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Abstract

Protein-interaction network (PIN) analysis provides
valuable insight into an organism’s functional organization
and evolutionary behavior. In this paper, we study a PIN
formed by high-confidence human protein interactions ob-
tained from various public interaction databases. This is
the largest human PIN studied to date, comprising nearly
18,000 proteins and 44,000 interactions. A novel contribu-
tion of this paper is the computation of betweenness cen-
trality, a graph-theoretic metric that is found to be posi-
tively correlated with the essentiality and evolutionary age
of a protein. We observe that proteins with high between-
ness centrality, but low connectivity are abundant in the hu-
man PIN. We have designed an efficient and portable par-
allel implementation for the calculation of this compute-
intensive centrality metric. On the Sun Fire T2000 server
with the UltraSparc T1 (Niagara) processor, we achieve a
relative speedup of about 16 using 32 threads for a typi-
cal instance of betweenness centrality, reducing the running
time from several minutes to 13 seconds.

1 Introduction

Protein interactions play an important role in understand-
ing the functional and organizational principles of biologi-
cal processes. One of the key goals of functional genomics
is to identify the complete protein interaction network of an
organism, termed the interactome. In recent years, high-
throughput experiments have been performed to determine
the interactomes of model eukaryotes such as yeast [31, 30],
worm [18] and fly [10]. These protein-interaction datasets,
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mainly derived from the yeast two-hybrid (Y2H) assay, pro-
vide evidence that global topological structure and networks
features relate to known biological properties [14]. This has
motivated several research groups to work on a global map
of the human interaction network, in the hope that the inter-
actome would provide insight into development and disease
mechanisms at a systems level. There have been several re-
cent efforts on mapping the global human genome [25, 29]
using the Y2H assay. However, this system is prone to a
high rate of false-positives and the interactions need to be
validated with sophisticated techniques. Also, the identity
of essential interactions in PINs differ significantly, depend-
ing on the experimental methodology [3]. In addition to
these global maps, there are a large number of published in-
teractions on individual disease proteins in the last decade.
The high-confidence interactions are readily available from
online public domain databases (for example, BIND [1],
DIP [26] and HPRD [21]). Most of these databases are
literature-based and hand-curated with a sizable percentage
of overlapping interactions.

The interaction networks of model eukaryotes such
as yeast are analyzed extensively [32, 16] using graph-
theoretic and complex network analysis concepts. The yeast
PIN topology exhibits several interesting features that dis-
tinguish it from a random graph. For instance, the distri-
bution of the number of interactions of a protein can be
approximated by a power law, and so the PIN may be a
scale-free network. The PIN also contains a larger num-
ber of highly connected proteins than one would expect in
a random Erdős-Rényi network. It is also observed that in
the yeast network, the connectivity of a protein appears to
be positively correlated with its essentiality [14], i.e., highly
connected proteins tend to be more essential to the viability
of the organism.

Large-scale network analysis is currently an active area
of research in the social sciences [23, 27], and several con-
cepts from this field are being applied to computational biol-



ogy. Important contributions from this field include analyti-
cal tools for visualizing networks [4, 24], empirical quan-
titative indices to determine the key nodes in a network,
and clustering algorithms [11]. Betweenness Centrality [8]
is a popular quantitative index that has been extensively
used in recent years for the analysis of large-scale complex
networks. Some applications include biological networks
[14, 22], study of sexual networks and AIDS [19], iden-
tifying key actors in terrorist networks [7], organizational
behavior and transportation networks [12]. Joy et al. [16]
report that in the yeast network, proteins with high between-
ness are more likely to be essential, and that the evolution-
ary age of proteins is positively correlated with between-
ness. Also, they observe that there are several proteins with
low degree but high centrality scores in the yeast PIN.

Gandhi et al. present the first analysis of the human in-
teractome [9]. They study a dataset of about 26,000 human
protein interactions obtained from various public databases,
compare the human interactome with the yeast, worm and
fly datasets, and observe that only 42 interactions were com-
mon to all species. Also, they observe that the available data
does not support the presumption on the positive correlation
between connectivity and essentiality.

