
ESTmapper: Efficiently Aligning DNA Sequences to Genomes

Xue Wu, Woei-Jyh (Adam) Lee, Chau-Wen Tseng

Department of Computer Science
University of Maryland at College Park
{wu,adamlee,tseng}@cs.umd.edu

Abstract

With improvements in technology, scientists are able
to sequence the full DNA (genome) of an increasing num-
ber of organisms. One way biologists can take advantage
of this genomic sequence data is to use it in conjunction
with expressed sequence tag (EST) information to find
genes and their splice sites. We describe how ESTmap-
per uses an eager write-only top-down (WOTD) suffix
tree to efficiently align DNA sequences against genomes,
and compare its precision and performance against popu-
lar techniques for DNA alignment (BLAT, sim4, Spidey,
BLAST, megaBLAST) and EST clustering (TGICL and
PaCE). Experimental results show that ESTmapper is 3
to 1000 times faster than current techniques for align-
ing and clustering DNA sequences, and produces align-
ments of comparable or better quality.

1. Introduction

Recent advances in molecular biology techniques
such as automated DNA sequencing have allowed scien-
tists to quickly gather huge amounts of DNA sequence
data. Two types of DNA sequence data are particularly
interesting: genomic DNA and expressed sequence tags
(ESTs). Genomes are long (thousands to millions of
bases) DNA sequences representing the complete DNA
of an organism, carefully constructed with high accu-
racy from many experiments. Deciphering the function
of each portion of the genome remains one of the ma-
jor challenges facing molecular biologists.

In comparison, ESTs are short (400-800 bases)
single-pass DNA sequences. Despite being fragmen-
tary and error-prone, ESTs are of interest because they
represent portions of the genomic DNA that are ac-
tually transcribed into mRNA (expressed), and can
be used to find genes and their splice sites. ESTs
are also relatively easy to collect and sequence, mak-
ing up 62% of the 38.9 million nucleotide sequences in
NCBI GenBank (Oct’04, release 144) 1.

1 But because EST sequences are relatively short, they comprise
only 29% of the total number of bases in GenBank.

With the increasing number of species whose
genomes have been sequenced, the ability to effi-
ciently and precisely map ESTs and other DNA se-
quences to genomes becomes an important tool
for biologists. Such mappings can be used to an-
swer a number of important questions, such as gene
finding [26], EST clustering [3, 18], finding alter-
native splicing [4, 10], and identifying gene func-
tion [24].

Since the ability to align DNA sequences to the
genome is so useful, researchers have investigated many
techniques for performing such alignments [7, 15, 22,
26, 27]. However, due to the large size of many genomes
(around 3 billion bases for Human and Mouse) and
the large number of DNA sequences collected by biol-
ogists, aligning DNA to genomes can pose a compu-
tational challenge. Using standard sequence alignment
techniques such as BLAST may be too expensive when
a single high-throughput automated DNA sequencer
(e.g., ABI Prism 3730xl) can output two million bases
of sequence per day. Producing accurate alignments
is also problematic, since genomes contain many very
similar if not duplicate DNA sequences that can re-
sult in multiple plausible alignments to different por-
tions of the genome. Careful analysis is needed to dis-
tinguish between the possible alignments and calculate
the most plausible mapping.

In this paper, we describe ESTmapper, a new tool
for aligning DNA sequences to genomes based on an
eager write-only, top-down (WOTD) suffix tree for the
genome. While other researchers have used suffix trees
to speed up pairwise sequence alignment [20] and per-
form EST-to-EST [13, 19] or genome-to-genome [5, 16]
alignments, we believe we are the first to use suffix trees
for EST-to-genome alignments. Using the common sub-
strings found by suffix trees as a starting point, we
design algorithms to efficiently compute precise align-
ments of DNA sequences to genomes. Preliminary ex-
periments suggest that ESTmapper is precise and very
efficient when compared to other popular alignment
and EST clustering tools. The algorithm can also be
easily parallelized for improved performance.

2. Related Work

2.1. Sequence Alignment

Pairwise sequence alignment compares two se-
quences to find and align the most similar substrings
based on some metric. It is probably the most com-
monly performed computation in bioinformatics, and
many algorithms have been developed. Basic Lo-
cal Alignment Search Tool (BLAST) [2] is the most
popular and widely used tool for sequence align-
ment and similarity search. Here we focus on algo-
rithms used by researchers to align DNA to genomes.

megaBLAST is a program from the NCBI BLAST soft-
ware suite that uses a greedy algorithm to align nu-
cleotide sequences [29]. The program provides good
performance for highly similar sequences with minor
differences, and is thus frequently used for genome
alignments.

