
FROST: Revisited and Distributed

Vincent Poirriez∗

Université de Valenciennes,
59313 Valenciennes, France

vpoirriez@univ-valenciennes.fr

Antoine Marin
Mathématique, Informatique et Génome,

INRA, 78352 Jouy-en-Josas, France
antoine.marin@jouy.inra.fr

Rumen Andonov
IRISA, Campus de Beaulieu,
35042 Rennes Cedex, France
randonov@irisa.fr

Jean-François Gibrat
Mathématique, Informatique et Génome,

INRA, 78352 Jouy-en-Josas, France
gibrat@jouy.inra.fr

Abstract

FROST (Fold Recognition-Oriented Search Tool) [6] is
a software whose purpose is to assign a 3D structure to a
protein sequence. It is based on a series of filters and uses
a database of about 1200 known 3D structures, each one
associated with empirically determined score distributions.
FROST uses these distributions to normalize the score ob-
tained when a protein sequence is aligned with a particu-
lar 3D structure. Computing these distributions is extremely
time consuming; it requires solving about 1, 200, 000 hard
combinatorial optimization problems and takes about 40
days on a 2.4 GHz computer. This paper describes how
FROST has been successfully redesigned and structured in
modules and independent tasks. The new package organi-
zation allows these tasks to be distributed and executed in
parallel using a centralized dynamic load balancing strat-
egy. On a cluster of 12 PCs, computing the score distribu-
tions takes now about 3 days which represents a paralleliza-
tion efficiency of about 1.

Key words: protein threading; parallel algorithms; large
scale problems;

1. Introduction

The protein folding problem can be simply stated in the
following way: given a protein sequence, which is a string
over the 20-letter amino acid alphabet, determine the po-
sitions of each amino acid atom when the protein assumes
its 3D folded shape. Although simply stated, this problem

∗ This work has been partially supported by the GenoGRID project
(ACI GRID, Ministère de la Recherche).

is extremely difficult to solve and is widely recognized as
one of the most important challenges in computational bi-
ology, today [11, 12, 13, 14, 7].

In case of remote homologs, one of the most promising
approaches to the above problem is protein threading, i.e.,
one tries to align a query protein sequence with a set of 3D
structures to check whether the sequence might be compat-
ible with one of the structures. This method relies on three
basic facts:

• 3D structures of homologous proteins are much bet-
ter conserved than their amino acid sequences. Indeed,
many cases of proteins with similar folds are known,
although having less than 15% sequence identity.

• There is a limited, relatively small number of protein
structural families (figures vary between 1,000 and
10,000 according to different estimations [15, 22]).

• Different types of amino acids have different prefer-
ences for occupying a particular structural environ-
ment. These preferences are at the basis of the empir-
ically calculated score functions that measure the fit-
ness of a given sequence for a 3D structure.

Fold recognition methods based on threading are com-
plex and time consuming computational techniques consist-
ing of the following components:

1. a database of 3D structural templates;

2. an objective function which evaluates any alignment
of a sequence to a template structure;

3. a method for finding the best (with respect to the score
function) possible sequence-structure alignment;

4. a statistical analysis of the raw scores allowing the
detection of the significant sequence-structure align-
ments.



The third point above is related to the problem of finding
the optimal sequence-to-structure alignment and is referred
as protein threading problem (PTP). From a computer sci-
entist’s viewpoint this is the most challenging part of the
threading methods. Until recently, it was the main obsta-
cle to the development of efficient and reliable fold recog-
nition methods. In the general case, when variable-length
alignment gaps are allowed and pairwise amino acid inter-
actions are considered in the score function, PTP is NP-
hard [4]. Moreover, it is MAX-SNP-hard [1], which means
that there is no arbitrary close polynomial approximation
algorithm, unless P = NP. In this context the progress
done by the computational biology community in solv-
ing PTP during the last few years is really remarkable
[16, 8, 2, 17, 18, 20, 19, 3]. However the empirical re-
sults clearly show that the problem is easier in practice
than in theory and that it is possible to solve real-life (bi-
ological) instances in a reasonable amount of time. One of
the most promising approaches in solving this problem is
using advanced mathematical programming (Mixed Inte-
ger Programming, MIP) models for PTP [8, 2, 17, 18, 21].
A further step in this direction of research is the develop-
ment of special-purpose algorithms for solving MIP mod-
els instead of using general-purpose branch-and-bound al-
gorithms based on linear programming (LP) relaxation. Im-
pressive computational results reported in [3] show that
MIP models can be successfully solved using Lagrangian
relaxation. This approach is today the default algorithm for
solving a PTP instance in FROST.

