more difficult than other general
purpose platforms. However, our experience with these ap-
plications indicates that this effort can result in significant
performance improvements over what can be achieved with
current state-of-the-art general purpose microprocessors. In
this paper, we discuss our implementations of FASTA and
ClustalW, describing the changes required to utilize the ca-
pabilities of the Cell BE processor and the resulting perfor-

mance improvements.

2 The Cell Broadband Engine

The Cell BE is a heterogeneous, multi-core chip op-
timized for compute-intensive workloads and broadband,
rich media applications. The Cell BE is composed of one
64-bit Power Processor Element (PPE), 8 specialized co-
processors called Synergistic Processing Elements (SPEs),
a high-speed memory controller and high-bandwidth bus in-
terface, all integrated on-chip. The PPE and SPEs commu-
nicate through an internal high-speed Element Interconnect
Bus (EIB). The memory interface controller (MIC) pro-
vides a peak bandwidth of 25.6GB/s to main memory. The
Cell BE has a clock speed of 3.2GHz and theoretical peak
performance of 204.8 GFLOPS (single precision) and 21
GFLOPS (double precision).

The PPE is the main processor of the Cell BE and is re-
sponsible for running the operating system and coordinating
the SPEs. It is a traditional 64-bit PowerPC (PPC) proces-
sor core with a VMX unit, 32 KB Level 1 instruction cache,
32 KB Level 1 data cache, and 512 KB Level 2 cache. The
PPE is a dual issue, in-order execution design, 2-way SMT.

Each SPE consists of a Synergistic Processing Unit
(SPU) and a Memory Flow Controller (MFC). The SPU is
a RISC processor with 128 128-bit SIMD registers and a
256KB Local Store (LS). The SIMD pipeline can run at four
different granularity: 16-way 8b integers, 8-way 16b inte-
gers, 4-way 32b integers or single-precision floating-point
numbers, or 2 64b double-precision floating point numbers.
The 256 KB local store is used to hold both the instructions
and data of an SPU program. The SPU cannot access main
memory directly. The SPU issues DMA commands to the
MFC to bring data into the LS or write the results of a com-
putation back to main memory. Thus, the contents of the LS
are explicitly managed by software. The SPU can continue
program execution while the MFC independently performs
these DMA transactions.

There are currently other efforts for porting computa-
tional biology to the Cell processor: Folding@Home, a dis-
tributed computing project for protein folding was recently
ported to the Cell processor [18] with outstanding results.
The Charm++ runtime system, used for NAMD simula-
tions, is currently in the process of being ported to the Cell
[11]. There are also preliminary results for the performance
of BLAST on the Cell processor[16]. Terrasoft Solutions
(www.terrasoftsolutions.com) has recently built
a facility for about 2500 playstations, to be used for bioin-
formatics research using popular gene-finding and sequence
alignment software, available free for national laboratories
and other university professionals. Folding@Home has also
used the computational power of GPU’s [17]. All this
work points to the increasing use of accelerator technolo-

gies for achieving performance from bioinformatics kernels
not available from general-purpose computing platforms.
The downside of employing these technologies is that the
implementation is highly specific to the accelerator tech-
nology being employed, and the effort of porting the code
is non-trivial due to the non-emergence of any productive
programming platform so far.

3 Sequence Analysis and its Applications

Sequence analysis refers to the collection of techniques
used to identify similar or dissimilar sequences or subse-
quences of nucleotides or amino acids. Sequence analysis is
one of the most commonly performed tasks in bioinformat-
ics. Within the area of sequence analysis, one of the most
well-known and frequently employed techniques is pairwise
alignment.

Pairwise alignment is the process of comparing two se-
quences and involves aligning and inserting gaps in one or
both sequences to produce an optimal score. Scores are
computed by adding constant or nucleotide (amino-acid)
specific match scores while subtracting constant scores for
gaps or mismatches. The problem of comparing two entire
sequences is called global alignment, and comparing por-
tions of two sequences is called local alignment. Dynamic
programming techniques can be used to compute optimal
global and local alignments. Smith and Waterman [22]
developed one such dynamic programming algorithm (re-
ferred to as “Smith-Waterman”) for optimal pairwise global
or local sequence alignment. For two sequences of length
n and m, the Smith-Waterman algorithm requires O(nm)
sequential computation and O(m) space.