We extend the work of Gandhi et al. [9] and Joy et al.
[16] in this paper. Our main contributions are the following:

• Topological study of the largest human PIN con-
structed to date, comprising nearly 18,000 proteins
and 44,000 interactions. We analyze the global con-
nectivity and clustering properties of a human PIN
composed of high-confidence protein interactions.

• Computation of centrality metrics for the human PIN.
We analyze betweenness centrality scores and find that
proteins with high betweenness centrality but low con-
nectivity are abundant in the human PIN. We also
observe that this finding cannot be explained by the
widely-accepted models for scale-free networks.

• Applying high performance computing techniques for
large-scale PIN analysis. Our efficient multicore im-
plementation reduces the computation time of be-
tweenness centrality to 13 seconds on 32 processors
of the Sun Fire T2000 system, with a relative speedup
of 16.

2 Preliminaries

We represent the PIN as an undirected graph G(V, E) in
the analysis that follows. The set V represents the proteins,
and E the set of interactions. The number of vertices and
edges are denoted by n and m, respectively. Since the inter-
action networks are unweighted, we assume that each edge
e ∈ E has unit weight. A path from protein (vertex) s to t

is a sequence of interactions (edges) 〈ui, ui+1〉, 0 ≤ i ≤ l,
where u0 = s and ul = t. The length of a path is the sum of
the weights of edges. We use d(s, t) to denote the distance
between vertices s and t (the minimum length of any path
connecting s and t in G). Let us denote the total number
of shortest paths between vertices s and t by σst, and the
number passing through vertex v by σst(v).

Betweenness Centrality is a global shortest paths
enumeration-based metric, introduced by Freeman in [8].
Let δst(v) denote the pairwise dependency, or the frac-
tion of shortest paths between s and t that pass through v:
δst(v) = σst(v)

σst
. Betweenness Centrality of a vertex v is

defined as
BC(v) =

∑

s�=v �=t∈V

δst(v)

This metric measures the control a vertex has over com-
munication in the network, and can be used to identify key
vertices in the network. High centrality indices indicate that
a vertex can reach other vertices on relatively short paths, or
that a vertex lies on a considerable fraction of shortest paths
connecting pairs of other vertices.

A straight-forward way of computing Betweenness Cen-
trality is to augment a single-source shortest path algorithm
such as Dijkstra’s algorithm to compute the pairwise de-
pendencies. Define a set of predecessors of a vertex v on
shortest paths from s as pred(s, v). Now each time an edge
〈u, v〉 is scanned for which d(s, v) = d(s, u)+d(u, v), that
vertex is added to the predecessor set pred(s, v). Setting
the initial condition of pred(s, v) = s for all neighbors v
of s, we can proceed to compute the number of shortest
paths between s and all other vertices. The computation of
pred(s, v) can be easily integrated into breadth-first search
(BFS) for unweighted graphs.

To exploit the sparse nature of typical real-world graphs,
Brandes [5] gives an algorithm that computes the between-
ness centrality score for all vertices in the graph in O(mn)
time for unweighted graphs. The main idea is as fol-
lows. We define the dependency of a source vertex s ∈ V
on a vertex v ∈ V as δs(v) =

∑
t∈V δst(v). The be-

tweenness centrality of a vertex v can be then expressed
as BC(v) =

∑
s�=v∈V δs(v). It can be shown that the

dependency δs(v) satisfies the following recursive relation:
δs(v) =

∑
w:v∈pred(s,w)

σsv

σsw
(1 + δs(w)).

