
Parallel Multiple Sequence Alignment with Local Phylogeny Search
by Simulated Annealing∗

Jaroslaw Zola1, Denis Trystram1, Andrei Tchernykh2, Carlos Brizuela2

1Laboratoire ID–IMAG 2Computer Science Department
51 av. J. Kuntzmann CICESE Res. Center

38330 Montbonnot, France Ensenada, BC, 22860, Mexico
{zola,trystram}@imag.fr {chernykh,cbrizuel}@cicese.mx

Abstract

The problem of multiple sequence alignment is one of
the most important problems in computational biology.
In this paper we present a new method that simultane-
ously performs multiple sequence alignment and phy-
logenetic tree inference for large input data sets. We
describe a parallel implementation of our method that
utilises simulated annealing metaheuristic to find lo-
cally optimal phylogenetic trees in reasonable time. To
validate the method, we perform a set of experiments
with synthetic as well as real–life data.

1 Introduction

Multiple sequence alignment (MSA) is undoubtedly
the most commonly performed task in the computa-
tional biology. It is an essential prerequisite of many
other complex problems like, for example, database
search or phylogenetic analysis [1, 12]. Unfortunately,
finding an accurate multiple alignment is a hard op-
timisation problem. Firstly, because it is difficult to
provide a formalisation which would be satisfactory
from the biological viewpoint. Secondly, having a good
model usually means it is algorithmically very hard to
find the best (or optimal) alignment. Indeed, the Gen-
eralized Tree Alignment Problem (GTA), which seems
to be the most accurate formalisation of MSA, has been
shown to be Max–SNP–Hard [13].

Multiple sequence alignment and phylogenetic tree
reconstruction are typically considered separately,
however, both these problems are directly linked. For
instance, most of the character based approaches to the

∗This work has been supported by the LAFMI project
(http://lafmi.imag.fr).

phylogeny reconstruction (e.g. minimum parsimony or
maximum likelihood methods) require MSA as an in-
put data. Moreover, the quality of the trees recon-
structed by these methods depends on the quality of
the input alignment [11]. On the other hand, looking
for similarities among sequences we should be aware
of the fact, that they are a result of some complex
evolutionary process. Thus, in the optimal case, we
should know their relationship which is described by
some phylogenetic tree.

In our previous contributions [19, 26] we have re-
ported a new heuristic to solve GTA problem in paral-
lel. In this paper, we extend this approach by adding a
simulated annealing (SA) metaheuristic to find optimal
partial phylogenetic trees during a phylogenetic analy-
sis step of our method. The results we report show that
application of SA allows running time of our software
to be decreased by several orders of magnitude while
preserving a good quality of final solutions.

The remainder of this paper is organised as follows:
In Section 2 we provide a brief overview of the Par-
allel PhylTree method. Section 3 contains description
of our strategy to infer local phylogenetic tree by SA.
In Section 4 we show some experimental results with
actual biological data. Finally, possible extensions of
this work are discussed in Section 5.

2 Parallel multiple sequence alignment

2.1 The PhylTree method

The PhylTree method is a generic, parallel multiple
sequence alignment procedure which has been proposed
recently [19, 26]. As it has been presented in detail
in our previous papers, we provide here only its basic
concepts with no technical details.

1-4244-0054-6/06/$20.00 ©2006 IEEE

The PhylTree method was designed to build a multi-
ple alignment and the corresponding phylogenetic tree
simultaneously. It can be characterised as an iterative
clustering method whose principle is to group closely
related sequences [10]. It consists of two successive
phases: first it generates a distance matrix for all in-
put sequences (based on the all–to–all pairwise align-
ments). Then, it searches for the optimal partial so-
lutions which are later combined to obtain the final
phylogenetic tree and multiple alignment.

The method uses two principles: neighbourhood and
cluster. A neighbourhood is a set of k closely related
taxa, where k is an input parameter of the PhylTree
procedure and is a constant integer value (typically,
k ≥ 4, not larger than 10). A cluster is a group of
m ≤ k taxa which creates a part of the final phylogeny.

To determine the clusters the PhylTree algorithm
generates a neighbourhood for every input sequence,
then it finds the best phylogenetic tree for each neigh-
bourhood, and finally, it analyses all the found trees
to extract their common subtrees. These subtrees de-
scribe a set of highly related taxa and correspond to
clusters. The above process is iterative.

