
Application Re-Strusturing and Data Management on a GRID
Enviroment: a Case Study for Bioinformatics

Giovanni Ciriello1, Matteo Comin1, Concettina Guerra1,2

1University of Padova 2Georgia Institute of Technology
Dept. of Information Engineering College of Computing
Via Gradenigo, 6/B 35131 Padova Atlanta, GA 30332-0280 USA

{ciriello, ciompin, guerra}@dei.unipd.it guerra@cc.gatech.edu

Abstract

This paper describes a distributed implementation of
PROuST, a method for protein structure comparison,
that involves a major restructuring of the application
for an efficient grid immersion. PROuST consists of
several components that perform different tasks at dif-
ferent stages. Given a target protein, an index-based
search retrieves from a database a list of proteins that
are good candidates for similarity, then a dynamic pro-
gramming algorithm aligns the target protein with each
candidate protein. The same geometric properties of
secondary structure elements of proteins are used by
different components of PROuST. Thus, an important
issue of the distributed implementation is data transfer
vs. data recomputation tradeoffs. Our implementation
avoids recomputation by re-using the hash table data
as much as possible, once they are accessed. The algo-
rithmic changes to the application allow to reduce the
number of data accesses to storage elements and con-
sequently the execution time. In addition this paper
discusses data replication strategies on a grid environ-
ment to optimize the data transfer time.

1. Introduction

Comparing protein structures is important for pro-
tein classification and for understanding the protein
functions. We have developed a method PROuST [3]
that allows efficient retrieval of similarity information
from a database containing all protein structures of
the Protein Data Bank PDB [1]. This paper presents a
distributed implementation of PROuST that involves

a major restructuring of the application for an efficient
grid immersion. PROuST consists of two main compo-
nents: the first component generates hypotheses of sim-
ilarity for a target protein in an efficient way using an
index-based search, while the second component veri-
fies these hypotheses by performing pairwise compar-
isons and alignments by dynamic programming (DP).
The index-based search uses an indexing technique that
involves geometric properties of the secondary struc-
ture elements (SSE) of the proteins, i.e. α-helices and
β-strands. It computes for all triplets of SSE the an-
gles formed by the three pairs of linear segments asso-
ciated to the SSE and uses them as indexes to a three-
dimensional (3D) hash table. The hash table, built in
a preprocessing step, stores all triplets of all proteins of
the PDB. Once built, it allows to retrieve a list of pro-
teins that are good candidates for similarity with the
target protein, without the need to examine separately
every single protein of the PDB. A pairwise structure
comparison is then performed to align the target pro-
tein with each protein of the candidate list. By com-
bining these two approaches, PROuST achieves good
results in terms of robustness and agreement with ex-
isting classifications of protein structures. In addition
its time performance compares well with that of other
existing approaches. However, the amount of computa-
tion and data involved is quite high, given the current
size of the PDB of more than 33,000 structures. For an
exhaustive analysis of classification accuracy and time
performance we refer the reader to [3].

Previous work [4] has included a distributed imple-
mentation of the index-based search. The new distrib-
uted implementation integrates the index-based search
and the dynamic programming algorithm, and it re-

1-4244-0054-6/06/$20.00 ©2006 IEEE

quires some major changes to the algorithms and data
structures resulting in a more efficient solution. It ex-
ploits the fact that the same geometric properties of
secondary structure elements of proteins, angles and
distances, are used by the two main components of
PROuST. Obviously, an important issue of the distrib-
uted implementation is data transfer vs. data recom-
putation tradeoffs. The new solution avoids recom-
putation by re-using the hash table data as much as
possible, once they are accessed.