BLAT is an alternative pairwise sequence alignment
algorithm [15]. BLAT maintains a precomputed hash
table index of the locations of all non-overlapping sub-
strings (words) of length k. Performance is dramati-
cally improved because queries do not need to scan the
entire sequence database. Only the sections of the se-
quence database with hits in the index need to be ex-
amined to compute more detailed local alignments and
scores. Substrings that yield too many (hundreds or
more) hits to the genome can be filtered out and ig-
nored, or alignment time may increase dramatically.

Sim4 is one of the oldest and most frequently used pro-
grams for aligning spliced DNA sequence with genomic
sequence, allowing introns and a small number of se-
quencing errors [7]. Unlike BLAST, it attempts to rec-
ognize biological valid splice sites for non-contiguous
alignments to the genome. Sim4 was created because
of the inefficiency of BLAST when mapping large num-
bers of cDNA sequences to genomes. Researchers use
Sim4 for studying gene-to-genome annotation and al-
ternative splicing. However, Sim4 can be slow since
it uses dynamic programming. Older EST alignment
tools such as est genome [21] and est2gen [8] also use
dynamic programming, and too slow to search entire
genomes.

Spidey is a computer program to align spliced se-
quences to genomic sequences [27]. It is incorporated in
the NCBI Toolkit for biologists to study gene annota-
tion and alternative splicing. To find good alignments,
Spidey uses NCBI BLAST to produce a list of candi-
date alignments, then refines the alignments while con-
sidering splice sites.

Squall is a tool similar to BLAT, but especially de-
signed to map ESTs to genomes [22]. Squall uses lookup
tables to quickly find candidate substrings (21 bases)
within 300 bases of the beginning and end of each EST

sequence. It improves efficiency by discarding all can-
didates that map to more than ten locations in the
genome. If the distance between the start and stop can-
didates is less than 3 million bases, a more precise al-
gorithm is used to calculate and score possible EST to
genome alignments.

The authors claim squall is 100 times faster than
BLAT. However, we find BLAT to be much faster than
reported in their paper, indicating the authors may
have not filter out excessively common substrings from
the BLAT hash index as recommended. The authors
report 0.03, 1.69, and 12 seconds to align each Ref-
Seq sequence to human chromosome 22 using Squall,
BLAT, and sim4 on a PrimePower 1000. In compari-
son, for the same data set on a SunFire 6800 we found
it takes 0.02, 0.054, and 31 seconds using ESTmapper,
BLAT, and sim4.

2.2. EST Clustering

Clustering is usually the first step in using ESTs for
gene finding. Historically clustering algorithms com-
pare ESTs against each other to form clusters. NCBI
also maintains UniGene, a reference list of EST clus-
ters automatically generated from ESTs in dbEST [28].
TGICL (TIGR Gene Indices CLustering tools) is
an example of a popular software system for clus-
tering large EST data sets using pairwise compar-
isons [23]. TGICL uses mgBLAST, a modified version
of megaBLAST that provides additional output filter-
ing and uses a dynamic offset within a database for in-
cremental searches. MgBLAST is used to quickly per-
form an all-to-all pairwise comparisons between EST
sequences. Processing can be performed in paral-
lel by partitioning the database, then merging com-
pressed sorted files.

Clustering uses a greedy algorithm based on the
best alignments, and known full-length cDNAs can be
used as seeds to improve efficiency and produce larger
clusters for incremental updates. Clusters output are
passed to the CAP3 assembly tool [12] as multi-FASTA
files and then assembled into high-quality consensus se-
quences. TGICL is used to generate the TIGR Gene In-
dices for 60 different species with between 10 thousand
and 4 million EST sequences [17]. TGICL has been par-
allelized for PC clusters using PVM.
PaCE (Parallel Clustering of ESTs) is one of the first
clustering tools designed to exploit the power of suffix
trees to avoid the need for all-to-all pairwise compar-
isons [13]. It first constructs (in parallel) a generalized
suffix tree consisting of all EST sequences by first sort-
ing ESTs and sending each to the appropriate proces-
sor. Once the suffix tree is complete, a variation of the
algorithm for finding longest repeated substrings can
be used to find all pairs of ESTs with common sub-
strings above a certain threshold. The clustering algo-
rithm then starts with pairwise comparisons between

ESTs with long common substrings, greatly increas-
ing the likelihood of forming a cluster.