The accuracy of the method depends mostly on the
parameter k. Increasing k will widen the search space
analysed to find the clusters. Unfortunately, while this
improves the accuracy of the final solution, it also in-
creases the number of computations required to process
a single neighbourhood. Basically, to process a neigh-
bourhood we have to compute all possible (2k−2)!

2k−1(k−1)!

trees to find the optimal one.
An important property of PhylTree is its general-

ity, which means that the method can use different
alignment algorithms and different scoring functions.
Moreover, it is possible to use various definitions of a
neighbourhood and neighbourhoods of variable size (a
variant called QuickTree has been proposed as a way of
rapid solving large instances with decreased accuracy).

2.2 Parallelisation scheme

Due to high time complexity of the PhylTree method
we have implemented its parallel version based on the
decentralised cache of alignments [26].

The Parallel PhylTree method takes advantage of
the inherent parallelism of the original algorithm, and
it utilises master–worker architecture combined with
the cache system working in the peer–to–peer manner.

The Parallel PhylTree method proceeds as follows
(see Figure 1): First, the master processor reads the
input sequences and broadcasts them to all workers.
Next, each worker receives a part of the distance ma-
trix to compute. At this stage, we use the guided self–

neighbourhoods
create

assembly
distance

matrix

clusters
find

find
optimal
tree

compute
pairwise
alignment

distance
matrix

update

Master Worker

sequences

distances

tree topologies

optimal trees

new taxa

1st phase

2nd phase

repeat

Figure 1. General scheme of the Parallel Phyl-
Tree method.

scheduling strategy [20]. Such approach allows the load
imbalance imposed by the heterogeneous environment
to be minimised. Please note that heterogeneity may
be the result of high diversity in the length of input
sequences, and not only differences in the hardware ar-
chitectures. Processing the distance matrix, a worker
analyses its efficiency by measuring the number of base
pairs aligned per second. Thanks to this analysis, the
master node can rank all the workers accordingly to
their efficiency. In the second phase, only the process-
ing of the neighbourhoods is parallelised. That is: at
each iteration, the master determines the neighbour-
hood sets, and then it starts to generate all possible
tree topologies for each neighbourhood. Each worker
receives its part of the generated topologies and looks
for one with the highest alignment score. At this point
we assume that for each neighbourhood an optimal par-
tial solution must be generated. To achieve this objec-
tive, worker has to compute MSA for every single topol-
ogy. Because the number of created tree topologies for
all neighbourhoods is usually much greater than the
number of workers, again dynamic scheduling is used.
However, at this stage, the host priorities computed in
the first phase are utilised. Half of the total number of
topologies is distributed proportionally to the workers’
priorities. Then, the other part is distributed using the
guided self–scheduling. When a worker completes its
part of the computations it sends back the resulting
best tree topology and the corresponding alignment
to the master. To complete an iteration, the master
computes the clusters and updates the distance matrix
accordingly.

Since neighbourhoods of sequences may overlap, and
pairwise alignments computed in the first phase of

the method are reused in the second phase, the Phyl-
Tree method exhibits high redundancy of computa-
tions. Therefore, in the parallel version we provide de-
centralised cache of alignments [26]. Our cache stores
all intermediate results of alignment, and is organised
into content addressable network [21]. Thanks to this
a significant speedup can be achieved even in a single
run of the Parallel PhylTree.

2.3 Related work

Both multiple sequence alignment and phylogeny
are of great importance to biologists, but at the same
time these problems are very computationally demand-
ing. That is why parallel and distributed programming
is often used to improve the efficiency of existing bioin-
formatics applications.

In the last few years several popular MSA packages
have been parallelised, for example DiAlign [23] or Pra-
line [15]. Yet, most of the attention was focused on
the ClustalW tool. There are numerous parallel ver-
sions of ClustalW, e.g. [5, 16, 17], designed for both
shared and distributed memory architectures. How-
ever, in most cases, the parallel approach is limited
to the main ClustalW algorithm. For instance, in the
ClustalW-MPI [16] Li utilises fixed–size chunk schedul-
ing to distribute tasks in the first stage. Next, only
the third stage is parallelised, but the efficiency of this
part depends on the balance of the guide tree. The
reported average speedup for this part was around 4.5
for 16 CPUs. However, the overall speedup was almost
linear (15.8 for 16 CPUs).