This paper focuses on the 4th point above. Despite the
significant recent progress in solving PTP, this component
is still an extremely time consuming part of the threading
methods. The underlying score normalization procedure in-
volves threading a large set of queries against each template
and requires solving millions of PTP [6]. Accelerating com-
putations involved in this component is crucial for the de-
velopment of efficient fold recognition method.

The organization of the papers is as follows. In sec-
tion 2.1 we present a computer scientist’s vision of FROST,
i.e. as a succession of functions and procedures, yielding
dependent and/or independent tasks. This new vision per-
mits to redesign FROST and to organize it in modules
which presents numerous advantages. This is discussed in
section 2.2. We also distinguish independent tasks and dis-
cuss how to distribute them on a cluster of PCs in order to
obtain an efficient parallelization (section 3.1). In section
4, the performances of the proposed algorithm are experi-
mentally validated on the entire FROST database and cor-
responding running times are given.

2. FROST: a computer science vision

2.1. Description of the original FROST

FROST (Fold Recognition-Oriented Search Tool) is in-
tended to assess the reliability of fold assignments to a
given protein sequence (hereafter called the query sequence
or query for short) [5, 6]. This tool is based on a series of fil-
ters, each one possessing a specific scoring (or fitness) func-
tion used to measure the adequacy between the query se-
quence and template structures. There are currently about
1200 template structures. For the time being, FROST em-
ploys only two filters. The first filter is based on a fitness
function whose parameters involve only a local (degener-
ate) description of the 3D structure: a given structural state
is assigned to each amino acid in the sequence. On the other
hand, parameters of the second filter fitness function require
the knowledge of the interactions between residues in con-
tact in the 3D structure, thus making use of spatial informa-
tion. Hereafter, these filters will be called 1D and 3D filters,
respectively.

When aligning a given query sequence to a set of 3D
structures it is not possible to directly use the raw scores to
rank the 3D structures since these scores strongly depend
on the query and template lengths and also, in a compli-
cated way, on the particular features of the 3D structures. In
addition, the query sequence may correspond to none of the
existing folds. Therefore one must have a mean to evaluate
the significance of an alignment score. This is done by em-
pirically calculating a distribution of scores for each core,
using a set of sequences not related to it. We then compare
the alignment score between the query and a core to the cor-
responding distribution. The more far away the score from
the corresponding distribution, the more significant it is be-
cause the more far away the score from the bulk of not re-
lated sequences scores, the better the chance the sequence
has to be related to the template structure.

Because we do not know the analytical form of the dis-
tribution we use the following scheme: the raw score (RS)
is normalized (NS) using the first and third quartiles of
the distribution (q25 and q75 respectively) according to:
NS = q75−RS

q75−q25
.