By using an on-demand algorithm for generating
promising EST pairs, the PaCE approach generally
requires only O(n) number of pairwise comparisons,
though O(n2) are still needed in the worst case. Addi-
tional refinements are needed to create and maintain
clusters in parallel. Clusters produced by PaCE are of
high quality when compared to a benchmark EST set
from Arabidopsis created by aligning ESTs directly to
the genome. A weakness of the PaCE system is that
building a suffix tree for the input EST data set re-
quires a large amount of memory, proportional to the
number and size of ESTs. The authors were able ame-
liorate this problem by parallelizing their algorithm to
run on a PC cluster, splitting the suffix tree so that
each node only needs to hold a portion of the suffix
tree in memory.

2.3. WOTD Suffix Trees

A suffix-tree is a data-structure that allows many
problems on strings (sequences of characters) to be
solved quickly and efficiently [11]. It is formed by cal-
culating and storing all the suffixes of a string in a
trie structure. Suffix trees are very efficient data struc-
tures. They can be constructed in O(n) time, and find-
ing longest common substrings between two sequences
and longest repeated substrings only require O(n) time.
Unfortunately, there is a large (30+) multiplicative fac-
tor in the size of the suffix tree relative to the original
sequence.

More recently, researchers have developed efficient
implementations for building write-only, top-down
(WOTD) suffix trees [9]. WOTD suffix trees are more
expensive to build in that they require O(nlog(n)) ex-
pected and (O(n2)) worst time to construct, but
they require only a 10 to 12-fold increase in mem-
ory relative to the original sequence, and display good
cache locality in performing searches. WOTD suf-
fix tree implementations may be eager (build the
full WOTD tree immediately) or lazy (build por-
tions of the WOTD tree as needed as queries are
processed).

3. ESTmapper

The design of ESTmapper is based on two obser-
vations. First, the genome of an organism is relatively
fixed and rarely updated. As a result we can preprocess
the genome once and reuse the result to perform many
mappings to the genome. Second, quality alignments
between DNA sequences and the genome are likely to
have long common substrings of exact matches, and
longer common substrings are likely to yield better
mappings. Together these two observations inspired
us to use suffix tree as the underlying technique for
ESTmapper, since the suffix tree for the genome can

be built once and used to efficiently find long common
substrings.

3.1. Algorithm

The ESTmapper algorithm consists of the following
steps:
1) Preprocess the genome. The genome sequence
is read from file and converted into a eager WOTD suf-
fix tree. If the suffix tree is too large to fit into mem-
ory, the genome can be partitioned and one suffix tree
built for each partition to reduce memory usage. Pre-
processing the genome only needs to take place once
per genome, since the eager WOTD suffix tree is a flat
array and can be easily stored and reloaded for future
mappings.
2) Map DNA sequences to the genome. Each
DNA sequence is mapped using the suffix tree (or trees)
for the genome, considering both its minus and plus
strand. If the genome has been partitioned into mul-
tiple suffix trees, the following mapping steps must be
repeated for each tree, storing the list of mapping re-
sults and combining them at the end, to find the best
overall mapping. Mappings are computed as follows:
2a) Find long common strings. All suffixes of each
DNA sequence are compared to the suffix tree for the
genome (or its current subset, if genome is partitioned)
to find the long common strings above a user-specified
minimal length. Long common substring lengths and
locations on both DNA and genome sequence are stored
for next step processing. The process can be acceler-
ated by only considering every one out of k suffixes
with negligible loss of precision.
2b) Extend long common substrings. Each pair of
long common substrings found is extended in both di-
rections, with a default match reward of 1, mismatch
penalty of −3 and dropoff value of −11. This substring
extension step is similar to NCBI BLASTN’s match ex-
tension step, except ESTmapper’s extension is based
on long common substrings instead of matched k-mers.
The extended substrings are then sorted in order of lo-
cation.
2c) Build (spliced/gapped) mappings. To handle
splicing and gaps, ESTmapper examines the list of long
substrings and locations, and combines them into a sin-
gle spliced/gapped mapping region if two substrings are
mapped sufficiently close to each other on the genome.
Building mappings can be done quickly since the ex-
tended substrings are stored in order of locations. The
lengths and locations of each mapping region’s compo-
nent substrings are stored for the refinement step.
2d) Refine mappings. ESTmapper examines neigh-
boring substrings in each mapping to determine
whether they are close enough on both the DNA and
genomic sequences to be merged into a single align-
ment (corresponding to a single exon), with only

small gaps and/or mismatches. Boundaries of sub-
strings are then adjusted so they match splice donor
and acceptor sites, minimizing changes to the align-
ment as much as possible.