The ClustalW package performs progressive align-
ment, and it utilises distance based strategy (usually
neighbour–joining) to reconstruct alignment guide tree.
The quality of the reconstructed tree is usually very
poor, and in the terms of protein alignment ClustalW
is outperformed by many other packages, e.g. MUS-
CLE [6]. On the other hand, ClustalW achieves very
good results in the case of RNA alignments [7], thus it
still remains very useful.

3 Local phylogeny inference

As we already indicated, during the second phase
of computations the PhylTree tries to find the optimal
phylogenetic trees for a set of previously determined
neighbourhoods. This step is the most time consum-
ing part of the method: To evaluate a single tree an
accompanying multiple sequence alignment must be
computed. Here we assume that any alignment scoring
function suitable for a given type of input data can be
applied. For example, in our current implementation

we provide scoring functions based on the parsimony
criterion with linear gap penalties but also basic sum
of pairs function, and consistency based function COF-
FEE [18].

While the ability to use various scoring schemes ex-
tends possible applications of PhylTree, it makes diffi-
cult to apply faster than exact trees enumeration search
techniques. For instance, to find an optimal tree un-
der parsimony criterion a branch and bound strategy
could be used, whereas it is not necessarily true for
other scoring functions.

3.1 The simulated annealing approach

To improve efficiency of the PhylTree we have de-
cided to apply metaheuristic search approach based
on simulated annealing [14]. Our solution is based
on the observation that groups of closely related ele-
ments, which are recognised as phylo–clusters, should
be detectable even when suboptimal trees for anal-
ysed neighbourhoods will be found. This is because
partial trees which correspond to phylo–clusters con-
tribute strongly to the score of the optimal tree for a
given neighbourhood. Similar observations have been
reported by other researchers, e.g. [27].

Simulated annealing (SA) is a well known and easy
to use metaheuristic search strategy. The algorithm
works by analogy with the physical process of anneal-
ing in which the free energy of the solid is minimised.
A solution to the optimisation problem corresponds to
the physical state of the material, and the cost of a so-
lution (the value of objective function) corresponds to
the free energy of the material. In our case, the solu-
tion is a partial guide tree for a given neighbourhood,
and its free energy is the score of the corresponding
multiple alignment.

It is worth mentioning that simulated annealing has
been successfully applied in the problem of phylogeny
search under the parsimony criterion [2], as well as,
in the case of maximum likelihood phylogeny infer-
ence [24].

In general, there are four main components of the
SA algorithm:

• Configuration generator, which is a method of gen-
erating a candidate solution xi+1 on the basis of
current solution xi.

• Cooling scheme, which describes the procedure of
decreasing the system temperature T . This pa-
rameter has a direct influence on the probability
of acceptance of backward steps (e.g. to escape
local optima).

• Metropolis–step, in which algorithm decides if a
candidate solution xi+1 should be accepted. If
xi+1 has better cost than xi it is always ac-
cepted. If not, it is accepted with a probability
P = e−(∆H/T), where ∆H is the cost change.

• Stopping criterion, which determines when to fin-
ish searching.

One important property of SA, as compared to other
“stronger” metaheuristics like for example genetic algo-
rithms, is relatively smaller number of objective func-
tion evaluations. In our case, objective function evalu-
ation means computing a multiple sequence alignment,
hence, this property is of great importance.

In the PhylTree with SA the analysis of the neigh-
bourhood begins with a random guide tree. The con-
figuration generator is implemented using a bijection
between rooted phylogenetic tree with k leaves and
perfect matching on 2k − 2 points [4]. Here, a per-
fect matching on 2l points is defined as a partition of
these points into l two–element subsets. Having such
perfect matching we can render a corresponding phy-
logenetic tree as follows. First, we choose a matched
pair which has both elements from the set {1, . . . , k}
which is the set of leaves. If more than one such pair is
available we choose the one with the smallest element.
Next, we assign to this pair a parent node which is the
first available not–leaf label in the range [k +1, 2k−2].
From now on, this label is considered a leaf, and we
continue the process. Figure 2 shows an example tree
topology together with six configurations which can be
generated on its basis.

Application of the matchings provides a direct way
to generate a random walk in the tree search space. To
obtain a new topology it is sufficient to make a trans-
position of two points in the matching. Obviously, such
configuration generator can be implemented easily.

Our implementation of simulated annealing ap-
proach allows for use of different cooling schemes, for
example, a simple model where temperature T is de-
creased with constant ratio Ti+1 = Ti − ∆T , or an-
other one where Ti+1 = α · Ti, α < 1. However, ex-
periments we have performed showed that there is no
noticeable difference in the performance of various cool-
ing schemes.

