
An Experimental Study of Optimizing Bioinformatics Applications

Guangming Tan1,2, Lin Xu1,2, Shengzhong Feng1, Ninghui Sun1

1 Institute of Computing Technology Chinese Academy of Sciences
2Graduate School of Chinese Academy of Sciences

{tgm,xulin,fsz,snh}@ncic.ac.cn

Abstract

As bioinformatics is an emerging application of high
performance computing, this paper first evaluates the
memory performance of several representative bioinfor-
matics applications so that some appropriate optimiza-
tion methods can be applied. Based on the computa-
tional behavior of these bioinformatics applications, we
propose two optimized algorithms on high performance
computer architectures. 1) For the data(I/O) inten-
sive program, MegaBlast, we overlap computation with
I/O to produce an improved high-throughput algorithm
with reduced time and memory requirements. 2) For
a CPU-intensive RNA secondary structure prediction
algorithm, we propose a fine-grain parallel O(N3) al-
gorithm based on reconfigurable arrays (FPGAs). In
order to optimize the FPGA architecture, we evaluate
the performance in different architectures using cycle-
by-cycle simulator.

1. Introduction

Bioinformatics applications are attracting great ef-
fort from high performance computing. Sequence
alignment [1] and structure prediction [2] in bioinfor-
matics are exerting great pressure on the processing
ability of current computer systems[3]. Sequence align-
ment is a process of scanning gene and protein sequence
database. It is a common and often repeated task in
molecular biology. The need for speeding up this pro-
cess comes from the exponential growth of the biose-
quence banks: every year their size increases by a factor
of 1.5 to 2. Comparison algorithms, whose complexi-
ties are quadratic with respect to the length of the se-
quences, detect similarities between the query sequence
and subject sequence. One frequently used approach to
speed up this time consuming operation is to introduce

heuristics in the search algorithms, such as BLAST [4]
and FASTA [5]. The main drawback of this solution is
that the more time efficient the heuristics is, the worse
is the quality of the results. RNA secondary structure
prediction algorithm shows high time complexity, the
most widely used minimum free energy method [2] is
an O(N4) dynamic programming algorithm [6]. By an-
alyzing the energy rules or restricting the size of loop,
the time complexity of algorithm is reduced to O(N3),
but it is still time consuming when the length of se-
quence becomes long.

Memory access overhead is becoming more signif-
icant and has been widely investigated in scientific
computing[8]. On the one hand, it is necessary to de-
velop high efficient algorithms to overcome the memory
wall. On the other hand, an important trend in high
performance computing is to develop an innovative ar-
chitecture [9][10]. As an emerging computer architec-
ture, FPGA based reconfigurable computing [11] has
shown a magnitude speedup over the performance of
standard microprocessor CPUs owing to its intrinsic
spatial parallel and integrated local memory [11]. In
order to exploit high performance algorithms in bioin-
formatics, we select several popular applications and
investigate their memory system performances. The
rest of this paper is organized as follows. Section 2 pro-
vides the study of memory system performance of some
bioinformatics applications. In section 3 and 4, we pro-
pose two optimized algorithms and evaluate their per-
formance. Section 5 concludes this paper.

2. Memory System Performance

We use hardware performance counters (Oprofile
[15] and PAPI [16])as well as executive-driven simu-
lation in this study. In order to study cache behavior
under different configurations, we performed extensive
executive-driven simulation experiments, using Sand-
Fox [17], which is Vmips [18] based executive-driven
simulator developed by one group in our institute. The

1-4244-0054-6/06/$20.00 ©2006 IEEE

Figure 1. The average number of memory ref-
erences per instruction is 0.224 for bioinfor-
matics applications

Figure 2. L1 D-cache performance seven
bioinformatics applications

used application set comprises six sequence alignment
programs (swat[6], fasta[5], blastall[4], megablast[4],
phrap[19], clustalw[7]) and one RNA secondary struc-
ture prediction program ViennaRNA/rnafold [20]. At
the same time, Bader et al. [12][13][14] gives more com-
prehensive evaluations of bioinformatics applications.