3) Choose best mappings. Finally, each mapping is
scored based on the selected match reward, mismatch
and gap penalties. An expected E-value for the entire
mapping is calculated using alignment statics [1, 14],
and used to select the best mapping for each DNA se-
quence to the genome.

3.2. Parallelization

Being able to exploit the power of parallel comput-
ing is a major advantage for computationally intensive
applications such as mapping large number of DNA se-
quences onto genomes. It turns out that the ESTmap-
per algorithm, like many problems in computational bi-
ology, is embarrassingly parallel and can be easily par-
allelized at a coarse-grain level for efficient parallel ex-
ecution. The parallel versions of ESTmapper work as
follows.

Multithreaded ESTmapper. On shared-memory multi-
processors (SMPs) ESTmapper may be parallelized ac-
cording to the master-worker parallel paradigm using
pthreads. The master thread first reads the suffix tree
of the genome into memory sequentially. Next, the mas-
ter thread spawns workers (pthreads) and assigns DNA
sequences to each worker to find mappings. When all
sequences have been mapped to the genome, the mas-
ter thread collects and outputs the result.

Load balancing is simple since the bulk of the com-
putation is mapping DNA sequences to the genome,
and the mapping time is usually proportional to the
number of bases being mapped. So the master thread
just needs to assign roughly the same number of bases
to each thread to ensure an even division of work.

Message-passingESTmapper. On message-passing ma-
chines such as PC clusters, ESTmapper may be paral-
lelized using the MPI communications library to com-
municate between processors. To reduce communica-
tion costs, each processor reads the suffix tree into
memory independently. The master node assigns and
sends DNA sequences each node. Every node then finds
genome mappings for its sequences locally, without any
need for interprocessor communication. Once mappings
are computed for assigned sequences, each node sends
its mappings to the master node to be collected and
output.

ESTmapper is very efficient on clusters, since lit-
tle communication is needed, just at the beginning and
end of the overall computation to send out DNA se-
quences and retrieve their mappings. Performance can
be improved further if each node stores a copy of the
suffix tree in its local disk.

4. Experimental Evaluation

4.1. Evaluation Environment

To evaluate ESTmapper, we compared its perfor-
mance and precision with other mapping and cluster-
ing algorithms. We downloaded and installed the lat-
est versions of BLAT, Sim4, Spidey, TGICL, PaCE,
and the NCBI BLAST software suite and toolkit on a
Sun SunFire 6800 SMP with 24 processors (UltraSparc
III 750Mhz) and 72 GB memory. For message-passing
speedups we also ran ESTmapper on a Linux PC clus-
ter with 1.6 GHz AMD Athlon processors and 1 GB
memory per node.

For test data, we downloaded EST, gene, and
genome sequences for Arabidopsis Thaliana (mus-
tard plant) and Homo Sapiens (human) from NCBI,
UCSC genome browser and Trust Sanger Insti-
tute. The Arabidopsis genome is about 19.7 million
bases, and the Human genome is about 3 billion bases.
The EST and gene DNA sequences we use were cho-
sen because they were previously mapped to the
genome by biologists (or put in widely accepted clus-
ters). We can thus used them to evaluate the preci-
sion of mapping and clustering algorithms used by
ESTmapper and other tools. Three data sets used in
many of our experiments are:

• DataSet1: 263, 255 EST and cDNA sequences (av-
erage length 734 bases) from Arabidopsis UniGene
build #44 from NCBI

• DataSet2: 28, 952 Arabidopsis genes (average
length 1322 bases) and 5 Arabidopsis chromo-
somes from NCBI.

• DataSet3: 936 Human genes (average length 1936
bases) mapped to chromosome 22 and Build #30
of Human chromosome 22 from Trust Sanger In-
stitute.

4.2. Basic Performance

We begin by examining the time and memory re-
quired by ESTmapper with respect to suffix trees and
multiple processors. WOTD suffix trees can be more
expensive to build than other suffix trees in that they
require O(nlog(n)) expected and O(n2) worst time to
construct. However, they can yield good performance
for substring searches, since the WOTD data struc-
tures provide good cache locality. Since the WOTD suf-
fix tree is stored in a flat array, users can also build the
suffix tree once and store it on disk for later use.