As the scores are highly dependent on sequences
lengths, for each template, we compute five distribu-
tions (for five different sequence lengths correspond-
ing to -30%, -15%, 0%, +15% and +30% of the template
length, as explained below). We then linearly interpo-
late the corresponding quartile values according to the ac-
tual query length. Thus, the whole threading procedure
is composed of two phases, the first one is the computa-
tion of scores distributions (hereafter called phase D) and
the second one is the alignment of the sequence of inter-



est with the dataset of templates (hereafter called phase
E for evaluation) making use of the previously calcu-
lated distributions. These two phases are repeated for
each filter (1D and 3D) but some tricks have been devel-
oped to accelerate the whole procedure. First, as a tem-
plate represents a fold, we search for a global match
between a query and a template and we thus do not con-
sider queries and templates when their sequences lengths
differ from more than 30%. This strategy usually re-
duces the number of alignments from 1200 to about 300 for
the 1D filter. The second is that after the 1D filter, the tem-
plates are ranked and only the 10 best are passed to the 3D
filter which is more computationally expensive. The al-
gorithm used by FROST in the 1D filter, denoted here by
Ali1D(Q,C), is based on dynamic programming and
has a quadratic complexity for a fixed query Q and a tem-
plate C. On the other hand, the algorithm for the 3D filter,
here denoted by Ali3D(Q,C), has to solve an align-
ment problem which is proven to be NP-complete [4]. Even
using the fastest algorithm currently available for solv-
ing the underlying combinatorial optimization problem
[3], computing the score distributions for all the tem-
plates takes more than a month when performed sequen-
tially.

The whole procedure requires the following computa-
tions:

1. Phase D: align non homologous sequences in or-
der to obtain the scores distributions for all templates
and all filters (two for now). Since five distribu-
tions are associated to any template, and there are
about 200 sequences for each distribution, this proce-
dure needs solving about 1,200,000 quadratic prob-
lems Ali1D and the same amount of NP-complete
problems Ali3D.

2. Phase E: align the query with the dataset of tem-
plates which requires solving several hundreds of
quadratic problems Ali1D and N NP-complete prob-
lems Ali3D (where N is usually ten).

To give an idea of the amount of computation required
by the 3D filter, Figure 1 shows the distribution of the ≈ 106

alignment problems solved during phase D w.r.t the num-
ber of possible alignments. The latter can be as large as
6.6 1077.

Figure 2 shows the plot of the mean cpu time required to
solve the 3D problems involved in phase D as a function of
the number of possible alignments.

The purpose of the procedure proposed in the next sec-
tion is to distribute all these tasks.

Note that phase D needs to be repeated each time the fit-
ness functions or the library of templates change, which is

 

Log_10 of the number of possible alignments

nu
m

be
r 

of
 p

ro
bl

em
s

0 20 40 60 80

0

2000

4000

6000

8000

10000

12000

14000

Figure 1. Populations of 3D problems solved
during phase D as a function of the log10 of
the number of possible alignments (the size
of the search space).

0 20 40 60 80

5e−01

1e+00

5e+00

1e+01

5e+01

1e+02

5e+02

1e+03

Log_10(number of solutions) in the search spaces

se
co

nd
s

Figure 2. Mean CPU time required to solve
the Phase D 3D problems, partitioned w.r.t.
the log10 of the number of possible align-
ments (the size of the search space).



almost always the case when the program is used in a de-
velopment phase.

2.2. Dividing up FROST into modules

The first improvement in the distributed version
(DFROST) compared to the original FROST consists
in clearly identifying the different stages and opera-
tions in order to make the entire procedure modular. The
process of computing the scores distributions is dissoci-
ated from the alignment of the query versus the set of tem-
plates. We therefore split the two phases (D and E)
which used to be interwoven in the original implementa-
tion. Such a decomposition presents several advantages.
Some of them are:

• Phase D is completely independent from the query, it
can be performed as a preprocessing stage when it is
convenient for the program designer.

• The utilization of the program is simplified. Note that
only the program designer is supposed to execute
phase D, while phase E is executed by an “ordinary”
user. From a user’s standpoint DFROST is signifi-
cantly faster than FROST, since only phase E is car-
ried out at his request (phase D being performed as a
preprocessing step).

• The program designer can easily carry out different
operations needed for further developments of the al-
gorithm or for database updating such as: adding new
filters, changing the fitness functions, adding a new
template to the library, etc.

• This organization of DFROST in modules is very suit-
able for its decomposition in independent tasks which
can be solved in parallel.