Due to the quadratic complexity of the Smith-Waterman
algorithm, various attempts have been made to reduce its
execution time. One approach has employed MMX and
SSE technology common in today’s general purpose mi-
croprocessors to achieve significant speedups for Smith-
Waterman. Other approaches utilize multiple processors to
perform parts of the computation in parallel. Parallel strate-
gies for Smith-Waterman and other dynamic programming
algorithms range from fine-grained ones in which proces-
sors collaborate in computing the dynamic programming
matrix cell-by-cell [15] to coarse-grained ones in which
query sequences are distributed amongst the processors
with no communication needs [6].

Recently, several efforts have employed FPGA’s [4] or
GPU’s [13] for computing Smith-Waterman alignments. An
implementation of Smith-Waterman has also been devel-
oped for the Crays XD1, a hybrid platform of an AMD
Opteron and FPGA connected through a hypertransport
link [14]. Finally, specialized single-purpose hardware [7]
has been developed for the Smith-Waterman and other
dynamic programming algorithms in sequence alignment

2

which can achieve an order of magnitude improvement in
performance over most contemporary processors [20].

Despite various attempts to improve the performance
of Smith-Waterman, the exponential growth of biological
data exceeds the growth in computational power. This has
led to the wide usage of approximate algorithms and other
heuristics for finding matching sequences which, though be-
ing computationally inexpensive compared to the quadratic
complexity of Smith-Waterman, do not guarantee an opti-
mal solution to the alignment problem [3]. Thus, there ex-
ists an urgent need for ever faster solutions to the Smith-
Waterman alignment problem.

In our work, we have ported two popular bioinformat-
ics applications – FASTA and ClustalW. We have also be-
gun the work to port HMMER to the Cell processor, and
briefly describe the status of this effort in the Future Work
section. These three codes along with BLAST (Basic Lo-
cal Alignment Search Tool) encompass the sub-field of se-
quence analysis in computational biology.

The FASTA package applies the Smith-Waterman [22]
dynamic programming algorithm to compare two input
sequences and compute a score representing the align-
ment between the sequences. This is commonly used in
similarity searching where uncharacterized but sequenced
“query”genes are scored against vast databases of charac-
terized sequences. A score larger than a threshold value is
considered a match. Such a scoring mechanism is useful
for capturing a variety of biological information including
identifying the coding regions of a gene, identifying similar
genes, and assessing divergence among other sequences.

ClustalW is a popular tool for multiple sequence align-
ment, which is needed to organize data to reflect sequence
homology, identify conserved (variable) sites, perform phy-
logenetic analysis, and other biologically significant results.
ClustalW is an example of a pairwise alignment, wherein all
sequences are compared pairwise, based on which a hierar-
chy for alignment is constructed. Using this hierarchy, an
alignment is constructed step by step according to the guide
tree. ClustalW does not give an optimal alignment, but is
fast and efficient and gives reasonable alignments for simi-
lar sequences.

HMMER aligns a sequence with a database of hidden
markov models, constructed previously from biological se-
quence families. Each of these alignments is performed us-
ing either the Viterbi algorithm [25] or the forward algo-
rithm.

To begin our analysis for porting the applications to the
Cell processor, we used the gprof tool to determine the most
time-consuming functions for each application. Figure 1
shows the execution profile from gprof for our three appli-
cations and the BLAST sequence analysis application. The
results shown in Figures 1 are for the largest class-C in-
puts included in the BioPerf suite (www.bioperf.org).

These results indicate that all three of our applications spend
more than half of their execution time in a single func-
tion: dropgsw for FASTA,forward pass for ClustalW, and
P7Viterbi for HMMER.

Figure 1. Function-wise breakout of BLAST,
ClustalW, FASTA, and HMMER

This is a useful fact for an implementation for the Cell
processor, as it implies that we might obtain a significant
speedup for these applications by only porting these func-
tions to run on the SPUs. In addition, all these applications
perform multiple alignments, which are completely inde-
pendent and thus can be performed in parallel across the
8 SPUs of the Cell Processor. This is also a common trait
among many bioinformatics applications, which make them
suitable for porting to the Cell processor with relatively lit-
tle effort (compared to other applications) but potentially
large performance benefits.