We noted that bioinformatics applications used here
spend more than 99 percent of program execution time
in user mode. We ignore the OS effects without affect-
ing the accuracy. Figure 1 indicates that bioinformat-
ics applications have a low number of average memory
references per instruction (0.224). In the three heuris-
tic sequence alignment programs, the number of aver-
age memory references per instruction is not the high-
est, but both the number of memory references and
instructions are the largest because of its great mem-
ory requirement. An important question is how well
the cache performs under this traffic. Figure 2 shows
the measured results for all applications. Figure 2 in-
dicates the cache miss rate of bioinformatics applica-
tions is very low. In seven bioinformatics applications,
megablast has the highest data cache miss rate. In sec-

Figure 3. L1 D-cache performance for bioin-
formatics applications with different cache
size

Figure 4. L1 D-cache performance for bioin-
formatics applications with different cache
line size and associativity (associativity*line
size). The size of cache is 256KB

tion 3, we propose an optimized algorithm to improve
memory and cache performance.

In order to comprehensively study the cache per-
formance for bioinformatics applications, we then used
SandFox to simulate the cache behavior for these appli-
cations. Figure 3 and 4 show the simulation results for
seven bioinformatics applications, with different cache
configurations. We observed that except for megablast,
the other six applications show sensitive to the different
cache configuration to some extent.

In this section, we performe a comprehensive study
of the memory requirements of a group of represen-
tative bioinformatics applications. Our observations
suggest that all seven bioinformatics applications ex-
cept megablast are CPU-bound. For megablast, we will
focus on the improvement of memory system by soft-
ware optimization methods. While the memory sys-
tem improvement of other five programs is necessary,
it is difficult to improve the cache performance through
software algorithm optimization technology. We con-

centrate more on increasing processing power on some
specific architecture.

3. Improving Memory Efficiency of
Megablast

3.1. Original Megablast Algorithm

Because of batch processing and greedy algo-
rithm in extending significant similar segments [21],
MegaBlast is the fastest and high-throughput pro-
gram in the NCBI BLAST toolkits [22]. The basic
flow of MegaBlast is the same with other programs
in NCBI BLAST. Assume that a set of query se-
quences Q = {q1, q2, ..., qm} and subject sequences
S = {s1, s2, ..., sn}, the length of word or hit is w.
MegaBlast algorithm is described as Algorithm 1(For
detail, refer to [5]).

Algorithm 1. MegaBlast
Build hash table(Q); /*build a hash table for all

query sequences, which is
considered as one sequence*/

for si in S /*all sequences in database*/
Find seed(hash table, si); /*find hits*/
Extend filter seed(); /*Extending hits and get

HSPs*/
Sort hsp(); /*insert HSPs into some priority

queue*/
endfor
Output(); /*output alignment results*/

There are two problems in MegaBlast algorithm.
First, because HSPs are selected from the alignment
results, which are generated by aligning one sequence
with all database sequences, all alignment results are
kept in memory until it finishes searching all subject
sequences. In the worst case, the memory cost is pro-
portional to the product of the sizes of two sequence
sets being compared.

Memory1 = O(c1 ∗ |Q| ∗ |S|) (1)

where |Q| and |S| is size of two sets of sequences,
c1 is relative with similarity between two sequences.
We note that c1 is larger when the similarity is
higher. When size of sequences set is large and sim-
ilarity is high, the memory cost will increase. Sec-
ond, MegaBlast is a computation and I/O intensive
program. For the large size of sequences, I/O almost
occupies half of the overall time. The performance of
the I/O subsystem also affects overall performance of
application programs. In MegaBlast, the CPU is idle

when the I/O subsystem is outputting the alignment
results to disk file. Since high memory and I/O over-
head are the two main bottlenecks of MegaBlast algo-
rithm, we propose a solution to those bottlenecks.