In our current implementation SA computations can
be stopped by master to keep workers load balanced
(see next subsection), or in other case, they proceed
a fixed number of iterations, which can be defined by
the user. The initial temperature of the system is set
on the basis of sequence length and substitution ma-
trix, so that proper values of the probability P in the
Metropolis–step are guaranteed. Finally, the number

1 3 2 4 1 2 4 3

1 2 3 4

1 4 2 3

3 4 1 2 3 4 2 1

1 2 3 4

(1,2)(3,4)(5,6)

(1,3)(2,4)(5,6)

(1,4)(2,3)(5,6)

(1,5)(3,4)(2,6) (1,6)(3,4)(2,5)

(1,2)(3,6)(4,5)

(1,2)(3,5)(4,6)

Figure 2. Example tree and its 6 neighbour
topologies.

of iterations in the Metropolis–step is equal to the size
of neighbourhood.

The search space decoded using perfect matchings
can be described using regular, undirected graph G
with vertices of degree k · (k − 3) + 2, where k is the
size of the sequence neighbourhood. Since graph G is
regular it is very likely that some vertices (search space
points) will be visited more than once during a single
search. Subsequent evaluations of the same vertex are
handled by the complex caching system [26], neverthe-
less they generate some overhead when retrieved from
the cache storage. Moreover, unconstrained random
walk in the graph G may contain cycles.

To avoid redundant evaluations of the same trees
we extended SA algorithm with a naive tabu list. The
list stores all points visited during SA search, and each
point is encoded using only a few bytes, so that memory
consumption is negligible. When a candidate solution
is generated, the tabu list is checked first and if the
solution is not tabu, it is evaluated and inserted into
the tabu list. On the other hand, if a given solution is
found on the tabu list, it is rejected by SA and another
solution is generated. In the case where there are no
acceptable points to move to, the temperature parame-
ter of the SA is restored to the value from the previous
step of SA, and search is restarted from some randomly
chosen feasible solution. This way we avoid possible
deadlocks, and we improve efficiency of the search al-
gorithm. Please note that, while our approach differs
substantially from the typical tabu search algorithm [8]
(we do not restrict moves, but points, and we do not
use aspiration level mechanism) it performs in a simi-
lar way. This is because each point in our search space
can be reached in several ways, and restricting a point
we do not restrict reachability of its neighbourhood.

3.2 Integration with Parallel PhylTree

To integrate the simulated annealing approach de-
scribed above the parallel version of the PhylTree has
been modified. To be more precise, the phylogenetic
analysis step, which in the case of exact enumeration is
based on the tree topologies distribution (see Section
2.2), has been re-implemented to allow simultaneous
analysis of several neighbourhoods.

In a single iteration of the second phase, each worker
receives one neighbourhood to analyse. If the number
of neighbourhoods to process is less than the number of
available workers, then idle nodes are assigned to per-
form redundant neighbourhood analysis. This means,
that some of the neighbourhoods can be processed by
more than one worker. The assignment of neighbour-
hoods to workers is performed in round–robin fashion.
The obvious drawback of this approach is that load
balancing is hard to maintain. To avoid the problem of
load imbalance, redundant analysis of the neighbour-
hoods can be interrupted at any moment. As a result,
phylogenetic analysis ends as soon as all unique input
neighbourhoods have been processed. Resulting partial
guide trees, are the best trees found.

Due to a very coarse grain of the above algorithm,
in the case when the number of available processors is
grater than the number of neighbourhoods to process
it may be more profitable to apply a more fine grained
exact search strategy (as described in Section 2.2).

Let P be the number of available workers. In the
exact search approach expected time of completion of
a single iteration can be expressed as follows:

Te =
⌈

n · A
P

⌉
· tavg, A =

(2 · k − 2)!
2k−1(k − 1)!

where n is the number of input sequences in a given
iteration, k is the size of the neighbourhood of a single
sequence, and finally tavg is an average time required to
analyse a single tree. In the case of SA we can assume
that complexity of the search method is O(k3), thus,
expected time of single iteration completion is:

Tsa =
⌈ n

P

⌉
· k3 · tavg

On the basis of the above expressions we have im-
plemented a mechanism which dynamically changes
search strategy. In every iteration the master node
verifies if Tsa < Te. If the inequality is satisfied, SA
approach is utilised, otherwise workers perform exact
search. Figure 3 summaries our new implementation
of the PhylTree.