Another helpful characterstic for a Cell implementation
is that for two out of these three kernels, dropgsw for
FASTA and P7Viterbi for HMMER have open-source Al-
tivec/SSE implementations. In addition, IBM Life Sciences
has developed a vectorized kernel for the forward pass
kernel of ClustalW. These existing SIMD implementations
make a port to the SPUs much simpler, as many of the Al-
tivec APIs map one-to-one to the SPU APIs. The APIs
which do not map one-to-one can be executed using mul-
tiple instructions on the SPU. In the following sections,
we discuss the implementation of each application in de-
tail along with issues in porting and bottlenecks that ex-
ist for every application. For further details on ClustalW,
FASTA and HMMER, please refer to [23], [19], and [5] re-
spectively.

3

4 Pairwise Alignment on the Cell Processor

As mentioned above, an efficient implementation of
a Altivec-enabled Smith-Waterman is already included
in the FASTA package by Eric Lindahl. For port-
ing the FASTA package to the Cell processor, we be-
gan with porting this Smith-Waterman Altivec kernel
smith waterman altivec word to the SPUs converting the
Altivec APIs to the SPU APIs. Many of the Altivec APIs
could be converted to SPU APIs with little effort (replac-
ing the vec of Altivec to spu for the SPU), and thus such
an implementation could be pretty straightforward. How-
ever, there are two Altivec APIs used in FASTA that are not
available on the SPU, which required us to implement these
APIs with multiple instructions:

• vec max: This API computes the element-wise maxi-
mum of two vectors and stores the result in the output
vector. We implemented vec max for the SPU by us-
ing spu cmpgt to create a mask from the comparison
of the two input vectors, and spu sel using this mask
to extract the greater of the two vectors. For more de-
tails of the SPU APIs spu cmpgt and spu sel, please
refer to [8].

• vec subs: This API performs saturated subtraction,
meaning that if any element of the result vector is neg-
ative, that element is set to zero. This is a very useful
API for the Smith-Waterman execution, since it needs
a positive value at every matrix cell for local align-
ment. We implemented vec subs on the SPU by per-
forming a signed subtraction using spu sub and then
finding the maximum of the signed result and a con-
stant vector of all zeros, using our implementation of
vec max described above.

To execute the Smith-Waterman kernel on the SPU, the
alignment scores are pre-computed on the PPU, and are
DMAed to the SPU along with the query and the library
sequence. Other parameters such as the alignment matrix
and the gap penalties are also included in the context for ev-
ery SPU. With the approach above, Figure 2 shows the re-
sults of the execution of Smith-Waterman on several current
general-purpose processors along with our implementation
for the Cell processor. We executed a pairwise alignment of
8 pairs of sequences, using one SPU for each pairwise align-
ment. The Cell processor, despite the absence of instruc-
tions explained above, still outperforms every superscalar
processor currently in the market. This superior perfor-
mance is mainly due to the presence of 8 SPU cores and the
vector execution on the SPUs. We should further state that
these results are still preliminary, and further optimization
of the kernel performance is still underway. For the Cell,
the codes were compiled with xlc version 8.1 with the com-
pilation flag -O3 , which gave better or equal performance

Figure 2. Performance of Smith-Waterman
Alignment for different processors

compared to gcc for both SPU and PPU. For PowerPC G5,
we used -O3 -mcpu=G5 -mtune=G5, and for Opteron and
Woodcrest we used the -O3 flag. Since the PPU also sup-
ports Altivec instructions, it is also possible to use the PPU
as a processing element, thus enabling 9 cores on the Cell
processor, with even better performance results. Further
profiling of our implementation indicates that the compu-
tation dominates the total runtime (up to 99.9% considering
a bandwidth of 18 GB/s for the SPUs), and hence multi-
buffering is not needed for this class of computation.

The Cell implementation discussed above is not fully
functional as of now: our current implementation requires
both sequences to fit entirely in the SPU local store of
256 KB, which limits the sequence size to at most 2048
characters. To do genome-wide or long sequence compar-
isons, a pipelined approach similar to [12] among the SPUs
could be implemented. Each SPU performs the Smith-
Waterman alignment for a block, notifies the next SPU
through a mailbox message, which then uses the boundary
results of the previous SPU for its own block computation.
Support of bigger sequences on the Cell is a key goal of our
future research.

Once a fully functional Smith-Waterman implementa-
tion exists on the Cell, we can employ this kernel in the
FASTA package. The FASTA package compares each se-
quence in a query sequence file with every sequence in a
library sequence file, and hence multiple issues for load-
balancing could be evaluated. For now, we have a simple
round-robin strategy, in which the sequences in the query
library are allocated to the SPUs based on the sequence
numbers and the SPU number. In many ways, the load-

4

balancing approach will be similar to the one discussed be-
low in Section 5 for ClustalW. For FASTA, we consider
extending it for bigger sequences as the more important and
difficult problem.