3.2. High Spatial-temporal Efficient
Megablast Algorithm

We note that the query sequences and subject
sequences are symmetric and exchanging query and
database sequence promise the correct alignment
results for finding hits. We exchange the set of query
sequences with the set of database sequences and build
a hash table based on the database sequences. The
optimized algorithm is described Algorithm 2.

Algorithm 2. ste blast
Build hash table(S) /*build a hash table for all

subject sequences, which is
considered as one sequence*/

for qi in Q /*all query sequences*/
Find seed(hash table, qi) /*find hits*/
Extend filter seed(); /*Extending hits and get

HSPs*/
Sort hsp(); /*insert HSPs into some priority

queue*/
Output(); /*output the alignment of qi*/

endfor

It places Output into the for loop, which actually
eliminates the accumulation of memory requirement.
The cost of memory is proportional to the size of sub-
ject sequences set, instead of the product of the sizes
of two sequence sets:

Memory2 = O(c2 ∗ |S|) (2)

where |S| is the size of subject sequence set and c2 is a
similar parameter as c1 in equation (1). The proportion
of memory requirement is:

Memory1/Memory2 = O(c1 ∗ |Q|/c2)0 < c1/c2 ≤ 1
(3)

When each alignment generate the same size of re-
sults, c1/c2 = 1 and the maximum of two algorithms
is the same and the optimized algorithm achieves the
best performance. When the size of one sequence align-
ment results is far larger than other sequence, the mem-
ory requirement of the optimized algorithm is deter-
mined by the maximum cost of memory and achieves
the lowest performance. The optimized MegaBlast al-
gorithm outputs alignment results as soon as one query
sequence finishes aligning. The task of results output

Figure 5. The comparison of runtimes in sec-
onds of two BLAST algorithms. Each right
column represents the original Megablast al-
gorithm. For 1MB/1MB, the optimized algo-
rithm is 20 seconds and Megablast algorithm
is 103 seconds. For 10MB/100KB, the time is
30 seconds and 180 seconds, respectively.

to disk is managed by I/O controller and CPU contin-
ues aligning next query sequences. The optimized al-
gorithm achieves the overlap of computation with I/O,
decreases the overall time.

3.3. Performance Evaluation

We selected mouse embryo EST sequences to mea-
sure the performance of the optimized algorithm on
a platform with 1.6GHz Opteron, 4.5GB memory.
As shown in Figure 5 and Figure 6, the optimized
MegaBlast greatly reduces the running time and mem-
ory usage.For the alignment between 10MB query se-
quences set and 10MB database sequences set, when
the sizes of two sequences sets are comparative, the
optimized algorithm shows higher superiority. From
equation 12, the value c1/c2 is less than 1. However,
when the size of the subject sequences set is much
larger than the size of the query sequences set, the
hash table in the optimized algorithm is larger than in
the original Megablast algorithm. In the case of 1MB
query sequences set and 10MB database sequences set,
the original Megablast algorithm needs 129MB mem-
ory and the optimized algorithm needs 389MB memory
for building hash table. Because the whole hash ta-
ble is kept in memory, the value Memory1/Memory2

is not linearly proportional to the size of query se-
quences set. Another factor determining the value
Memory1/Memory2 is the memory-access mode in
program. Both algorithms read their own subject se-
quences set through memory-map. When the size of
the subject sequences is larger than the size of query
sequences set, the original Megablast algorithm only al-

Figure 6. The comparison of memory in MB
of two BLAST algorithms. Each right col-
umn represents the original Megablast algo-
rithm. For 1MB/1MB, the optimized algo-
rithm is 143MB and Megablast algorithm is
342MB. For 10MB/100KB, the memory usage
is 112MB and 277MB, respectively.

locates physical memory for part of the whole database
sequence, but the whole database sequences are kept
in physical memory as a hash table. Furthermore, be-
cause building hash table needs more time, these fac-
tors also make the running time of the optimized algo-
rithm longer. For example, with the alignment of 1MB
query and 10MB subject sets, the original Megablast
algorithm only spends 0.05 seconds (where overall time
is 962 seconds) and the optimized algorithm spends 88
seconds (where overall time is 204 seconds). So the
optimized algorithm cannot achieve ideal performance.