The emerging grid technology [5] is becoming an un-
avoidable aspect for the solution of compute intensive
problems. The computational grid enables the use of
a large number of different machines acting as a single
one, by sharing both storage capacity and computing
power. The importance of sharing data and resources
in a secure manner is proved by the increasing inter-
est of scientist towards this technology, especially in
the biomedical community, that includes bioinformat-
ics and medical area [9]. The Grid.it project [2], within
which this work has been done, is aimed at developing a
middleware layer enabling science in areas such as High
Energy Physics, Earth Observation and Biomedicine.
Biomedical applications have very challenging require-
ments in terms of computational power and amount
of data. This paper focuses on a structural bioinfor-
matics application on a grid and deals with the issues
of data management and algorithmic enhancement for
an efficient porting of the application onto the grid.
In addition, it discusses data replication strategies to
optimize the data transfer time. Replica management
is a crucial aspect of a gridifying strategy [7, 8], be-
cause the availability of data in Storage Elements (SE)
close to the Computing Element (CE) where the job
requesting the data runs enables latency reduction and
efficient access.

The paper is organized as follows. In the next sec-
tion we review the method PROuST. In section 3 we
describe a restructuring of the application that reduces
the number of data accesses and avoids recomputation.
In section 4 the immersion of the application in a grid is
discussed. The time performance is analyzed in section
5. This work ends with conclusions in section 6.

2. PROuST: an all-to-all protein struc-
ture comparison method

PROuST [3] combines different techniques that al-
low fast retrieval of similarity information from a data-
base containing all the protein structures of the PDB.
Proteins from the PDB are represented by linear seg-
ments associated to their SSE, i.e. α-helices and β-
strands. In our internal representation, the proteins

from PDB are encoded by a set of files, each consisting
of the list of the SSE segments of a protein. Starting
from these files, all triplets of SSE are computed, and
the angles formed by the three pairs of segments of a
triplet are used as indexes to a 3D hash table, where
the triplets are stored. Once the hash table is built, an
entry or cell contains the triplets of all proteins charac-
terized by similar dihedral angles. The hash tables are
accessed to retrieve very efficiently the proteins most
similar to a given target protein. This is done as fol-
lows. For each triplet of segments of the target protein,
its three angles are used to access the corresponding
entry of the hash table; for each triplet belonging to
the indexed cell and equivalent to the target protein
(see below), a counter is incremented for the protein
containing it. As a result, a list of candidate proteins
ranked according to the values of these counters is gen-
erated.

The second component of PROuST is a pairwise pro-
tein structure comparison which aligns the target pro-
tein with each candidate protein of the list. It uses as
input the internal representation of the proteins, and
returns a similarity score according to which the candi-
date proteins are re-ranked into the final similarity list.
The alignment is obtained by DP. If P is the target and
Q a candidate protein, with SSE segments p1, · · · , pn

and q1, · · · , qm, respectively, DP finds the associations
(pi, qj) that maximize a given similarity score and also
satisfy the continuity constraints, i.e. if (pi, qj) and
(ph, qk) are two pairs of associated SSE and i < h then
j < k. The DP determines the optimal non-decreasing
path in a 2D score matrix M . The main characteristic
of our algorithm, that distinguishes it from other DP
algorithms applied to SSE alignment, is that the score
matrix is built from geometric properties of triplets
of secondary structures, the same properties used by
the indexing procedure. The score of the pair (pi, qj),
stored at M(i, j), is given by the number of times the
pair (pi, qj) occurs in any two equivalent triplets of
SSE segments of P and Q. Two triplets (pu, pv, pz)
and (qr, qs, qt) are equivalent if they have similar an-
gle and distance values. Two equivalent triplets deter-
mine three candidate pairs of corresponding segments:
(pu, qr), (pv, qs), and (pz, qt), that contribute to the
entries M(u, r), M(v, s), M(z, t) of score matrix M ,
whose values are incremented by one. As we will see
in the next section, the construction of the score ma-
trix M is the step most affected by the restructuring
of PROuST.

All components of PROuST are shown in the work-
flow of Figure 1. The last component determines a
superposition at the atomic level of the target protein
with any protein selected from the similarity list.

Figure 1. PROuST workflow: the tasks for structural comparison of proteins.

