
RC-BLAST: Towards a Portable, Cost-Effective Open Source Hardware
Implementation∗

Krishna Muriki
ECE Department

Clemson University
Clemson, SC 29634–0915
kmuriki@ces.clemson.edu

Keith D. Underwood†

Sandia National Labs
P.O. Box 5800

MS-1110
Albuquerque, NM 87187-1110

kdunder@sandia.gov

Ron Sass
ITTC

University of Kansas
106 Nichols Hall

Lawrence, KS 66045–7523
rsass@ittc.ku.edu

Abstract

Basic Local Alignment Search Tool (BLAST) is a stan-
dard computer application that molecular biologists use
to search for sequence similarity in genomic databases.
This report describes the implementation of an FPGA-
based hardware implementation designed to accelerate the
BLAST algorithm. FPGA-based custom computing ma-
chines, more widely known as Reconfigurable Computing,
are supported by a number of vendors and the basic cost
of FPGA hardware is dramatically decreasing. Hence, the
main objective of this project is to explore the feasibility
of using this new technology to realize a portable, Open
Source FPGA-based accelerator for the BLAST Algorithm.
The present design is targeted to anAceIIcard and the de-
sign is based on the latest version of BLAST available from
NCBI. Since the entire application does not fit in hardware,
a profile study was conducted that identifies the computa-
tionally intensive part of BLAST. An FPGA hardware com-
ponent has been designed and implemented for this critical
segment. The portability and cost-effectiveness of the de-
sign are discussed.

1. Introduction

Scientists investigating biology at the molecular level are
making great advances that have a significant impact on so-
ciety. From understanding life [11] to renewable bioenergy

∗ This project was supported in part by the National Science Foundation
under NSF Grant EIA-9985986. The opinions expressed are those of
the authors and not necessarily those of the foundation.

† Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

[10] to the treatment of disease [4] to bioremediation [10],
understanding how the cell works, this science holds enor-
mous promise. Much of this work has come to rely on com-
puters and information technology — not just to organize
and catalog the volumes of data generated but also as a tool
for discovery. Like the other sciences, molecular biology
has come to embrace computation and computational tech-
niques as a third branch of science.

The field, called bioinformatics or sometimes compu-
tational biology, is generally concerned with the discov-
ery of new knowledge via information processing. This
ranges from simulations of complex biological systems to
genome sequencing and similarity searches. Here, we fo-
cus on the computational aspects of the latter. By improv-
ing a fundamental tool, BLAST [1], our goal is to increase
the productivity of scientists aiming to determine the se-
quence of organisms’ genomes, reveal gene function, un-
cover relationships between organisms, and other related
activities. For example, one approach to the assembly pro-
cess (a very computationally demanding step in the se-
quencing an organism’s genome) uses BLAST repeatedly
to find a solution. Hence, improving BLAST positively im-
pacts a broader range of bioinformatic tools.

The BLAST algorithm is a heuristic. Given a subject
database and a query (both of which are sequences of some
alphabet,1) the basic idea is to find positions in the sub-
ject where the query is similar. By similar, we mean that
the query matches, letter for letter, permitting a number of
variances (as specified by a command-line parameter). Al-
lowable variances include situations such as omitted letters,
added letters, and substituted letters. BLAST evaluates the

1 Throughout this report we assume the alphabet is A, T, G, and C
representing the nucleotides adenine, thymine, guanine, and cytosine.
BLAST operates on other alphabets as well, such as the 22 amino acids
found in proteins. All of the alphabets supported by BLAST are im-
plemented from the same code base, so there is no loss of generality
due to our assumption.

Query Sequence
AGCTTTTCATTCTTGACTGCAACG

Subject Database
...AGCTTTTCATTCTGACTGCAACGGGATGTC...

(a)

Score = 32.2 bits (16), Expect = 0.005
Identities = 23/24 (95%), Gaps = 1/24 (4%)
Strand = Plus / Plus
Query: 1 agcttttcattcttgactgcaacg 24

|||||||||||| |||||||||||
Sbjct: 1 agcttttcattc-tgactgcaacg 23

(b)

Figure 1: (a) sample input and (b) BLAST output

statistical significance of the variances and reports all of
the high-scoring matches found in the subject. For exam-
ple, consider the query and (a portion of) a subject database
shown inFigure 1(a). BLAST recognizes the similarity and
its output is reproduced inFigure 1(b).

BLAST is not the fastest tool. Nor is it the most accurate.
Nonetheless it remains exceedingly popular with biologists.
This is in part due to the fact that it was one of the first
tools and that the statistical integrity of the heuristic was
quickly established. This led many scientists to learn the
heuristic as an abstract tool. That is, one can adjust the pa-
rameters, read the output statistics, and immediately inter-
pret the results without considering the details of the heuris-
tic. In addition to simply being familiar this makes scien-
tists more productive. The popularity — and efficiency af-
forded by abstraction — was clearly fueled by the fact that
the source code to BLAST was open and available. This en-
abled large numbers of scientists to download the code and
run it on their general-purpose hardware. It became a main-
stay of the field because it could be compiled on the most
powerful (and most expensive) machines as well as the least
expensive desktops. Pragmatically, this feat would not have
been possible if the source was unavailable.