Although the optimized algorithm can promise that
the hits(seed) are the same with that of the original
MegaBlast, the final alignment results should be fil-
tered by a statistic score, which is based on the size
of searching space. However, the search space is deter-
mined by effective length of subject sequences in NCBI
BLAST. So exchanging query and database sequence
changes the searching space, thus the final results are
different from that of the original MegaBlast. One solu-
tion is to develop a new score calculation scheme from a
viewpoint of mathematics. In fact, we note that the dif-
ference between the results of two algorithms is only the
number of final alignment. The bars in Figure 7 show
the comparison of the numbers of successful extensions,
which are determined by the statistical score. The re-
sults difference is only the number of final alignments,
the statistics results describe the percentage of results
that are different for the different queries (See the line
in Figure 7). We notice that the optimized algorithm
can find more results than the original MegaBlast in
some cases.

Figure 7. The comparison of the number of
successful extensions. The sizes of se-
quence sets are 100KB, 1MB, 5MB, 10MB, re-
spectively. The plus represents that the num-
ber of results of the optimized algorithm is
larger than the original MegaBlast, The minus
represents that the number of results of the
optimized algorithm is smaller than the origi-
nal MegaBlast.

4. Exploiting Fine-grain Parallelism for
RNA Folding

4.1. Zuker’s Algorithm

In Zuker’s dynamic programming algorithm(The de-
tail and notation refer to [2]), the procedure to compute
the energy of the optimal structure of an RNA sequence
is a nested dynamic programming. The energy of the
optimal structure of subsequence r1, r2, ..., ri is Wi:

W (i) = min{W (i− 1),min1<j≤i{W (j − 1) + V (j, i)}}
(4)

V (i, j) is the energy of the optimal structure of sub-
sequence ri, ri+1, ..., rj , where (ri,rj)is pair.

V (i, j) = f(V (i + 1, j − 1), V BI(i, j), V M(i, j)) (5)

V BI(i, j) = {eL(i, j, i′, j′) + V (i′, j′)} is the energy of
an optimal structure of the subsequence from i through
j where (i, j) closes a bulge or an internal loop. V M is
the energy of an optimal structure of the subsequence
from i through j where (i, j) closes a multibranched
loop. V M(i, j) can be computed as:

V M(i, j) = min{WM(i+1, k−1)+WM(k, j−1)} (6)

WM(i, j) = min{V (i, j),min{WM(i, k−1)+WM(k, j)}}
(7)

Figure 8. The data dependence graph and
stripped matrix. Each entry depend on the
entry along the same row and column

Matrix V is the core which all equations depend on. In
the computing procedure of V BI, V BI(i, j) depends
on all the left-bottom region of V (i, j). V M(i, j) de-
pends on the bottom line and left line of WM(i, j),
they are WM(i + 1, k − 1)(i + 1 < k ≤ j − 1) and
WM(k, j − 1)(i + 1 < k ≤ j − 1). WM(i, j) de-
pends on the corresponding cell in V , that is V (ij),
and the left cells and the bottom cells of W (i, j), they
are WM(i, k)(i < k ≤ j) and WM(k, j)(i < k ≤ j).