2.1. A distributed implementation

The construction of the hash tables is compute in-
tensive, due to the large number of proteins in the
PDB inserted in the hash table (currently, more than
33,000), with a storage requirement for the hash table
of more than 5 Gbytes. A distributed implementation
of the hash table construction is based on a partition
of the hash table into subtables, each containing a sub-
set of the proteins of the PDB. The implementation
achieves a good load balance and minimizes the number
of accesses to secondary storage; a detailed description
of this step can be found in [6].

The index-based search for similarity for a target
protein follows a master/slave paradigm. The search
is carried out independently by all slaves each operat-
ing on a different subtable. Each slave generates a list
of candidate proteins. The master collects from the
slaves all such lists and then merges them to obtain
the overall ranking. The final candidate list produced
by the index-based search varies in length, but, typ-
ically, for a protein with an average number of SSE
(i.e. 12-13 SSE) consists of more than 5000 proteins.
The next DP component is performed on either the
entire list of candidates or a reduced list of top-ranked
candidates. The DP uses as input the internal vector-
ial representation of the proteins to generate the score
matrices, based on which the similarity score is deter-
mined. Even though the DP computation for a pair
of proteins is quite fast, and the list of proteins has
been reduced from 33,000 thousands proteins of the
PDB to a few thousands candidates, the amount of
time required by all DP alignments may still be quite
high. Obviously, all DP computations can be done in
parallel on all candidates. An important issue arises

however in the distributed implementation of DP, that
is whether to exploit and reuse the information that
has been already computed and stored in the hash ta-
ble or recompute it from the internal representation of
proteins. This issue will be discussed in detail in the
next section.

We remark here that often only a set of represen-
tative proteins is selected from the PDB for structure
comparison, in such cases obviously the time require-
ments go down considerably. We choose to search the
entire PDB because we want to discover non-trivial
similarities, not only related to the standard family
classification.

3. Re-structuring PROuST

In the previous section we described PROuST and
its main components:

1. hash table construction

2. index-based similarity search

3. pairwise structural alignment

4. atomic superimposition.

Here we describe a major restructuring of our ap-
plication for an efficient grid immersion. As already
mentioned, the same geometric properties of SSE, an-
gles and distances, are used by different components of
PROuST. Thus, we need to address the issue of data
transfer vs. data recomputation tradeoffs. In our ini-
tial implementation, angles and distances of all triplets
of SSE were recomputed by the structural alignment
procedure for each pair of target and candidate pro-
teins, even though they were available in the hash ta-
bles. It should be noted that the recomputation of

the geometric properties for all candidate proteins also
requires access to many small files each containing the
vectorial representation (list of SSE segments) of a pro-
tein. In a local scenario, recomputation turned out to
be more cost-effective, due to the large size of the hash
table and large number of elements in each table cell.
With more than 30,000 proteins, the number of triplets
in the hash table is above 40,000,000. Consequently,
the access time for the table is relatively large. Moving
from a local to a distributed system data transfers be-
came a crucial aspect. We propose a new solution that
avoids recomputation by re-using the hash table data
as much as possible, once they are accessed. It com-
bines indexing and structural alignment: the index-
based search in addition to generate a candidate list of
proteins also builds the score matrices to be used later
by the pairwise structural comparisons.

The following is a sketch of the unified procedure
that, given the target protein P , returns the list C of
candidate proteins and the list L of score matrices. We
denote by MQ the score matrix for the pair of proteins
P and Q. MQ is created only if protein Q has at least
one triplet of SSE equivalent to a triplet of P .

UNIFIED PROCEDURE
Step 1.
Initialize the list L and C to empty.
Step 2.
Consider all triplets of SSE of P and for each such
triplet (pu, pv, pz), with u < v < z, do the following:

i. Compute the angles αuv, αvz, αuz and the dis-
tances duv, dvz, duz of the three pairs of segments.
Access the hash table at the cell indexed by the
three quantized angles.

ii. If the cell is not empty, scan all triplets of SSE
stored in the cell.