When constructing a WOTD suffix tree for the
genome, we need to select the number of trees we plan
to use. ESTmapper can build a single suffix tree for the
entire genome (by concatenating the DNA sequence of
each chromosome), one tree per chromosome, or any
number of trees (by first concatenating, then split-
ting the DNA sequences of all chromosomes). Some

additional bookkeeping is required to keep track of
the original chromosomal locations of each sequence.
When the genome is partitioned into multiple suffix
trees, ESTmapper can iteratively compare nucleotide
sequences against each suffix tree, record the mappings
found, and select the best overall mapping at the end.

Figure 1a shows the result of using multiple suffix
trees to map Arabidopsis ESTs from DataSet1 to the
entire genome. We see ESTmapper runs faster with
fewer suffix trees, but trees are larger and require more
memory. We thus have a classic memory/speed trade-
off in choosing how to use ESTmapper. Choosing the
proper number of trees to use depends on the available
memory. If insufficient memory is available to hold the
suffix tree for the entire genome, ESTmapper can re-
duce its memory usage at the expense of longer run-
ning times by partitioning the genome and building
separate suffix trees for each portion of the genome.

Figure 1b shows the performance of multithreaded
ESTmapper on the SunFire 6800 SMP and message-
passing ESTmapper on a Linux PC cluster when map-
ping DataSet1 to the entire Arabidopsis genome. We
see that ESTmapper obtains fairly good 8-processor
speedup for the SMP (6.9) and PC cluster (5.7).

We believe speedups are lower on the PC cluster be-
cause (sequential) file I/O to load suffix trees is both
slower (44 seconds on PC cluster, versus 14 seconds on
SMP), and takes up a larger portion of total execu-
tion time on the faster PCs (186 ESTs mapped/second
on PC nodes, versus 83 ESTs mapped/second on the
SMP). If the file I/O time is eliminated, ESTmapper
achieves a 8-processor speedup of 7.5 on the SMP and
8.0 on the PC cluster. We thus expect ESTmapper
speedups to improve for larger input data sets, where
file I/O is less important. Memory use remains con-
stant for ESTmapper relative to the number of proces-
sors, since each processor maintains a local copy of the
suffix tree.

4.3. Genome Mapping

Performance Comparison. The performance of six
DNA-to-genome alignment tools (ESTmapper, BLAT,
Sim4, Spidey, BLAST and megaBLAST) were evalu-
ated with Arabidopsis and Human data. We mapped
936 Arabidopsis genes from DataSet2 onto chromo-
some I, and 936 Human genes in DataSet3 onto chro-
mosome 22. All tools were run sequentially on a sin-
gle processor of the SunFire 6800. Running times are
shown in Figure 1c. “ESTmap” stands for ESTmap-
per and “megaB” stands for megaBLAST. Note that
running times are presented using log scale along the
Y-axis.

We see that ESTmapper is the fastest among six
evaluated software tools, and has reasonable memory
usage. It is about 3–6 times as fast as BLAT, 21–45
times as fast as megaBLAST, 1000 times as fast as

Spidey and 4000 times faster than Sim4. These re-
sults seem reasonable when we remember that only
ESTmapper and BLAT preprocess the genome to im-
prove performance. ESTmapper is likely more efficient
than BLAT because it is able to find the longest com-
mon substrings directly, rather than extending hits.

Figure 1d presents the memory used by each of the
alignment tools. We see megaBLAST and BLAST use
the most memory, while BLAT requires the least mem-
ory. ESTmapper requires about 4 times more memory
than BLAT.
Precision Comparison. Next, we compared the pre-
cision of the DNA-to-genome mappings found by
four tools (ESTmapper, BLAT, Sim4, Spidey) for
all 28,952 Arabidopsis genes and 936 Human genes
from DataSet2 and DataSet3. We used the Arabidop-
sis gene annotation information provided by biologists
at TIGR and Human gene annotations from biolo-
gists at Trust Sanger Institute as the correct mapping.
Results are shown in Table 1.