5 ClustalW on the Cell Processor

ClustalW is a progressive multiple sequence alignment
application. There are three basic steps to this process. In
the first step, all sequences are compared pairwise using
the global Smith-Waterman algorithm. A cluster analysis
is then performed on each of the scores from the pairwise
alignment to generate a hierarchy for alignment (guide tree).
Finally, the alignment is built step by step, adding one se-
quence at a time, according to the guide tree.

The major time-consuming step of the ClustalW align-
ment is the all-to-all pairwise comparisons which based on
the inputs, could take 60%-80% of the execution time. The
pairalign function performs the task of comparing all in-
put sequences against each other, thus performing a total of
n(n−1)

2 alignments for n sequences.
Our algorithm design focused on running this code on

the SPUs, with the rest of the code executing on the PPUs.
While pairalign itself is made up of 4 different functions,
forward pass which computes the maximum score and the
location of the cell inside the matrix cell for two sequences,
is the most time-consuming step of pairalign. The open
source-release of ClustalW has a scalar version of for-
ward pass which has multiple branches used for finding
the maximum at every matrix cell. Since the SPUs lack
dynamic branch prediction, and the branches are not eas-
ily predictable, due to the random nature of the inputs, this
function is not ideally suited for SPU computation. Instead,
there is a IBM Life Sciences modified version, which has a
vectorized forward pass, which we used for porting to the
SPUs.

As with the FASTA kernel, we had to develop SPU im-
plementations for some Altivec instructions that are not
supported on the SPU. The saturated addition instruction
vec adds and vec max of Altivec are not present in the SPU,
and hence have to be executed using multiple instructions.
Also, the vectorized code used the vector status and the con-
trol register for overflow detections, while doing computa-
tion with 16-bit (short) data types. The overflow detects that
the maximum score is greater than the range of the short
data type, and therefore does a recomputation using integer
values. Since, this mechanism is not supported inside the
SPUs, we changed the code to use 32-bit (int) data types to
begin with. This lowers the efficiency of the vector com-
putation, since now only four values can be packed inside
a vector, unlike the eight of the original code, but this was
necessary for correct execution without overflow detection.

One of the bottlenecks with the ClustalW code is the

alignment score lookup, in which an alignment matrix score
is read for finding the cost of match/mismatch among two
characters in the sequences. This lookup is a scalar oper-
ation, and hence does not perform well on the SPU, since
the SPU has only vector registers. For vector execution,
four (32 bit) values are loaded into one vector, however
in the code, this step is also preceded by a branch involv-
ing multiple conditions, involving both the loop variables
for handling of boundary cases. Since the SPUs have only
static branch prediction, such a branch, even thought mostly
taken, was difficult to predict for the SPU. We broke the in-
ner loop of the alignment into several different loops so that
the branch evaluation now depends on a single loop vari-
able, and the boundary cases computation can be handled
explicitly. This change alone helped us to get a more than
2X performance gain.

Figure 3. Improvement of performance of
ClustalW alignment function with different
code changes

Besides the innermost kernel execution, we also focused
on partitioning of the work amongst the SPUs. Assuming
there are n sequences in the query sequence file, we have
a total of n(n−1)

2 computations to be performed. To dis-
tribute these computations on the SPUs, we packed all the
sequences in a single array, with each sequence beginning
at a multiple of sixteen bytes. This is important, as the MFC
can only DMA in/out from 16-byte boundaries. This array,
along with an array of the lengths of library sequences, al-
lows the SPUs to pull in the next sequence without PPU in-
tervention. The PPU fills in the context values, such as ma-
trix type, gap-open and gap-extension penalties, with other
inputs such as the pointers to the input array based on the
command-line or default values, and the length of the se-

5

quence array.
For the SPU computation to begin, the PPU creates the

threads and passes the maximum sequence size through a
mailbox message. The SPUs allocate memory only once
in the entire computation based on the maximum size, and
then wait for the PPU to send a message for them to pull
in the context data and begin the computation. Work is
assigned to the SPUs using a simple round-robin strategy:
each SPU is assigned a number from 0 to 7, and SPU k is
responsible for comparing sequence number i against all se-
quences i + 1 to n if imod8 = k. Such a strategy prohibits
reuse of the sequence data, but since the communication
costs are very low in comparison to the total computation,
this strategy seems to work fairly well. For storing of the
output values, the SPUs are also passed a pointer to a array
of structures, which are 16-byte aligned, in which they can
store the output of the forward pass function executed for
two sequences.