The algorithm is now stated as follows. First, n BFS
computations are done, one for each s ∈ V . The prede-
cessor sets pred(s, v) are maintained during these compu-
tations. Next, for every s ∈ V , using the information from
the shortest paths tree and predecessor sets along the paths,
compute the dependencies δs(v) for all other v ∈ V . To
compute the centrality value of a vertex v, we finally com-
pute the sum of all dependency values. The computational
complexity of the algorithm is O(mn) and the space re-
quirements are O(m + n).
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We present the first parallel centrality algorithm in [2].
Observe that parallelism can be exploited at two levels in the
Betweenness Centrality algorithm: The BFS computations
from each vertex can be done concurrently, provided the
centrality running sums are updated atomically. Also, the
actual BFS can be also be parallelized. When visiting the
neighbors of a vertex, edge relaxation can be done concur-
rently. On multicore systems, we perform a coarse-grained
partitioning of work and assign each processor a fraction of
the vertices. The loop iterations are scheduled dynamically
so that work is distributed as evenly as possible. There is
synchronization cost involved, as a processor can compute
its own partial sum of the centrality value for each vertex,
and all the sums can be merged in the end using an efficient
reduction operation. The BFS stack S, list of predecessors
P and the BFS queue Q, are replicated on each processor,
and so the space requirement is O(mp).

3 Analysis

There are several online databases devoted to the human
interactome (see Table 1). We derive our human protein in-
teraction map (referred to as HPIN throughout the paper)
by merging interactions from Gandhi et al.’s human pro-
teome analysis dataset [9] (updated February 2006), the lat-
est interaction dataset from the Human Protein Reference
Database [21] (updated May 2006) and IntAct (updated
October 2006). The latest version of the HPRD dataset
includes interactions from MIPS, BIND, DIP and MINT.
There is a complication using protein complex data (for
example, from the MIPS database) to obtain protein inter-
actions, since it is not always known which proteins in a
complex interact with each other. We model complex in-
teractions also as pair-wise interactions. This results in a
high-confidence protein interaction network of 18869 pro-
teins and 43568 interactions.

3.1 Structural Properties

We first study the topological characteristics of our hu-
man interactome HPIN. We primarily focus on the three as-
pects of network structure that receive most attention: de-
gree distribution, diameter and characteristic path lengths
and clustering and modularity.

On analyzing the connectivity properties of the graph,
we find that largest connected component has 8510 proteins,
and there are 9890 disconnected proteins in the graph (i.e.,
annotated proteins with no interactions). The average com-
ponent size is 1.82. There are 85 connected components of
size 2, and 14 connected components of size 3.

Previous studies on the yeast and fly datasets have shown
that the degree distributions in protein-interaction networks
obey a power law of the form P (k) ≈ k−γ . We observe

a power-law distribution of the number of interactions in
the human PIN, with γ = 1.57 (Figure 1(a)). We also
study an early human PIN described by Lehner and Fraser
[17], which includes predicted interactions generated using
lower eukaryotic protein interaction data. We observe that
this distribution has a heavier tail (a higher number of hub
proteins) compared to HPIN. The models proposed to ex-
plain scale-free behavior, such as R-MAT [6], can mimic
the power-law degree distribution behavior with the right
parameters (see Figure 1(d)). Thus, the inferences drawn
by studying the degree distributions of relatively small PINs
such as yeast (Figure 1(c)) still hold for the human PIN.

Figure 2(a) plots the distribution of the shortest number
of links between any two proteins in the network, or the
shortest path. The longest short path, or the graph diameter,
is 14 links. The average shortest path length is 3.72 in the
network. This result is again in agreement with previously
studied PINs and social networks. The average path length
is an indicator of how readily information can be transmit-
ted through a network. The small average path length, or the
small-world property, suggests that such networks are effi-
cient in the transfer of biological information. Only a small
number of intermediate reactions are necessary for any pro-
tein to influence the characteristic behavior of another.

We also calculate the average clustering coefficient, a
measure of the tendency of proteins in a network to form
clusters or groups. For a vertex v of degree d, the clus-
tering coefficient CC is defined as the CC(v) = 2k

d(d−1) ,
where k is the number of links connecting the d neighbors
of v, considered pairwise. The average clustering coeffi-
cient CCa(d) for a particular degree d is simply the average
of the clustering coefficients of all vertices of degree d. We
find that, on an average, CCa decreases as the number of
interactions per protein increases (Figure 2(b)). This indi-
cates that the network has potential for hierarchical organi-
zation. Similar results were observed by Stelzl et al. [29] on
smaller human protein interaction networks. The sparsely
connected proteins are part of highly linked regions, which
are connected via a few hubs. A distinguishing feature is
that, in our case, we observe a considerable variation (two
orders of magnitude) in the clustering coefficient for pro-
teins with interactions between 50 and 200. This may be
attributed to the presence of complex interactions in the net-
work (i.e., more than two proteins participate in an interac-
tion). In HPIN, there are several complex interactions, lead-
ing to the frequent occurrence of proteins of sizable degree
as well as high clustering coefficients in the graph.