The latter point is discussed in details in the next sec-
tion.

3. Parallelization

We distinguish two kinds of atomic independent tasks
in DFROST: the first is related to solving an instance of
a problem of type Ali1D, while the second is associated
with solving an instance of an Ali3D problem1.

Hence phase D consists in solving 1,200,000 indepen-
dent tasks of type Ali1D, and of type Ali3D, while phase
E consists in solving several hundreds of independent tasks

1 In reality this problem can be further decomposed in subtasks. Al-
though non independent, these subtasks can be executed in parallel
as show in [2, 8]. This parallelization could be easily integrated in
DFROST if necessary.

Ali1D and ten independent tasks Ali3D. The final deci-
sion requires sorting and analysis of the ten best solutions
of type Ali1D and the ten best solutions of type Ali3D.

In the next section we describe how these tasks can be
distributed and executed in parallel on a cluster of proces-
sors.

3.1. Parallel Algorithm

There is a couple of important observations to keep in
mind in order to obtain an efficient parallel implementation
for DFROST. The first is that the exact number of tasks is
not known in advance. Second, which is even more impor-
tant, the tasks are irregular (especially tasks of type Ali3D)
with unpredictable (for now) and largely varying execu-
tion time. In addition, small tasks need to be aggregated in
macro-tasks in order to reduce data broadcasting overhead.
Since the complexity of the two types of tasks is different,
the granularity for macro-tasks Ali1D should be different
from the granularity for macro-tasks Ali3D.

The parallel algorithm that we propose is based on
centralized dynamic load balancing: macro-tasks are dis-
patched from a centralized location (pool) in a dynamic
way. The work pool is managed by a “master” who gives
work on demand to idle “slaves”. Each slave executes the
macro-tasks assigned to it by solving sequentially the cor-
responding subproblems (either Ali1D or Ali3D). Note
that dynamic load balancing is the only reasonable task-
allocation method when dealing with irregular tasks for
which the amount of work is not known prior to execution.

In phase E the pool contains initially several hundreds of
tasks of type Ali1D. The master increases the work granu-
larity by grouping gran1D of them in macro-tasks. These
macro-tasks are distributed on demand to the slaves that
solve the corresponding problems. The solutions computed
in this way are sent back to the master and sorted by it lo-
cally. The templates associated to the ten best scores yield
ten problems of type Ali3D. The master groups them in
batches of size gran3D and transmits them to the slaves
where the associated problems are solved. The granularity
gran1D is bigger than the gran3D granularity. Finally the
slaves send back to the master the computed solutions.

The strategy in phase D is simpler. The master only
aggregates tasks in macro-tasks of size either gran1D or
gran3D, sends them on demand to idle slaves (where the
corresponding problems are sequentially solved), and gath-
ers finally the distributions that have been computed. The
master processes the library of templates in a sequential
manner. First, it aims at distributing all the tasks for a given
template to the slaves. However, when the list of tasks for
a given template becomes empty and there is at least one
slave demanding work, the master continues to distribute



tasks from the next template. This strategy allows to reduce
globally the idle time of the processors.

4. Computational experiments

The numerical results presented in this section were ob-
tained on a cluster of 12 Intel(R) Xeon(TM) CPU 2.4 GHz,
2 Gb Ram, RedHat 9 Linux, connected by 1 Gb ethernet
network. The behavior of DFROST was tested by entirely
computing the phase D of the package, i.e. all the distribu-
tions for 1125 templates for both filters.

In the case of 3D filter, solving 1,104,074 alignments re-
quired 3 days 3 hours 20 minutes (wall time of the mas-
ter). We were not in single-user mode but there were very
few other users during this period. We then added the run-
ning times reported in the log files of the slaves and ob-
tained a total sequential time equal to 37 days 5 hours 11
minutes. Therefore, for this very representative set of in-
stances, DFROST exhibits a speedup of 11.9 with an ef-
ficiency close to one. Details from this execution are pre-
sented in table 1. The value of the parameter gran3D was
experimentally fixed to 10.