Let (qr, qs, qt) be one such triplet, r < s < t, with
distances hrs, hst, hrt, and Q the protein contain-
ing qr, qs, and qt.

if the distances of the two triplets are within a
given threshold TD , i.e.
|duv−hrs| < TD, |dvz−hst| < TD and |duz−
hrt| < TD then

ii.a Index-based Search
Cast a vote to protein Q and insert it
into list C if not present.

ii.b Score matrix building
If L does not contain an entry for pro-
tein Q, create a new score matrix MQ,
initialized to 0, and insert it into L.
Update MQ as follows:

{MQ(u, r) = MQ(u, r) + 1; MQ(v, s) =
MQ(v, s) + 1; MQ(z, t) = MQ(z, t) + 1;}

End.

The details of the voting process are omitted here
(see [6]). The above procedure builds all score matrices
at the same time; with a protein of average size, this
may imply the creation and update of more than 5000
data structures. To guarantee reasonable storage re-
quirements, we use an ad-hoc dynamic data structure
for storing a matrix, called Dynamic Matrix (DyM). A
score matrix is represented as a linked list of column
vectors each of length n (n being the number of SSE
of P). A vector is associated to an SSE q of the candi-
date protein Q and its ith element is the score of q with
the ith SSE of P . A column vector is inserted into the
column vector list only if there is at least a triplet of
SSE containing q that is equivalent to one triplet of P .
The order of the columns in the linked list representa-
tion of the matrix follows the sequential order of the
SSE along the backbone chain. This is a requirement
of the DP algorithm. The DP algorithm, in its initial
version, needed some additional information computed
from the internal vectorial representation of the pro-
teins. In the new version this information is no longer
needed because the angles and distances of segments
are not recomputed during the DP step, but are ob-
tained from the hash table. This results in a further
computational advantage.

The modified PROuST can be summarized as fol-
lows:

1. Pre-processing phase:

• Hash-table construction and updates.

2. Index-based structural alignment:

• Search for similarities of the target protein
with all proteins stored in the hash tables and
build the score matrices.

• Use the DP algorithm to obtain the optimal
path in each score matrix and the correspond-
ing optimal structural alignment.

3. Atomic pairwise protein superimposition:

• Using Horn’s algorithm, on user’s demand.

As before, the pre-processing phase is executed off-
line, locally on a cluster of machines. Each machine
of the cluster creates a sub-table of the hash table,
containing a subset of the PDB proteins. The input
proteins are inserted into the sub-tables by a greedy
procedure that randomly partitions the proteins into

groups of fixed size k, with k larger than the number
of sub-tables, and assigns each group to the first avail-
able computer of the cluster for insertion into its asso-
ciated sub-table. Our experimental results show that
this simple procedure generates sub-tables of approxi-
matly the same size; furthermore it distributes the set
of all proteins almost uniformly across the sub-tables.
The pre-processing phase is also triggered by updates
in PDB, or by timeout expiration (each month), or by
user intervention. The last phase 3 is executed locally,
on-line, and takes in input a pair of proteins, on user’s
demand. Only the index-based structural alignment
is executed on-line on the nodes of a computational
grid. In the distributed master-slave implementation
each slave performs index based structural alignement
of the target protein with proteins stored into its asso-
ciated hash sub-table.

4. Gridifying PROuST

In the previous section, we have shown how to re-
structure our application, envisaging its use on a com-
putational grid. Here we explain how to exploit the
grid capabilities to optimize the execution time and
data storage. We discuss data replication strategies
proposed and adopted in porting our application on a
grid [7, 10].

4.1 Data distribution and replica

Replica optimization is a crucial aspect of a gridify-
ing strategy, because the availability of data in Storage
Elements (SE) close to the Computing Element (CE)
where the job requesting the data runs enables latency
reduction and efficient access. Replica management in
the European DataGrid and Grid.it is handled by inde-
pendent services interacting via the Replica Manager
(RM) [7]. In a grid, a file is first registered with an
identifier, the Grid Unique ID (GUID), then it is repli-
cated and distributed. The main advantage of using
replicas is that one can refer to a file simply using its
GUID, then the RM through its Replica Catalog (RC),
links the GUID to all the replicas of the file. Referring
to all replica files using a unique GUID allows to ig-
nore how many replicas are in the grid and where they
are. The Replica Optimization Service (ROS) selects
the best available replica of the data files a job needs.
Using these services we experimented with two main
policies for replica management, that we called on-line
replica and off-line replica.