3.2 Centrality and Essentiality

The problem of identifying central nodes in large com-
plex networks is of fundamental importance with applica-
tions in several areas varying from computational biology to
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(a) (b)

(c) (d)

Figure 1. A comparison of degree distributions of various protein-interaction networks
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Database Details

HPRD [21] Human Protein Reference Database. Experimentally verified protein-protein in-
teractions obtained from manual curation of literature. 25209 proteins and 35262
interactions.

BIND Biomolecular Interaction Network Database. Collection of molecular interac-
tions including high-throughput data submissions and hand-curated information
from the scientific literature. 4644 human protein interactions.

MIPS Munich Information Center for Protein Sequences. 334 interactions.
MINT Molecular Interactions Database. 3544 interactions.
IntAct [13] Freely available, open source database system and analysis tools for protein in-

teraction data. European Bioinformatics Institute. 2420 interactions.
OPHID Online Predicted Human Interaction Database. Repository of already known

experimentally derived human protein interactions, as well as 23,889 additional
predicted interactions. This dataset is not included in our human PIN.

Table 1. Popular Online Human Protein Interaction databases

(a) Distribution of shortest paths between pairs of proteins (b) Average Clustering Coefficient

Figure 2. Structural properties of HPIN

social and business networks. Many quantitative metrics for
this purpose have originated from the social network anal-
ysis community, commonly referred to as centrality mea-
sures. We will use the Betweenness centrality metric (see
Section 2) to analyze the human interactome. Researchers
have paid particular attention to the relation between cen-
trality and essentiality or lethality of a protein (for instance,
[14]). A protein is said to be essential if the organism can-
not survive without it. Essential proteins can only be deter-
mined experimentally, so alternate approaches to predicting
essentiality are of great interest and have potentially sig-
nificant applications such as drug target identification [15].
Previous studies on yeast have shown that proteins acting as
hubs (or high-degree vertices) are three times more likely to
be essential. So we wish to analyze the interplay between

degree and centrality scores for proteins in the human PIN
in this section.

Figure 3 plots the betweenness centrality scores of the
top 1% (about 100) proteins in two lists, one ordered by de-
gree, and the other by the betweenness centrality score. We
observe that there is a strong correlation between the degree
and betweenness centrality score: about 65% of the proteins
are common to both lists. The protein with the highest de-
gree in the graph also has the highest centrality score. This
protein (Solute carrier family 2 member 4, Gene Symbol
SLC2A4, HPRD ID 00688) belongs to the transport/cargo
protein molecular class, and its primary biological function
is transport. From Figure 3, it should also be noted that the
top 1% proteins by degree show a significant variation in
betweenness centrality scores. The scores vary by over four
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(a) (b)

Figure 4. Normalized Betweenness Centrality scores as a function of the degree for HPIN (left) and a
synthetic scale-free graph instance (right)

Figure 3. The top 1% proteins in HPIN, sorted
by Betweenness Centrality (BC) scores and
the number of interactions

orders of magnitude, from 10−1 to 10−4.

We next study the correlation of degree with between-
ness centrality. Unlike connectivity, which ranges from 1
to 822, the values of betweenness centrality range over sev-
eral orders of magnitude. The few highly connected vertices
have high betweenness values as there are many vertices di-
rectly and exclusively connected to these hubs. Thus most
of the shortest paths between these nodes go through these

hubs. However, the low-connectivity vertices show a signif-
icant variation in betweenness values, as evidenced in Fig-
ure 4(a). They exhibit a variation of betweenness values up
to four orders of magnitude. The high betweenness scores
may suggest that these proteins are globally important. In-
terestingly, these nodes are completely absent in syntheti-
cally generated graphs designed to explain scale-free behav-
ior (observe the variation of betweenness centrality scores
among low degree vertices in Figure 4(b)).