In the case of 1D filter, solving 1,107,973 alignments re-
quired 31 minutes and 20 seconds (wall time of the mas-
ter). When we added the running times reported in the log
files of the slaves we obtained a total sequential time equal
to 4 hours 12 minutes and 55 seconds. The total time
to compute, sequentially, the distributions for the 2 filters
was 37 days 9 hours and 24 minutes, while computed by
DFROST on twelve processors the same amount of work
required 3 days 3 hours and 55 minutes.

These significant results, obtained on such a large data
set, justify the work done to distribute FROST and prove
the efficiency of the proposed parallel algorithm.

4.1. Statistical analysis

Using this parallel algorithm we were able to compute
all the distributions for the entire FROST templates library.
This was never done before, because of large templates
like 1BGLA0 with sequences as long as 528 amino acids,
leading to a number of possible alignments as large as
6.647E+77 (see Figure 3 for computation times). We ob-
served that for 188 templates the computation of the dis-
tributions requires more than one hour CPU time. Statis-
tical details concerning the running time of the four most
time consuming templates are presented in table 2. Remem-
ber, that a PTP instance (i.e. the query and the 3D structure
are fixed) is considered as an atomic independent task in
the current parallel strategy and, as shown in [2, 8], such
an instance can be further decomposed in subtasks that can

be executed in parallel. We were wondering about the ne-
cessity of implementing this parallelization for our appli-
cation. However, in view of: i) the huge number of inde-
pendent tasks when computing FROST distributions; ii) the
running time presented in tables 1 and 2, as well their sta-
tistical recapitulations in figure 3 showing clearly that re-
ally hard PTP instances are very rare; iii) the very satisfac-
tory speedup reported in section 4, we decided to stay for
now with the current parallel algorithm.

5. Conclusion

Solving the protein threading problem remains time con-
suming even though we are able to achieve peak rates as
high as 1074 equivalent threadings per second. For the pur-
pose of testing new developments of the FROST algorithm
we are often led to recompute the score distributions which
involves carrying out millions of threading alignments. This
is not easily tractable with a single computer. In this pa-
per we have presented a simple, but very efficient, load bal-
ancing algorithm enabling us to use FROST on a cluster
of computers. Using this implementation we were able to
compute the score distributions for the whole set of tem-
plates in about 3 days on a cluster of 12 computers instead
of more than 40 days on a single computer. This paralleliza-
tion procedure achieved an efficiency of about 1.

References

[1] T. Akutsu and S. Miyano. On the approximation of pro-
tein threading. Theoretical Computer Science, 210:261–275,
1999.

[2] R. Andonov, S. Balev and N. Yanev, Protein Thread-
ing Problem: From Mathematical Models to Parallel Im-
plementations, INFORMS Journal on Computing, 2004;
16(4): Special Issue on Computational Molecular Biol-
ogy/Bioinformatics, Eds. H. Greenberg, D. Gusfield, Y. Xu,
W. Hart, M. Vingro

[3] Stefan Balev, Solving the Protein Threading Problem by La-
grangian Relaxation, WABI 2004, 4th Workshop on Algo-
rithms in Bioinformatics, Bergen, Norway, September 14 -
17, 2004

[4] R. Lathrop, The protein threading problem with sequence
amino acid interaction preferences is NP-complete, Protein
Eng., 1994; 7: 1059-1068

[5] A. Marin, J.Pothier, K. Zimmermann and J-F. Gibrat, Pro-
tein threading statistics: an attempt to assess the significance
of a fold assignment to a sequence, Protein structure predic-
tion: bioinformatic approach, I. Tsigelny Ed, International
University Line: La Jolla, California, 2002

[6] A. Marin, J.Pothier, K. Zimmermann, J-F. Gibrat, FROST:
A Filter Based Recognition Method, Proteins, 2002 Dec 1;
49(4): 493-509