On-line replica means that every time a job is exe-
cuted on a CE, the Replica Manager creates a replica
of all data files the job needs in the SE placed at the

same site, if they are not already available there. This
strategy implies that the user has high control over the
storage resources. In fact, replicating data files on-line
is possible only with a permission to insert new files in
an SE of the Virtual Organization (VO) and to delete
local replica of other files if no sufficient space is avail-
able. This permission is not always granted because,
typically, a single storage resource is shared by many
users and even by many VOs. Moreover this strategy is
beneficial only when the time spent accessing data from
a remote site is greater than the overall time needed to
replicate data files at the local site and access them
locally.

The off-line replica policy refers to the case when
all possible replica operations are made once and for
all in a pre-processing phase, before the user submits
any job and the scheduler assigns jobs to the CEs. In
this scenario, data are always accessed from the SE se-
lected by the ROS taking into account the geographical
distribution of the resources and the network latency.
This latter strategy seemed to be more suitable to our
application on a real grid. The different steps of an
application running on a grid environment are summa-
rized in Figure 2.

4.2 PROuST on Grid.it

Our distributed implementation was developed for
the Italian Grid.it, more specifically for the INFNGrid
that is also part of the project Grid.it [2]. The INFN-
Grid counts more than 20 sites among Italian institu-
tions. Its main applications were originally in physics,
however it has become also open to other fields such as
bioinformatics and biomedicine.

Due to the large number of users and VOs involved
in this grid project, we adopted an off-line replica pol-
icy as described in the previous section, by replicating
our dataset in all available SEs of the INFNGrid (see
Figure 3). We used the Globus default scheduling strat-
egy even if in the future we plan to explore other possi-
bilities. Also we decided to manage the Globus Toolkit
and the Replica Manager services using the standard
Command Line Interface.

We experimented with different partitions of the
hash table into subtables with the aim of minimiz-
ing the time spent for data transfers and reducing the
overall execution time by increasing the degree of par-
allelism. Initially, the hash-table was partitioned into
three subtables, each of more than 1.5GB. The time
spent in downloading the subtables was critical. Di-
viding the hash-table into a larger number of subtables
reduces their dimension from 1,5GB to about 500MB
for 9 subtables, and to about 150MB for 30 subtables.

Figure 2. Application execution steps in a grid environment.

Time analysis for data transfers and application’s exe-
cution times is shown in the next section.

5. Time analysis

Before running the application on a grid, we con-
ducted experiments to evaluate the effect on time per-
formance of the algorithmic changes to PROuST dis-
cussed in section 3 when it is executed on a single com-
puting element, a standard PC. In the following, ver-
sionB and versionA are the two versions of the algo-
rithm, before and after the re-organization of its com-
ponents, respectively. Execution times are determined
for three partitions of the hash table, into 3, 9 and
30 subtables. The execution time breakdown for ver-
sionB are reported in Table 1: t1 refers to the average
time to obtain from an hash subtable the list of can-
didate proteins. This time, for a given partition of the
hash table, is averaged over all subtables. It has to
be noted, however, that there is little variance across
the subtables. t2 is the total execution times of all DP
computations to align the target protein with the can-
didate proteins extracted from a subtable; this time is
averaged over all subtables of the hash table partition.
Recall that, in versionB, the DP algorithm builds the
score matrix and re-computes the angles and distances
of all triplets of secondary structures of the target and
of the candidate protein. The execution times in Ta-
ble 1 were obtained with the input protein 1a2z (chain
C), a peptidase protein, that contains 14 SSE. Only 12
SSE were included in our analysis since SSE with less
than 3 residues were discarded.