4.2. Fine-grained Parallel Algorithm

The order of serial computing V is from bottom to
top line by line, from left to right in each line. The
computing procedure of adding WM(i, i...j − 1) with
the corresponding WM(i + 1...j, j) can be pipelined.
We can find that both WM(i, j) and WM(i, j + 1)
depend on WM(i, i...j − 1). Therefore we can utilize
the line WM(i + 1...j, j) repeatedly. That forms a
parallel computing. Figure 8 and 9 demonstrate that
each cell in block can be computed parallel by FPGA
array. Each processing unit in FPGA executes an
adding operation. Then the minimum of each line is
calculated and the result is output. In the procedure
the matrix V is saved to backtrack. Suppose a
sequence which length is n can be divided into M
strips, where M = �n/DEPTH�, each data block
is Block(i, j)(1 ≤ i ≤ j ≤ M). Taking Block(i, j)as
an example we explain the procedure of our parallel
algorithm as follows: After PE array’s computing
procedure, only the element at the left-bottom in
Block(i, j) is the final result, the remainders depend
on the elements in Block(i, j). Therefore the com-
plementary computing is to finish computing the

Figure 9. The FPGA arrays

whole block. In order to determine a proper parallel
and pipeline level, we implement a cycle-by-cycle
simulator for FPGA and map the fine-grained parallel
algorithm to the FPGA simulator. The performance
analysis focuses on memory access, pipeline bubble
and executing time.

Algorithm 3.
for(j = 1; j < J ; j + +) {

Mapping each cell in Block(i, j) into the register
input1 of the FPGA array’s corresponding PE;
for(i = I + 1; i < M ; j + +)

for(k = 0; k < DEPTH; k + +) {
Input a row element of Block(i, j) from left to
right row by row into registers input2 in the
bottom line of PE and put register input2 in
each line into the forward line;
Get the sum of the elements in each line, saved
in output, and get the minimum of the outputs
in each line, output the minimum into the
corresponding position in WM;

}
Block(i, j)’s complementary computing;

}

4.3. Performance Evaluation

Because of the continuous updating of computation
cell and many memory cells needing to save the tem-
poral values, memory access is important to the per-
formance of the fine-grain parallel algorithm. The sim-
ulator assumes the results can be denoted by a 20bit-
length data. We use D as pipeline depth and P as
parallel width. The data bus width is 128bits and the
frequency is 133Mhz. The data of initializing PE ar-
ray is D*P*20bits. The initializing procedure time is
�D∗P∗20

128 �/133µs. Updating array in pipeline, that is
updating register input2, needs P*20bits data and the
time is �P∗20

128 �/133µs. The data of output result is

Figure 10. Sequence length: 880bps. The
ratio of data transmission time to executing
time. The parallel width is 1, 2, 4, 8, 16 and 32.
The maximum parallel width is 8 for pipeline
depth 8 and the maximum parallel width is 16
for pipeline depth 16

DEPTH*20bits and the output time is �D∗20
128 �/133µs.

Figure 10 indicates that the time of memory access in-
creases with increasing the pipeline depth and parallel
width. If the pipeline depth is constant, the number
of reused data will be constant. However, the number
of input data every time and the clock cycle of trans-
mitting data will increase when the parallel width in-
creases. Thus the ratio of memory access to overall
executing time will increase. If the parallel width is
constant, the increasing pipeline depth will reduce the
ratio of memory access to overall executing time be-
cause of the increasing number of reused data for the
same number of input data. In Figure 10, a parallel
width of 8 is used as an example.

Bubble means the proceeding unit is idle at a time.
From Figure 11 we can conclude that the bubble is
increasing with the pipeline depth and the increase is
close to linear one. When the pipeline depth and par-
allel width are fixed, the bubble is increasing with the
sequence length. Figure 12 demonstrates that the bub-
ble ratio in different sequence length. We can conclude
that the array’s utilizing ratio is increasing with the
sequence length.