[7] J.C. Setubal, J. Meidanis, Introduction to computational
molecular biology, 1997, Chapter 8: 252-259, Brooks/Cole
Publishing Company, 511 Forest Lodge Road, Pacific Grove,
CA 93950

[8] N. Yanev and R. Andonov, Parallel Divide and Conquer Ap-
proach for the Protein Threading Problem, Concurrency and
Computation: Practice and Experience, 2004; 16: 1-14

[9] D. Fischer, http://www.cs.bgu.ac.il/ dfishcer/CAFASP3/,
Dec 2002

[10] R: A language and environment for statistical computing,
R Foundation for Statistical Computing, Vienna, Austria,
2004, http://www.R-project.org

[11] C. Branden and J. Tooze. Introduction to protein structure.
Garland Publishing, 1999.

[12] H. J. Greenberg, W. E. Hart, and G. Lancia. Opportuni-
ties for combinatorial optimization in computational biol-
ogy. INFORMS Journal on Computing, 16(3), 2004.

[13] T. Head-Gordon and J. C. Wooley. Computational chal-
lenges in structural and functional genomics. IBM Systems
Journal, 40:265–296, 2001.

[14] T. Lengauer. Computational biology at the beginning of
the post-genomic era. In R. Wilhelm, editor, Informat-
ics: 10 Years Back - 10 Years Ahead, volume 2000 of Lec-
ture Notes in Computer Science, pages 341–355. Springer-
Verlag, 2001.

[15] C. Chothia. Proteins. one thousand families for the molecu-
lar biologist. Nature, 357:543–544, 1992.

[16] R.H. Lathrop and T.F. Smith. Global optimum protein
threading with gapped alignment and empirical pair poten-
tials. J. Mol. Biol., 255:641–665, 1996.

[17] J. Xu, M. Li, G. Lin, D. Kim, and Y. Xu. Protein struc-
ture prediction by linear programming. In Proceedings of
The 7th Pacific Symposium on Biocomputing (PSB), pages
264–275, 2003.

[18] J. Xu, M. Li, G. Lin, D. Kim, and Y. Xu. RAPTOR: optimal
protein threading by linear programming. Journal of Bioin-
formatics and Computational Biology, 1(1):95–118, 2003.

[19] Y. Xu and D. Xu. Protein threading using PROSPECT: de-
sign and evaluation. Proteins: Structure, Function, and Ge-
netics, 40:343–354, 2000.

[20] Y. Xu, D. Xu, and E. C. Uberbacher. An efficient compu-
tational method for globally optimal threading. Journal of
Computational Biology, 5(3):597–614, 1998.

[21] J. Xu. Speedup LP approach to protein threading via graph
reduction. In Proceedings of WABI 2003: Third Work-
shop on Algorithms in Bioinformatics, volume 2812 of Lec-
ture Notes in Computer Science, pages 374–388. Springer-
Verlag, 2003.

[22] C.A Orengo, T. D. Jones, and J. M. Thornton. Protein su-
perfamilies and domain superfolds. Nature, 372:631–634,
1994.

Template DFROST CPU tot Cpu av NAli
1BGLA0 15455 107569 113 945
1ALO_0 9565 96579 97 995
1CXSA0 5988 55808 58 960
1DIK_0 4506 46855 47 977
(...)
1AYL_0 1807 18961 19 973
1EUT_0 1753 18883 18 995
1CTN_0 1535 16670 16 1000
1ECL_0 1439 15589 16 953
(...)
1LYLA0 782 8335 8 990
1BIF_0 657 7129 7 948
1AD3A0 629 6669 6 1000
1DNPA0 776 6580 6 960

Table 1. Execution times in seconds for cal-
culating the 3D score distributions. The tem-
plates for which the distributions are calcu-
lated are listed in the first column. The sec-
ond column gives the parallel time (the exe-
cution time for the master) on a cluster of 12
processors. The third column shows the CPU
sequential time (obtained by adding the CPU
times from the slaves). The fourth column
reports the average CPU time per threading
and the last column shows the actual num-
ber of sequences that have been threaded to
calculate the distributions. The value of the
granularity was fixed to 10.