Table 2 shows the execution times of the re-
organized components when executed with the same
target protein 1a2z as input. In versionA, the hash

time (sec.) 3 sbts 9 sbts 30 sbts
t1: index-based search 19 5 1
t2: DP + score 1016 370 136
matrices building

Table 1. VersionB (before re-organization).
Execution time breakdown for protein 1a2z
chain C on a single CE.

time (sec.) 3 sbts 9 sbts 30 sbts
t3: index-based search + 980 84 19
score matrices building
t4: DP 2 < 0.5 < 0.5

Table 2. VersionA (after re-organization). Exe-
cution time breakdown for protein 1a2z chain
C on a single CE.

table search includes the building of the score matri-
ces (t3), thus the DP (t4) does not have to re-compute
the geometric properties of SSE. As can be seen from
these results, versionA is consistently better than ver-
sionB and the gain in performance increases with the
number of subtables. Furthermore, results on proteins
of different sizes, i.e. different number of SSE, show
that this improvement is more relevant for proteins of
average/small sizes. For very large proteins, relatively
infrequent in the database PDB, some improvement
can still be observed but it is negligible.

These experiments, repeated over a large set of pro-
teins, led us to the conclusion that the algorithmic
changes introduced in this paper result in an enhance-
ment even when the application was executed an a sin-

Figure 3. Data Replication.

gle CE. Thus we can only expect a further improvement
when porting the application on a grid. Based on these
premises, we proceeded to the implementation of the
new version of PROuST on Grid.it.

The time analysis is divided in two parts: the analy-
sis of the time spent to download the subtables and of
the overall execution time. We have to make some
preliminary remarks: the analysis of the time needed
to download the data and perform the computation
involves many variables that are hardly predictable.
Among them, the most crucial is the network traffic
that can slow down the speed of downloads signifi-
cantly. Also important is the load of the grid’s nodes
that can severely affect the time performance. In a real
grid environment, we observed variations of the execu-
tion times for different runs of the same task even by
one order of magnitude. To overcome these problems,
we run the application several times under different
conditions of network traffic and performance of the
nodes. The times reported in the following are the
mean values over all these runs. Our tests were made
during a period of about two months, from August to
October 2005, to ensure a good variability in terms of
grid conditions. We determined the time to download
an hash subtable for the three different partitions of
the original table into 3, 9, and 30 subtables. For each
partition we consider two data distributions:

1. a single SE stores all subtables,

2. all subtables are replicated in the grid SEs;

Table 3 summarizes the results. As expected, the in-
creased granularity in table’s subdivision and the data
replica throughout the storage elements positively af-
fect the data transfer time. We show below the execu-
tion times of PROuST for sixteen input proteins, with

time (sec.) 3 sbts 9 sbts 30 sbts
Single SE 748 279 90
Many SEs 492 160 49

Table 3. Data Transfer Time.

sizes ranging from 5 to 99 secondary structures. These
times are for the overall computation: the index-based
search and all DP computations to align the target pro-
tein with all candidate proteins. The overall execution
time benefits by the increased number of subtables, up
to 30 subtables, from which point on we could observe
a degradation in time performance. Execution times
for each protein chain are summarized in Table 4 and
Figure 4. In Figure 4 times are presented in log scale.
From this figure we observed that by increasing the
number of subtables and therefore the parallelism de-
gree we obtain a constant ratio of the execution times.
In fact if let T1 and T2 be the execution times obtained
for the same protein chain with different hash table
partitions, with T2 > T1, we have:

log T2 − log T1 = log
T2

T1
= c ⇒ T2

T1
= K

with both c and K constant values.
The software package consists of a C program for

comparing an input protein against all proteins of the
PDB, and of a pool of BASH scripts to manage jobs de-
scription, submission and status control over the grid.

6 Conclusions

We have presented a distributed implementation on
Grid.it of a software tool for protein structure compari-
son. A major restructuring of the application has been

Protein #SSs 3 sbts 9 sbts 30 sbts
4hck . 5 17 (s) 4 (s) 1 (s)
110m . 8 263 32 7
111m . 8 228 31 8
112m . 8 221 31 8
1etc . 8 199 21 4
1fgz A 8 180 20 4
2gva A 9 206 26 6
2gva B 9 228 26 5
1a2z A 12 1098 99 17
1a2z B 12 1046 99 18
1a2z C 12 980 88 16
1a2z D 12 1009 90 16
9xia . 20 4238 476 87
8icm A 22 4874 561 102
1ea0 A 95 N/A 4986 676
1ea0 B 99 N/A 5279 707

Table 4. PROuST Execution Times.