Figure 4. Comparison of Cell Performance
with other processors for only alignment
function

Figure 3 shows the time of computation of our Cell
processor implementation of ClustalW using the strategies
described above for two inputs from the BioPerf suite:
1290.seq has 66 sequences of average length 1082, and
6000.seq has 318 sequences of average length 1043. The
charts show the performance of the Cell processor for scalar
and vector (short and int) datatypes. It also shows how
the performance notably improves with no branches. Fig-
ure 4 shows that for the forward pass function, the Cell
outperforms other processors by a significant margin, even
with the simple round-robin strategy. We show the best im-
plementation strategy for the Cell processor, namely using

integer datatypes with no branches. The Opteron and the
Woodcrest performance is non-vectorized, as we could not
find a open-source SSE-enabled forward pass on these plat-
forms.

Figure 5. Comparison of Cell Performance
with other processors for total time of exe-
cution

The ClustalW code, executing on the PPU side, uses the
output for the forward pass function to generate the guide
tree from the scores received from the SPU, and to com-
pute the final alignment. Computing the final alignment
takes most of the remaining execution time of the appli-
cation. Despite the order of magnitude gain in the execu-
tion of pairwise alignment step, the remaining code execut-
ing on the PPU is much slower in comparison to the other
superscalar processors. We have not focussed on the PPU
performance till now, and would look further into optimiz-
ing PPU performance for better results. Due to the PPU
code execution, the overall performance of ClustalW tends
to be close in comparison to the other processors. Figure 5
shows the total time of execution of ClustalW for Cell and
contemporary architectures. As can be seen from the fig-
ure, the performance of Cell, despite being notably better
in the forward pass function is only marginally better in the
overall execution time due to the performance of the PPU.
There are two subproblems to this problem: either we can
find more avenues to execute more code on the SPUs, or
we could use Cell as an accelerator, in tandem with a mod-
ern superscalar processor could give outstanding results for
ClustalW. The RoadRunner project [9] is already exploring
such hybrid architectures, based on Opteron and Cell for ac-
celerated application performance. Such a hybrid solution
will be capable of best performance for ClustalW.

6

6 Conclusions and Future Work

In this paper, we discussed the implementation and re-
sults of two popular bioinformatics applications, namely
FASTA for Smith-Waterman kernel and ClustalW. Our pre-
liminary results show that the Cell Broadband Engine is an
attractive avenue for bioinformatics applications. Consider-
ing that the total power consumption of the Cell is less than
half of a contemporary superscalar processor, we consider
Cell a promising power-efficient platform for future bioin-
formatics computing.

Our future work will focus on making the applications
discussed fully operational, and trying to find other avenues
for optimization. We have also begun the work to port HM-
MER to the Cell processor, but we do not yet have results
suitable for publication. Our work to date has revealed that
one of the critical issues with the HMMER implementation
is that the working set size of the key computational ker-
nel, hmmpfam, exceeds the space available in the 256 KB
local store of the SPU for most HMM and sequence align-
ments. Thus, solving such inputs will require partitioning
of the input among 8 SPUs while making sure that the data
dependency between the SPUs are still fulfilled correctly.
Thus, FASTA and HMMER suffer from similar implemen-
tation issues in the use of the multiple SPUs to solve prob-
lems which do not fit inside the local store of any one SPU.
ClustalW, due to the mostly limited size of its inputs is fully
functional as discussed in this paper. Besides these critical
applications, we would intend to work with other applica-
tions in diverse areas such as protein docking, RNA interfer-
ence, medical imaging and other avenues of computational
biology to determine their applicability for the Cell proces-
sor.

References

[1] E. Anson and E.W. Myers. Algorithms for whole
genome shotgun sequencing. In Proc. 3rd Ann.
Int’l Conf. on Computational Molecular Biology (RE-
COMB99), Lyon, France, April 1999. ACM.

[2] D. A. Bader, Y. Li, T. Li, and V. Sachdeva. BioPerf: A
benchmark suite to evaluate high-performance com-
puter architecture on bioinformatics applications. In
Proc. IEEE Int’l Symposium on Workload Character-
ization, Austin, TX, October 2005.

[3] D. L. Brutlag, J. P. Dautricourt, S. Maulik, and
J. Relph. Improved sensitivity of searches of bio-
logical sequence databases. CABIOS, 6(3):237–245,
1990.