Compute distance matrix in parallel;
repeat

Determine neighbourhoods;
if Tsa < Te then

Distribute neighbourhoods;
Analyze neighbourhoods using SA;

else
Distribute trees;
Evaluate all trees;

Find phylo–clusters;
Update distance matrix;

until All sequences clustered ;

Figure 3. General scheme of the Parallel Phyl-
Tree with simulated annealing.

4 Experimental validation

We have performed a set of experiments with syn-
thetic as well as real–life biological data to validate our
new approach. The experiments were run on a clus-
ter of 15 dual AMD 1400 MHz nodes (one CPU used
by the application, one CPU used by OS) connected
by FastEthernet network. Each node was equipped
with 512MB of RAM and was running under control
of Linux. A single node could use 64MB of RAM for
alignment cache [26] and the persistent cache storage
was of infinite capacity (erased before every execution).
Our test program as well as ClustalW–MPI (which we
utilised for comparison purposes) was compiled using
GCC–4.0 compiler. To provide MPI routines we have
used mpich2-1.0.2 environment. In the reminder of this
paper we use PT when referring to exact search vari-
ant of the PhylTree, and PT-SA when talking about
simulated annealing based version.

4.1 Experiments

In the first experiment a set of 250 DNA sequences
of average length 50 bp was generated using the Rose
package [25]. The Relatedness parameter of the gen-
erator was set to 250 and HKY [9] DNA model was
used. Such generated sequences were next aligned us-
ing both PT and PT-SA method with different scoring
functions, and different levels of precision (parameter
k). Since SA is a stochastic metaheuristic each exe-
cution of PT-SA was repeated 10 times with different
seeds of random number generator.

To verify quality of reconstructed alignments and ac-
companying trees we have measured execution times,
sum-of-pairs score (SPS) utilised e.g. in [7], and the
mean symmetric distance (TD) between final tree and

Method Time [s] SPS TD
PT SP 4 66 0.338 288
PT SP 5 3326 0.378 316
PT SP 6 9267 0.425 324

PT Pars 4 312 0.139 150
PT Pars 5 783 0.145 140
PT Pars 6 7034 0.167 118

PT-SA SP 5 714 ± 46 0.352 ± 0.002 329
PT-SA SP 6 1312 ± 97 0.366 ± 0.007 348
PT-SA SP 7 7011 ± 257 0.376 ± 0.006 351
PT-SA SP 8 15052 ± 436 0.415 ± 0.017 360

PT-SA Pars 5 246 ± 36 0.143 ± 0.003 189
PT-SA Pars 6 425 ± 30 0.156 ± 0.007 179
PT-SA Pars 7 1614 ± 138 0.171 ± 0.004 180
PT-SA Pars 8 3617 ± 171 0.182 ± 0.003 184
ClustalWMPI 20 0.083 287

Table 1. Result of processing Rose-generated
sequences. SPS is sum-of-pairs score
(1 means perfect match), DT is symmet-
ric distance (lower values indicate better re-
sults).

the ”true” tree [22]. To compute the SPS score the
bali score package was used, and to determine TD dis-
tance treedist tool from the Phylip package was utilised.

Table 1 and Figure 4 summarise obtained results.
Here, we use SP to denote sum of pairs scoring func-
tion, and Pars to denote Sankoff’s parsimony criterion.
The integer numbers indicate the size of the neighbour-
hood k utilised during analysis.

To perform the second experiment we have extracted
a set of 477 Cyanobacteria small–subunit rRNA se-
quences from the RDP-II database [3]. The average
length of the sequences was 600 bp, with minimal
length around 200 bp and maximal 1200 bp. Next,
we aligned these sequences using both exact and simu-
lated annealing variants of the PhylTree. As a scoring
function we have used Sankoff’s parsimony criterion.
The purpose of this experiment was to measure effi-
ciency of our approach on relatively large set of real
sequences. Table 2 presents the obtained results.

4.2 Discussion

As expected, in all cases the user observed execution
time of PT-SA is significantly shorter as compared to
PT run with the same parameters. When the size of
neighbourhood k > 6 number of trees which have to be
processed by PT is huge, and PT cannot be executed
in acceptable time limits. Although results generated
by PT-SA are slightly worse than corresponding results

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 4 5 6 7 8

T
im

e
[s

]

Neighbourhood Size (k)

PT Pars
PT SP

PT-SA Pars
PT-SA SP

Figure 4. User observed execution times of
different variants of PhylTree as a function of
neighbourhood size k.