The simulator assumes adding and min operation
can be accomplished in 1 cycle clock, and VBI and WM
was synchronously computed. We chose two different
RNA sequences of different length, which are 880bps
and 2313bps. The executing time in different pipeline
depth and parallel width is demonstrated in Table 1
and 2 (the FPGA’s main frequency is 100MHz). The
results demonstrates for the same RNA sequence for a
fixed parallel width speedup increases with the pipeline
depth. Similarly, for a fixed pipeline depth the speedup
increases with the parallel width. From the simula-

Figure 11. Sequence length: 880bps.The bub-
ble distribution with pipeline depth and paral-
lel width

Figure 12. The bubble percent to sequence
length. The pipeline depth is 16 and parallel
width is 8

Table 1. Length=880bps the base of speedup
is the executing time (=2280ms) under
Xeon2.4GHz. Time: second. D: Pipleline
depth, P: Parallel width, T: Time, S: Speedup
D 8 16 32
P T S T S T S
1 154.2 14.8 82.7 27.6 59.35 38.41
2 83.2 27.4 47.2 48.3 27.7 82.3
4 47.7 47.8 29.4 77.6 19.3 118.1
8 30.0 76.0 20.6 110.7 15.1 151.07
16 16.1 141.7 13.0 175.4
32 12.0 190.0

Table 2. Length=2313bps, the base of
speedup is the executing time (=20376ms)
under xeon 2.4ghz. Time: second. D: Pi-
pleline depth, P: Parallel width, T: Time, S:
Speedup

D 8 16 32
P T S T S T S
1 2626.7 7.8 1325.5 15.4 617.58 32.97
2 1327.7 15.3 676.2 30.1 357.4 57.0
4 678.2 30.0 351.5 58.0 191.9 106.2
8 353.5 57.6 189.2 107.7 109.1 186.8
16 108.0 188.7 67.7 301.0
32 47.0 433.5

tion result we can conclude: under the same pipeline
depth, the executing time is decreasing with the in-
creasing parallel width; but the memory access data is
increasing and the bubble is increasing. Under the cer-
tain pipeline depth and parallel width, first, because
the width of data bus is 128bits and the data width is
20bits, when the parallel width is 8, the bus can be uti-
lized fully and decreased the delay of memory access.
Then, under the parallel width 8, the pipeline depth
can be 8, 16 and 32. From the executing time figure
we can conclude when the pipeline depth is 8 we can
get a better speedup. Although 32 can get a better
speedup than 16, it will consume more space in FPGA
and is difficult to realize. Balancing the whole perfor-
mance and the width of data bus in FPGA, we can
decide that the configuration in which pipeline depth
is 16 and parallel width is 8 is a better one. In that
configuration we can get a better speedup and the data
transfer demands are satisfied.

5. Conclusions

For the first time, we perform a comprehensive mem-
ory performance analysis for the main applications in
bioinformatics: sequence alignment. Based on their
different memory performance characteristics and com-
puting behaviors, we proposed specific algorithm op-
timization methods. Eliminating memory usage ac-
cumulation and hiding I/O cost by overlapping com-
putation with I/O, memory performance is improved,
furthermore, the running time is reduced. For rela-
tively CPU bound applications, we try exploiting in-
struction level parallelization and fine-grain paralleliza-
tion. Based on the emerging reconfigurable computing
technology, a fine-grain parallel RNA secondary struc-
ture prediction algorithm is mapped to FPGA arrays.

The performance analysis on the cycle-by-cycle sim-
ulator indicates that the parallel algorithm achieves
huge speedup. The instruction level parallelization
and fine-grain parallelization technology improves the
arithmetic efficiency for CPU-bound application. The
optimization methods in this paper are commonly used
in high performance computing, however, to find a suit-
able optimization method for a specific algorithm is
a difficult and complex work because of the lack of
the instruction of some basic framework. Through the
study of computational behavior of bioinformatics ap-
plication, especially the memory access behavior be-
cause of the memory wall which is argued in recent
research works, we demonstrate an approach to high
performance algorithm optimization.