Spidey BLAT Sim4 ESTmapper
Arabidopsis 96.0% 99.6% 94.3% 96.2%

Human 90.8% 89.7% 99.6% 99.9%

Table 1. PrecisionComparisonwith 28,952Arabidop-
sis and 936 Human Genes

We see that BLAT is the most precise for Ara-
bidopsis (99% correct), but ESTmapper and Spidey
are close behind (96% correct). For Human ESTmap-
per and sim4 are the most precise (almost 100% cor-
rect), while BLAT and Spidey are lagging (90% cor-
rect). The only Human gene ESTmapper mapped in-
correctly it missed because there is one exon which is
too small to be found with the default ESTmapper set-
tings. Most such small exons can be found by ESTmap-
per with a finer grain search, at the cost of reduced pro-
cessing speed. Fortunately, very small exons usually do
not occur often in large genomes [6, 25].

4.4. EST Clustering

Next, we compared the performance and precision of
using genome mappings to cluster ESTs against other
clustering algorithms such as PaCE and TGICL. We
form EST clusters out of all ESTs mapped to nearby
or overlapping locations in the genome. For the com-
parison, we used genome mappings from ESTmapper,
Spidey and BLAT.
Performance Comparison. In Figure 1e, we compared
ESTmapper performance with TGICL and PaCE for
190,740 Arabidopsis ESTs mapped to the Arabidopsis
genome preprocessed as a single suffix tree. All three

0

400

800

1200

1600

2000

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

M
em

or
y

U
sa

ge
 (

M
 b

yt
es

)

Number of Trees

ESTmapper Performance with Difference Number of Trees

Running Time
Memory Usage

(a)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Sp
ee

du
p

Number of Processors

ESTmapper Speedup on SMP and PC Cluster

Linear Speedup
Multithreaded ESTmapper

Message-passing ESTmapper

(b)

1

10

100

1000

10000

100000

ESTmapBLAT megaB Spidey Sim4 BLAST

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Running Time Comparison

Arabidopsis

Human

(c)

0

500

1000

1500

2000

2500

3000

ESTmap BLAT megaB Spidey Sim4 BLAST

M
em

or
y

U
sa

ge
 (

M
 B

yt
es

)

Memory Usage Comparison

Arabidopsis

Human

(d)

10

100

1000

10000

100000

50000 100000 150000 200000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Sequences

Performance Comparison with TGICL and PaCE

PaCE
TGICL

ESTmapper

(e)

10

100

1000

10000

100000

1e+06

1e+07

1e+08

2000 4000 6000 8000 10000 12000 14000 16000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Sequences

Performance Comparison with BLAT, megaBLAST and Spidey

BLAT
megaBLAST

Spidey
ESTmapper

(f)

Figure 1. Performance Comparison of EST Mapping and Clustering Algorithms

tools were timed using 8 processors on the SunFire
6800. Note that running time is displayed in log scale
along the Y-axis. We see that ESTmapper is signifi-
cantly faster for large numbers of ESTs. Figure 1f shows
the performance of BLAT, Spidey, and megaBLAST
when used to cluster ESTs using one processor on
the SunFire 6800. Due to the slow processing speed
of Spidey and high memory usage of megaBLAST,
for the second set of experiment we were only able
to use 15,293 EST sequences. We see once again that
ESTmapper is the most efficient clustering algorithm.

We also found ESTmapper has almost constant
memory usage of about 1 GB. In comparison, mem-
ory usage for PaCE and megaBLAST increases very
quickly as the number of ESTs increases. PaCE used
1.4 GB memory on each processor when processing
190,740 sequences. megaBLAST used about 4 GB
memory when processing 15,293 sequences and ran out
of memory when the number of ESTs was increased.
Precision Comparison. To compare the precision of
the clusters produced by the different algorithms, we
used BLAT, Spidey, PaCE, TGICL and ESTmapper
to cluster ESTs from Arabidopsis UniGene build #44
in DataSet1. Because of the memory limitation with
PaCE and speed limitation with Spidey, we only used
the 15,293 EST sequences from the first 1000 Arabidop-
sis clusters in UniGene. We measured the percentage
of clusters exactly matching UniGene, the number of
clusters produced by each algorithm, and the number
of singleton clusters (with a single EST). The results
are shown in Table 2.