Method Time [s]
PT Pars 4 6015
PT Pars 5 39152

PT-SA Pars 5 20774
PT-SA Pars 6 37246
ClustalW-MPI 678

Table 2. Result of processing of Cyanobacte-
ria rRNA sequences.

generated by PT (with respect to SPS and TD score),
both methods outperform ClustalW–MPI significantly.
On the other hand, execution time of ClustalW–MPI is
more than 10 times shorter.

When parsimony criterion (Pars) is applied, PT-SA
with k = 8 is faster than PT with k = 6. Moreover,
it generates alignments of better quality. However, we
should notice that this is not in the case of SP function.
To process a single neighbourhood of size k = 8 PT
has to evaluate 135135 trees, while PT-SA evaluates
around 1200. Since for each neighbourhood there are
several equally parsimonious trees, PT-SA is still able
to find topologies close to the optimal. Again, this
seems to be not the case for SP function. Here, number
of points visited by PT-SA is too small compared to
the size of the search space. This results in decreased
accuracy of generated alignments and high variance of
SPS score (see for example PT-SA with SP and k = 8).
However, this drawback can be overcame by changing
parameters of SA.

The results in Table 1 shows that in both PT and
PT-SA cases, the accuracy of generated alignments,

as well as trees, increases for increased values of pa-
rameter k. Obviously, it is not the case for the SP
function which does not make any assumptions about
phylogenetic relations between analysed sequences. On
the other hand, application of SP function results in
very good SPS score. This can be explained by the
fact that SP utilises affine gap penalty which helps to
handle long indels generated by Rose.

The Sankoff’s parsimony criterion (results indicated
with Pars) generates better results in the context of
tree quality, but these results are still inadequate. This
is mainly because because PhylTree works in a progres-
sive manner, thus possible rearrangements of final tree
are limited. Moreover, the analysed sequences were
short, thus amount of phylogenetic information was
limited.

Efficiency of the PT-SA method has been confirmed
in the second series of experiments. However, in this
case we were not able to assess quality of the generated
alignments. The reason is that the reference align-
ment extracted from the RDPII database is a result
of high quality structural comparison with manually
aligned seedsequences. As in the first experiment, PT-
SA clearly outperforms PT in the terms of running
times. The comparison of generated alignments, where
output of PT Pars 5 is a reference alignment and PT-
SA is tested alignment, resulted with SPS score of 0.92.
This may suggest that even for large data sets PT-SA
is able to generate results comparable with PT.

5 Conclusions

In this paper we describe a new extension of the
Parallel PhylTree method which is based on applica-
tion of simulated annealing to perform local phylogeny
search. This new approach allows execution time of
our parallel software to be reduced significantly, while
preserving a good quality of the final solutions.

In our current implementation, redundant analy-
sis of neighbourhoods is performed independently. It
means that tabu list generated for a given neighbour-
hood is not taken into account in case when this neigh-
bourhood is processed for the second time. This issue
can be solved by storing tabu lists of processed neigh-
bourhoods on the master node for possible reuse. This
way efficiency of redundant analysis could be improved.

The source code of the extended Parallel Phyl-
Tree can be obtained from the SVN repository at
https://lin.icis.pcz.pl/websvn. More detailed results to-
gether with accompanying benchmark data will be
available for download as well. At present, the Parallel
PhylTree with SA search is integrated with our parallel
server for multiple sequence alignment, and it can be

accessed online via https://hal.icis.pcz.pl/PhyloServer/.

References

[1] S. Altschul, T. Madden, A. Schaffer, J. Zhang,
Z. Zhang, W. Miller, and D. Lipman. Gapped
BLAST and PSI–BLAST: a new generation of pro-
tein database search programs. Nuc. Acids Res.,
25(17):3389–3402, 1997.

[2] D. Barker. LVB: parsimony and simulated annealing
in the search fo phylogenetic trees. Bioinformatics,
20(2):274–275, 2004.

[3] J. Cole, B. Chai, Q. Wang, S. Chandra, R. Farris,
S. Kulam, D. McGarrel, T. Schmidt, G. Garrity, and
J. Tiedje. The Ribosomal Database Project (RDP–II):
previewing a new autoaligner that allows regular up-
dates and the new prokaryotic taxonomy. Nuc. Acids
Res., 31(1):442–443, 2003.