[4] O. Cret, S. Mathe, B. Szente, Z. Mathe, C. Vancea,
F. Rusu, and A. Darabant. Fpga-based scalable imple-

mentation of the general smith-waterman algorithm.
In Proc. 18th Int’l Conf. Parallel and Distrib. Com-
put. Systems (PDCS 06), Dallas, TX, November 2006.
IASTED.

[5] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Bi-
ological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University
Press, Cambridge, UK, 1998.

[6] Z. Galil and K. Park. Parallel dynamic programming.
Technical Report CUCS-040-91, Computer Science
Department, Columbia Univ., 1991.

[7] R. Hughey. Parallel hardware for sequence compar-
ison and alignment. Comput. Applications BioSci,
12(6):473–479, 1996.

[8] IBM. C/c++ language extensions
for cell broadband engine architecture.
http://www-306.ibm.com/chips/
techlib/techlib.nsf/techdocs/
30B3520C93F437AB87257060006FFE5E/
\$file/Language Extensions for CBEA.
v2.2.1.pdf, 2006.

[9] IBM. Ibm to build world’s first cell broad-
band engine based supercomputer. http:
//www-03.ibm.com/press/us/en/
pressrelease/20210.wss, 2006.

[10] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. Shippy. Introduction to the cell
multiprocessor. IBM Systems Journal, 49(4/5):589–
605, 2005.

[11] David Kunzman, Gengbin Zhang, Eric
Bohm, and Laxmikant V. Kale. Charm++,
offload api, and the cell processor.
http://charm.cs.uiuc.edu/papers/CellPMUP06.pdf,
2006.

[12] Weiguo Liu and Bertil Schmidt. Parallel design pat-
tern for computational biology and scientific comput-
ing applications. In Proc. IEEE Intl. Conf. on Clus-
ter Computing(CLUSTER’03), pages 456–459, Hong
Kong, December 2003.

[13] Y. Lui, W. Huang, J. Johnson, and S. Vaidya.
Gpu accelerated smith-waterman. In Proc.
GPGPU Workshop (GPGPU06), Univer-
sity of Reading, UK, May 2006. http:
//www.mathematik.uni-dortmund.de/
∼goeddeke/iccs/index.html.

[14] Steve Margerm. Reconfigurable comput-
ing in real-world applications. http:

7

//www.fpgajournal.com/articles 2006/
20060207 cray.htm, 2006.

[15] W. S. Martins, J. B. Del Cuvillo, F. J. Useche, K. B.
Theobald, and G. R. Gao. A multithreaded parallel
implementation of a dynamic programming algorithm
for sequence comparison. In Proc. of the Pacific Sym-
posium on Biocomputing, pages 311–322, Hawaii, jan
2001.

[16] Chris Mueller. Blast on ibm’s cell broadband engine.
http://www.osl.iu.edu/ chemuell/projects/presentations/cell-
blast-sc06.pdf, 2006.

[17] Vijay Pande. Folding@home on ati gpu’s: a ma-
jor step forward. http://folding.stanford.
edu/FAQ-ATI.html, 2006.

[18] Vijay Pande. Folding@home on the ps3, Decem-
ber 2006. http://folding.stanford.edu/
FAQ-PS3.html.

[19] W. R. Pearson and D. J. Lipman. Improved tools for
biological sequence comparison. Proceedings of the
National Academy of Sciences USA, 85:2444–2448,
1988.

[20] T. Rognes and E. Seeberg. Six-fold speed-up
of Smith-Waterman sequence database searches us-
ing parallel processing on common multiprocessors.
Bioinformatics, 16(8):699–706, 2000.

[21] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown.
Quantitative monitoring of gene expression patterns
with a complementary DNA microarray. Science,
270(5235):467–470, 1995.

[22] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. J. Molecular Bi-
ology, 147:195–197, 1981.

[23] J. D. Thompson, D. G. Higgins, and T. J. Gibson.
CLUSTALW: improving the senstivity of progres-
sive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Res., 22:4673–4680,
1994.

[24] J.C. Venter and et al. The sequence of the human
genome. Science, 291(5507):1304–1351, 2001.

[25] A. J. Viterbi. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Trans. Inform. Theory, IT-13:260–269, 1967.

[26] J.L. Weber and E.W. Myers. Human whole-genome
shotgun sequencing. Genome Research, 7(5):401–
409, 1997.

8