Spidey BLAT TGICL PaCE ESTm.
% identical 80.5% 81.4% 72.6% 60.5% 97.1%
clusters 930 1152 1006 1575 1006

singletons – 101 296 573 9

Table 2. PrecisionComparisonwith 1000Arabidopsis
UniGene Clusters

Again, ESTmapper produced clusters that are most
similar (97%) to UniGene clusters. The other cluster-
ing techniques based on mapping ESTs to the genome
were next (80%), while EST-only techniques produced
significantly different clusters. ESTmapper also pro-
duced the smallest number of singletons clusters when
compared to other algorithms. In addition to the re-
sults in Table 2, we also have clustering comparisons
results for TGICL, BLAT and ESTmapper using the
total 20640 Arabidopsis UniGene clusters. Among the
three algorithms, TGICL found 53.8% exactly matched
clusters, BLAT found 66.5% exactly matched clusters,
and ESTmapper found 83.6% exactly matched clus-
ters. Though all three algorithms are less precise for

2

4

8

16

256 512 1024 2048 4096 8192

R
un

ni
ng

 T
im

e
(h

ou
rs

)

Number of Sequences (thousand)

0.25

0.57

0.96

2.23

4.63

10.80

Figure 2. Clustering 5.5 × 106 Human ESTs

the full set of Arabidopsis UniGene clusters, ESTmap-
per still provides the results closest to UniGene.

Scalability. Finally, to evaluate the scalability of
ESTmapper, we also measured the computation time
and memory usage of ESTmapper when used (on a
SunFire 6800 with 8 processors) to cluster all 5.5 mil-
lion human EST sequences by mapping them against
the human genome (Build 35). To reduce memory use,
the genome was split into 30 equal-sized pieces requir-
ing about 1 GB suffix trees for each piece. Results
are shown in Figure 2. ESTmapper was able to clus-
ter all ESTs in 10.8 hours (0.056 seconds per EST
for each processor), with the processing time in-
creasing fairly linearly with the number of ESTs.
Performance can be improved by using more mem-
ory and fewer trees.

4.5. Discussion

Our experimental evaluation of ESTmapper shows it
is quite efficient and precise when compared with other
sequence alignment techniques such as BLAT. The
only disadvantage is that ESTmapper requires more
memory and disk storage to hold and store the suffix
tree needed for the genome. Fortunately the amount
of memory and disk space available in computers is
quickly increasing while genome size stays constant, so
memory use should become less of an issue as time goes
on. For the purpose of EST clustering, ESTmapper also
performed very well compared to other clustering algo-
rithms. The main disadvantage here is that ESTmap-
per can only be used to cluster ESTs for organisms with
sequenced genomes. As a result ESTmapper will prob-
ably serve simply to complement tools such as TGICL
and PaCE.

5. Conclusions

In this paper, we presented ESTmapper, a new
approach for efficiently aligning DNA sequences to
genomes, and using such alignments to cluster ESTs.
We developed a prototype implementation and com-
pared its precision and performance to existing align-
ment and clustering tools. Though a number of weak-
nesses remain in our approach, preliminary results have
been very encouraging. Our work on ESTmapper is a
part of our overall goal—taking advantage of increas-
ing computation power to provide more useful infor-
mation to bioinformatics researchers.

6. Acknowledgments

The authors are very grateful to Jim Kent for assis-
tance with selecting parameters for improving BLAT
performance, and Anantharaman Kalyanaraman for
assistance with using and interpreting results from
PaCE. We wish to thank Damayanti Gupta for obtain-
ing some preliminary results comparing the precision
of clustering algorithms, and students in CMSC838T
in Spring 2004 for help in evaluating alternative DNA
mapping methods.

References

[1] S. Altschul and W. Gish. Local alignment statistics.
Methods in Enzymology, 266:460–80, 1996.

[2] S. Altschul, W. Gish, E. Miller, E. Myers, and D. Lip-
man. A basic local alignment search tool. Journal of
Molecular Biology, 215:403–410, 1990.

[3] R.Chen,A.Russell,G.Li,N.Tsinoremas, andG.Cavet.
Human transcript clustering. Poster at RECOMB’04,
2004.

[4] E. Coward, S. Haas, and M. Vingron. SpliceNest: visual-
ization of gene structure and alternative splicing based
on EST clusters. Trends Genet, 18(1):53–55, 2002.

[5] A. Delcher, S. Kasif, R. Fleischmann, J. Peterson,
O.White, andS. Salzberg. Alignment ofwhole genomes.
Nucleic Acids Research, 27(11):2369–2376, 1999.

[6] M. Deutsch and M. Long. Intron-exon structures of
eukaryotic model organisms. Nucleic Acids Research,
27(15):3219–28, Aug 1999.