[4] P. Diaconis and S. Holmes. Random walk on trees and
matchings. Elec. J. Prob., 7:1–17, 2002.

[5] J. Ebedes and A. Datta. Multiple sequence alignment
in parallel on a workstation cluster. Bioinformatics,
20(7):1193–1195, 2004.

[6] R. Edgar. MUSCLE: multiple sequence alignment
with high accuracy and high throughput. Nuc. Acids
Res., 32(5):1792–1797, 2004.

[7] P. Gardner, A. Wilm, and S. Washietl. A benchmark
of multiple sequence alignment programs upon struc-
tural RNAs. Nuc. Acids Res., 33(8):2433–2439, 2005.

[8] F. Glover. Tabu search: A tutorial. Interfaces,
20(4):74–94, 1990.

[9] M. Hasegawa, H. Kishino, and T. Yano. Dating of the
human-ape splitting by a molecular clock of mitochon-
drial DNA. J. Mol. Evol., 22(2):160–174, 1985.

[10] D. Higgins, J. Thompson, and T. Gibson.
CLUSTALW: improving the sensitivity of progres-
sive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Res., 22:4673–4680,
1994.

[11] D. Hillis, C. Moritz, and B. Mable, editors. Molecular
Systematics, chapter Phylogenetic Inference. Sinauer
Associates, Inc., 1996.

[12] M. Holder and P. Lewis. Phylogeny estimation: Tradi-
tional and Bayesian approaches. Nature Reviews Ge-
netics, 4(4):275–284, 2003.

[13] T. Jiang, E. Lawler, and L. Wang. Aligning sequences
via an evolutionary tree: complexity and approxima-
tion. In Proc. of 26th Ann. ACM Symp. on Theory of
Computing, pages 760–769, 1994.

[14] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimiza-
tion by simulated annealing. Science, 220:671–680,
1983.

[15] J. Kleinjung, N. Douglas, and J. Heringa. Parallelized
multiple alignment. Bioinformatics, 18(9):1270–1271,
2002.

[16] K. B. Li. ClustalW–MPI: ClustalW analysis using
distributed and parallel computing. Bioinformatics,
19(12):1585–1586, 2003.

[17] D. Mikhailov, H. Cofer, and R. Gomperts. Per-
formance optimization of ClustalW: Parallel
ClustalW, HT Clustal, and MULTICLUSTAL.
http://www.sgi.com/industries/sciences/chembio/,
2005.

[18] C. Notredame, L. Holm, and D. Higgins. COFFEE: an
objective function for multiple sequence alignments.
Bioinformatics, 14(5):407–422, 1998.

[19] G. Parmentier, D. Trystram, and J. Zola. Cache-based
parallelization of multiple sequence alignment prob-
lem. In Proc. of Euro-Par ’04, pages 1005–1012, 2004.

[20] C. D. Polychronopoulos and D. J. Kuck. Guided self–
scheduling: A practical scheduling scheme for par-
allel supercomputers. IEEE Trans. on Computers,
36(12):1425–1439, 1997.

[21] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content–addressable network.
In Proc. of SIGCOMM ’01, pages 161–172, 2001.

[22] D. Robinson and L. Foulds. Comparison of phyloge-
netic trees. Math. Biosci., 53:131–147, 1981.

[23] M. Schmollinger, K. Nieselt, M. Kaufmann, and
B. Morgenstern. DiAlign–P: fast pair–wise and multi-
ple sequence alignment using parallel processors. BMC
Bioinformatics, 5(1):128, 2004.

[24] A. Stamatakis. An efficient program for phyloge-
netic inference using simulated annealing. In Proc.
of IPDPS 2005, 2005.

[25] J. Stoye, D. Evers, and F. Meyer. Rose: generating se-
quence families. Bioinformatics, 14(2):157–163, 1998.

[26] D. Trystram and J. Zola. Parallel multiple sequence
alignment with decentralized cache support. In Proc.
of Euro-Par ’05, pages 1217–1226, 2005.

[27] T. Williams, T. Berger–Wolf, B. Moret, U. Roshan,
and T. Warnow. The relationship between maxi-
mum parsimony scores and phylogenetic tree topolo-
gies. Technical Report TR–CS–2004–04, University of
New Mexico, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