Figure 4. PROuST Execution Time.

developed for an efficient porting on a computational
grid. Without restructuring the DP phase of the appli-
cation makes many small requests of data that involve
frequent and costly accesses to SE. The re-organized
version of the software uses the data available from
the hash tables for more than one operation once they
are accessed; i.e. for the determination of the list of
candidate proteins and also for the computation of the
score matrices used by DP. Furthermore, by re-using
the hash table data we avoid the access to the many
small files containing the protein vectorial representa-
tions that would be needed by DP if the geometric
properties were to be recomputed. We have also exper-
imented with different ways of exploiting data replica
on the grid, and with different partitions of the hash
table into sub-tables. The algorithmic changes and the
gridification strategies employed allow for a significant
reduction in communication time and overall execution

time.

References

[1] The Protein Data Bank, Research Collaboratory for
Structural Bioinformatics (RCSB).
www.rcsb.org/pdb

[2] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto,
D. Laforenza, D. Puppin, L. Scarponi, M. Vanneschi
and C. Zoccolo, Components for high performance
programming in the Grid.it project. Proc. of Intl.
Workshop on Component Models and Systems for Grid
Applications, ACM ICS, 2004.

[3] M. Comin, C. Guerra, G. Zanotti, PROuST: a Com-
parison Method of Three-Dimensional Structure of
Proteins using Indexing Techniques. Journal of Com-
putational Biology, Vol. 11, No. 6, pp 1061-1072, 2004.

[4] M. Comin, C. Ferrari, C. Guerra, Grid deployment of
bioinformatics applications: a case study in protein
similarity determination. Parallel Processing Letters,
Vol. 14, No. 2, pp 163-176, 2004.

[5] I. Foster and C. Kesselman, The Grid: Blueprint for a
Future Computing Infrastructure. Morgan Kaufmann
Publishers, 1999.

[6] C. Ferrari, C. Guerra, G. Zanotti A grid-aware ap-
proach to protein structure comparison. J. of Parallel
and Distributed Computing, Vol. 63, No. 7-8, pp 728-
737, 2003.

[7] D. Cameron, J. Casey, L. Guy, P. Kunszt, S. Lema-
tre, G. McCance, H. Stockinger, K. Stockinger, G.
Andronico, W. Bell, I. Ben-Akiva, D. Bosio, R. Chy-
tracek, A. Domenici, F. Donno, W. Hoschek, E. Laure,
L. Lucio, P. Millar, L. Salconi, B. Segal and M. Silan-
der, Replica Management in the European DataGrid
Project. Journal of Grid Computing, Vol. 2, No. 4, pp
341-351, 2004.

[8] J.G. Jensen, T. Shah, O. Synge, J. Gordon, G. John-
son and R. Tam, Enabling Grid Access to Mass Stor-
age: Architecture and Design of the EDG Storage El-
ements. Journal of Grid Computing, Vol. 3, No. 1-2,
pp 101-112, 2005.

[9] J. Montagnat, F. Bellet, H. Benoit-Cattin, V. Breton,
L.Brunie, H. Duque, Y. Legré, I.E. Magnin, L. Maigne,
S.Miguet, J.M. Pierson, L. Seitz and T. Tweed, Med-
ical Image Simulation, Storage, and Processing on the
European DataGrid Testbed. Journal of Grid Com-
puting, Vol. 2, No. 4, pp 387-400, 2004.

[10] D. G. Cameron, A. Fr. Millar, C. Nicholson, R.
Carvajal-Schiaffino, K. Stockinger and F. Zini, Analy-
sis of Scheduling and Replica Optimization Strategies
for Data Grids Using OptorSim. Journal of Grid Com-
puting, Vol. 2, No. 1, pp 57-69, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