The optimization techniques in our work are often
used in high performance computing (HPC) applica-
tions [23]. In fact, a current important trend of HPC
is to developing some efficient methods to improve the
utilization of computers. The research work in this pa-
per is our first step to develop high efficient programs
in bioinformatics. In our future work, we will focus on
abstracting some performance critical kernel programs
in bioinformatics and intend to develop a systematic
method to optimize these kernels to be adaptive to
different architecture. When the performance critical
kernels are standardized, it is easy to design a specific
hardware accelerator to implement the kernel library.

6. Acknowledgments

This work is supported by knowledge innovative
project of Chinese Academy of Sciences under the con-
tact no. KSCX2-SW-233, 863 Grid node of Hongkong
University under the contact no. 2002AA104530, Na-
tional Natural Science Foundation of China Project un-
der Grant 60503060.

References

[1] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, 1999.

[2] R. B. Lyngso, M. Zuker. Fast evaluation of internal
loops in RNA secondary structure prediction. Bioinfor-
matics. 1999, Vol. 15(6), pp. 440-445.

[3] N. Camp, H. Cofer, R. Gomperts. High-Throughput
BLAST. SGI White Paper, September 1998

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J.
Lipman. Basic local alignment search tool. Journal of
.Molecular Biology, 1990, Vol. 215, pp. 403-410

[5] F. Galison. The Fasta and Blast programs. 2000,
http://bioweb.pasteur.fr/seqanal/blast/

[6] M.S. Waterman, T.F. Smith. Rapid dynamic program-
ming methods for RNA secondary structure. Adv.
Appl. Math., 1987, Vol. 7, pp. 455-464

[7] J.D.Thompson, D.G.Higgins and T.J.Gibson
CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence
weighting, positions-specific gap penalties and weight
matrix choice. Nucleic Acids Research, 1994, Vol. 22,
pp. 4673-4680.

[8] W. Wulf S. McKee. Hitting the memory wall: Impli-
cations of the obvious. ACM Computer Architecture
News, 1995.

[9] M. B. Taylor. The Raw Microprocessor: A Computa-
tional Fabric for Software Circuits and General-Purpose
Programs. IEEE Micro, March-April 2002

[10] K.Mai. Smart Memories: A Modular Reconfigurable
Architecture. Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture, June
2000.

[11] B. Kiran and K. P. Viktor. Reconfigurable computing:
Architecture, models and algorithms. Current Science,
Vol. 78, No. 7, 10 April 2000.

[12] D.A. Bader, V. Sachdeva, V. Agarwal, G. Goel, A.N.
Singh. BioPerf: A Benchmark Suite to Evaluate High-
Performance Computer Architecture on Bioinformatics
Applications. IEEE International Symposium on Work-
load Characterization, October 2005.

[13] K. Albayraktaroglu, A. Jaleel, X. Wu, B. Jacob, M.
Franklin, C.-W. Tseng, and D. Yeung. BioBench: A
Benchmark Suite of Bioinformatics Applications. IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS’05), Austin, TX, March
2005.

[14] Y. Li, T. Li, T. Kahveci, J. A. B. Fortes. Workload
Characterization of Bioinformatics Applications. IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Sys-
tems, 2005.

[15] http://oprofile.sourceforge.net
[16] http://icl.cs.utk.edu/papi/
[17] http://www.ncic.ac.cn/ hpcog/
[18] http://www.dgate.org/vmips/
[19] http://www.phrap.org/phredphrapconsed.html
[20] http://www.tbi.univie.ac.at/ ivo/RNA/
[21] Z. Zhang, S. Schwartz, L. Wagner, W. Miller. A greedy

algorithm for aligning DNA sequence. Jounal of Com-
putational Biology,2000,Vol. 7(12 1/2), pp.203-214

[22] www.ncbi.nlm.nih.gov
[23] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A.

Petitet, R. Vuduc, C. Whaley and K. Yelick. Self adapt-
ing linear algebra algorithms and software. In Proceed-
ing of the IEEE, vol. 93, no. 2, pp. 293-312, special issue
on Program Generation, Optimization and Adaptation,
2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