[7] L. Florea, G. Hartzell, Z. Zhang, G. Rubin, and
W. Miller. A computer program for aligning a cdna se-
quencewith a genomic dna sequence. Genome Research,
8(9):967–74, Sep 1998.

[8] M. Gelfand, A. Mironov, and P. Pevzner. Spliced align-
ment: A new approach to gene recognition. Proc. Natl.
Acad. Sci., 93:9061–9066, 1966.

[9] R. Giegerih, S. Jurtz, and J. Stoye. Efficient implemen-
tation of lazy suffix trees. Software—Practice ad Expe-
rience, 33:1035–1049, 2032.

[10] C. Grasso, B. Modrek, Y. Xing, and C. Lee. Genome-
wide detection of alternative splicing in expressed se-
quences using partial order multiple sequence alignment
graphs. Pacific Symposium of Biocomputing, 9:29–41,
2004.

[11] D.Gusfield. AlgorithmsonStrings,Trees andSequences:
Computer Science and Computational Biology. Cam-
bridge University Press, 1977.

[12] X. Huang and A. Madan. CAP3: A DNA sequence as-
sembly program. Genome Res, 9:868–877, 1999.

[13] A. Kalyanaraman, S. Aluru, S. Kthari, and V. Brendel.
Efficient clustering of large EST data sets on parallel
computers. Nucleic Acids Research, 31(11):2963–2974,
2003.

[14] S. Karlin and S. Altschul. Applications and statistics for
multiple high-scoring segments in molecular sequences.
Proc Natl Acad Sci U S A, 90(12):5873–7, Jun 1993.

[15] W. Kent. Blat–the blast-like alignment tool. Genome
Research, 12(4):656–64, Apr 2002.

[16] S. Kurtz et al. Versatile and open software for compar-
ing large genomes. Genome Biology, 5, 2004.

[17] F. Liang, I. Holt, G. Pertea, S. Karamycheva,
S. Salzberg, and J. Quackenbush. An optimized pro-
tocol for analysis of est sequences. Nucleic Acids Re-
search, 28:3657–3665, 2000.

[18] B. Lin and T. Burcham. Using the human genome as
a framework for sequence clustering and microarray de-
sign. Poster at RECOMB’04, 2004.

[19] K. Malde, E. Coward, and I. Jonassen. Fast sequence
clustering using a suffix array algorithm. Bioinformat-
ics, 19:1221–1226, 2003.

[20] C. Meek, J. Patel, and S. Kasetty. OASIS: An online
and accurate technique for local-alignment searches on
biological databases. In Proceedings of the Conference
on Very Large Databases (VLDB’03), Berlin, Germany,
Sept. 2003.

[21] R. Mott. EST GENOME: a program to align spliced
DNA sequences to unspliced genomic DNA. Computer
Applications in the Biosciences, 13(4):477–478, 1997.

[22] J. Ogasawara and S. Morishita. Fast and sensi-
tive algorithm for aligning ESTs to human genome.
In IEEE Computer Society Bioinformatics Conference
(CSB’02), Stanford, CA, Aug. 2002.

[23] G. Pertea, X. Huang, F. Liang, V. Antonescu, R. Sul-
tana, S. Karamycheva, Y. Lee, J. White, F. Cheung,
B. Parvizi, J. Tsai, and J. Quackenbush. TIGR Gene
Indices clustering tools (TGICL): a software system for
fast clustering of large EST datasets. Bioinformatics,
19(5):651–652, 2003.

[24] T. Pohar, H. Sun, S. Liyanarachchi, S. James, S. Sta-
pleton, and R. Davuluri. A bioinformatics approach to-
ward identification of genes involved in hematopoiesis
and leukemia. Poster at RECOMB’04, 2004.

[25] M. Sakharkar, V. Chow, and P. Kangueane. Distribu-
tions of exons and introns in the human genome. In Sil-
ico Biology, 4:32, 2004.

[26] A. Sczyrba, J. Krüger, and R. Giegerich. e2g - a web-
based tool for effciently aligning genomic sequence to
EST and cDNA data. Poster at RECOMB’04, 2004.

[27] S. Wheelan, D. Church, and J. Ostell. Spidey: a tool
for mrna-to-genomic alignments. Genome Research,
11(11):1952–7, Nov 2001.

[28] D.Wheeler et al. Database resources of the national cen-
ter for biotechnology. Nucleic Acids Research, 31:28–33,
2003.

[29] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A
greedy algorithm for aligning DNA sequences. Journal
of Computational Biology, 7:203–214, 2000.