Nb Sol NAli Min Q1 Med Mean Q3 Max

1B
G

L
A

0 5.4 1027 55 0.95 0.96 0.98 0.97 0.98 1.02
1.2 1035 56 0.95 0.96 0.97 0.97 0.98 1.01
3.5 1058 192 35.6 39.9 42.2 45.2 50.0 73.2
1.3 1070 199 102.4 116.3 131.0 145.7 164.6 510.0
6.6 1077 150 203.8 229.7 252.6 291.7 327.5 797.4

1Q
B

A
_0

1.6 103 58 1.82 1.83 1.83 1.84 1.84 1.89
8.3 1037 57 1.82 1.83 1.83 1.84 1.84 1.89
5.2 1057 197 27.1 30.2 32.5 36.3 39.8 76.6
2.8 1068 200 68.4 77.5 86.9 101.4 116.0 354.8
7.2 1075 200 130.1 154.7 178.3 207.0 239.8 789.8

1A
L

O
_0

3.1 1033 57 0.85 0.87 0.87 0.87 0.88 0.89
6.0 1033 57 0.85 0.86 0.87 0.87 0.87 0.89
2.5 1057 190 25.8 29.3 36.1 40.8 46.7 135.2
1.6 1069 200 67.4 86.3 113.2 123.2 134.8 397.6
1.3 1077 200 139.9 175.7 231.0 262.2 303.4 735.0

1Y
G

E
_0

3.4 1023 61 0.39 0.40 0.41 0.41 0.41 0.43
2.8 1045 59 0.40 0.41 0.41 0.41 0.42 0.42
2.1 1055 192 34.8 39.9 43.1 47.5 48.9 139.8
6.5 1061 173 71.2 80.5 89.5 102.0 115.9 365.1
4.4 1066 199 120.2 138.5 158.3 178.2 208.9 443.7

Table 2. Sequential times in seconds for com-
puting the 3D score distributions of four tem-
plates selected for their “difficulty” (search
space size). For a given template the 5 rows
represent alignment of sets of non related
sequences having length respectively equal
to: -30%, -15%, 0%, +15%, +30% of the tem-
plate length. Nb Sol is the number of pos-
sible alignments that can be generated with
the sequences and the template. This gives
an indication of the difficulty of the prob-
lem to solve. NAli is the number of align-
ments (sequences) in the corresponding set.
The last six columns report diverse running
time characteristics obtained when aligning
the set of sequences with the corresponding
3D structure: Min is the minimum value, Q1 is
the time at the 1st quartile position, Med. is
the time at the median position, Mean is the
average time, Q3 is the time at the 3rd quar-
tile position and Max is the maximum value.

5.
39

e+
27

1.
17

e+
35

3.
48

e+
58

1.
29

e+
70

6.
65

e+
77

0 200 400 600 800

Template 1BGLA0

cpu time in second

N
um

be
r 

of
 A

lig
ne

m
en

ts

16
50

8.
34

e+
37

5.
17

e+
57

2.
79

e+
68

7.
25

e+
75

0 200 400 600 800

Template 1QBA_0

cpu time in second

N
um

be
r 

of
 A

lig
ne

m
en

ts

Figure 3. The two templates for which the dis-
tribution calculations are the most computer
intensive, 1BGLA0 and 1QBA_0, are selected
from table 2 and the corresponding boxplots
of the running time distributions are plotted
using the statistical package R [10]. The box
contains the middle half of the data, i.e., the
left and right ends of the box are at the lower
and upper quartiles and the middle line cor-
responds to the median of the distribution.
Vertical lines, usually called “whiskers”, go
left and right from the box to the extreme of
the data (here defined as 1.5 times the inter-
quartile range). Points outside the whisker
lines are plotted by themselves. Note that the
distribution is not symmetric and exhibits a
heavy tail for longer CPU times.