Our observations are further corroborated by two re-
cent results. As the yeast PIN has been comprehensively
mapped, lethal proteins in the network have been identified.
Gandhi et al. [9] demonstrate from an independent analysis
that the relative frequency of a gene to occur as an essen-
tial one is higher in the yeast network than the human PIN.
They also observe that the lethality of a gene could not be
confidently predicted on the basis of the number of interac-
tion partners. Joy et al. [16] confirm that proteins with high
betweenness scores are more likely to be essential, and that
there are a significant number of high-betweenness, low-
interaction proteins in the yeast PIN.

Figure 5 is a graphical representation of the dominant
molecular class and biological function among high be-
tweenness, high connectivity proteins (the common proteins
in the top 1% lists). These proteins belong to a variety of
molecular classes (Figure 5(a)), with cell communication
and signal transduction being the most common biological
function (Figure 5(b)).
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(a) Molecular Class (b) Biological Function

Figure 5. The dominant molecular classes (left) and biological functions (right) among proteins that
are common to both the top 1% betweenness centrality and degree lists

3.3 Parallel Multicore Performance

The sequential complexity for computing betweenness
centrality and the graph diameter is O(mn). The parallel
algorithms for centrality described in Section 2 are well-
suited for implementation on multicore and multiprocessor
systems that have high memory bandwidth and a modest
number of processors.

We report performance results on the Sun Fire T2000
multicore server, with the Sun UltraSPARC T1 (Niagara)
processor. This system has eight cores running at 1.0 GHz,
each of which is four-way multithreaded. There are eight
integer units with a six-stage pipeline on chip, and four
threads running on a core share the pipeline. The cores also
share a 3 MB L2 cache, and the system has a main memory
of 16 GB. There is only one floating point unit (FPU) for
all cores. We compile our codes with the Sun C compiler
v5.8 and the flags -xtarget=ultraT1 -xarch=v9b
-xopenmp. The code is portable to other multicore and
multiprocessor systems, and we make it freely available on-
line [20].

Figure 6 plots the execution time and relative speedup
achieved on the Sun Fire T2000 for computing the between-
ness centrality on HPIN. The performance scales nearly
linearly up to 16 threads, but plateaus between 16 and 32
threads. This can be attributed to insufficient memory band-
width on 32 threads, as well as the presence of only one
floating point unit on the entire chip. We use the floating
point unit for accumulating pair dependencies and central-
ity values.

The execution times for betweenness centrality and
graph diameter computation differ by a constant multiplica-
tive factor. Betweenness centrality computation is much

Figure 6. Betweenness Centrality Execution
time and Speedup on the Sun Fire T2000 sys-
tem

more involved, as it requires maintaining a BFS stack, a
queue and a predecessor list. Also, the BFS tree is traversed
twice in the algorithm.

4 Conclusions and Future Work

We demonstrate the use of multicore algorithmic tech-
niques for large-scale protein-interaction network analysis.
The source code of the various graph analysis programs is
freely available online from our web site. We also intend
to provide the sequential version of our centrality analysis
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codes as plug-ins to the visualization tool Cytoscape [28].
Protein-interaction networks (PINs) provides valuable

insight into an organism’s functional organization and evo-
lutionary behavior. In recent years, the PINs of model
eukaryotes like yeast and fly have been extensively ana-
lyzed. Our main contribution is the study of the topolog-
ical properties of a PIN formed by high-confidence human
protein interactions obtained from various public interac-
tion databases. This is the largest human PIN constructed
to date, comprising nearly 18,000 proteins and 44,000 in-
teractions.

Predicting essentiality of a protein is of significant in-
terest, and previous studies show that essentiality is highly
correlated with betweenness. We compute betweenness and
other centrality metrics on the human PIN. On analyzing
these scores, we find that proteins with high betweenness
and low connectivity are abundant in the human genome.
We note that this result cannot be explained by the widely-
accepted models for scale-free networks.
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