This, however, is not the complete picture. Indeed,
most medium to large bioinformatics laboratories also in-
clude special-purpose computing machines to do similar-
ity searches [15]. As one would expect, a special-purpose
machine is much faster than BLAST running on general-
purpose computer. The labs use these type of machines
when turn-around time is important or when they want to
manually prioritize their job mix. These machines, almost
universally, use FPGA devices to implement their (closed
source) algorithms. FPGAs are programmable logic devices
that can be used to implement custom-hardware comput-
ing machines. They are commodity parts used in a wide
range of products from digital cameras to high-speed In-

ternet routers to the rovers recently landed on Mars. They
are general-purpose in the sense that they can be repro-
grammed repeatedly (every application run) and quickly (on
the order of milliseconds). Yet these devices remain flexible
enough to realize custom hardware to accelerate an appli-
cation. Several vendors market standard PCI bus cards with
user-programmable FPGAs for this purpose. Using FPGAs
to build custom computing machines is commonly referred
to as Reconfigurable Computing (RC).

This brings us to the central question of this work. If
the open source availability of BLAST has been instru-
mental to its success and FPGA-based systems are known
to accelerate similarity searches, what technical barrier, if
any, prevents an open source FPGA implementation of the
BLAST heuristic? More specifically, this report investi-
gates the portability and cost-effectiveness of an FPGA-
based implementation BLAST. Implicit in the cost-effective
term is the price and performance of the implementation. A
portable implementation is one where the non-recurring en-
gineering costs associated with moving the implementation
from one FPGA board to another is limited to interfacing is-
sues and do not involve reworking the design. The primary
contribution of this work is establishing the feasibility of the
this approach but, almost as important and valuable, is an ar-
tifact of our study: an open source distribution of the imple-
mentation the design. The design and associated documen-
tation can be found at:http://www.ittc.ku.edu/
rcblast

The rest of the paper is organized as follows. The next
section provides a brief introduction to Reconfigurable
Computing and FPGAs. Insection 3, the run-time behav-
ior of BLAST is analyzed and a generic hardware design is
presented. Insection 4, an experimental setup is described
and the resulting performance reported. Based on the anal-
ysis we present our conclusions insection 6, along with a
brief description of future work.

2. Reconfigurable Computing and FPGAs

Reconfigurable Computing (RC) employs FPGAs to
build a custom computing architecture. Field Programmable
Gate Arrays (FPGAs) are integrated circuits consisting of
an array of configurable logic blocks (CLBs) attached by
a programmable interconnect (as shown inFigure 2). The
programmable interconnect uses wire segments and switch
boxes to propagate signals between logic blocks. Digital cir-
cuits are mapped to the CLBs which consist of look-up ta-
bles (LUTs) and flip-flops (FFs). These can be configured
to implement the arbitrary combinational logical and state
machine circuits. In addition to LUTs and FFs there are a
number of dedicated (fixed) hardware circuits to handle spe-
cific functionality, such as fast ripple-carry adders. The Xil-
inx 4085XLA (used in the experiments presented here) is

2

http://www.ittc.ku.edu/rcblast
http://www.ittc.ku.edu/rcblast

routing
boxbox

routing

FFs

LUTs

CLB

FFs

LUTs

CLB

FFs

LUTs

CLB

Figure 2: abstract view of an FPGA

SR CTRL

SR CTRL

G
FUNC
GEN

F
FUNC
GEN

H
FUNC
GEN

H1

H

F

H

G
F
DIN

G
H

H
G

F
DIN

ECS/RDIN

SD

Q

RD

D

EC

SD

Q

RDEC

D

1

1

G1
G2
G3
G4

K

F1
F2
F3
F4

C1 C2 C3 C4

YQ

Y

XQ

X

Figure 3: A Xilinx 4085XLA Configurable Logic Block
(CLB)

a 85K logic gate device with 3136 CLBs in a56 × 56 ar-
ray. Its detailed CLB structure is shown inFigure 3.

It is possible to configure these devices by specifying the
individual LUTs and configuration lines but for larger de-
signs, such as the BLAST accelerator, a Hardware Descrip-
tion Language (HDL) such as Verilog or VHDL is a prac-
tical requirement. A suite of vendor tools is used to con-
vert an HDL specification into a bit stream suitable for pro-
gramming an FPGA. Developing hardware requires special
training and this presents a significant barrier to software
programmers. However, once a specific application (such as
BLAST) is created the source can be widely distributed. By
analogy, one might observe that not every biologist could
write the original BLAST source code but many can com-
pile and use it.

The cost of using programmable logic (instead of di-
rectly implementing the digital circuit in an application-
specific integrated circuit) is an increased number of tran-
sistors and slower signal propagation — both due to the
cost of introducing configurability. Hence, a central theme
in RC is overcoming these disadvantages with architectural

performance gains. Performance gains typically come from
specialized circuits, pipeline parallelism, and spatial paral-
lelism.

3. Analysis and Design of RC-BLAST

While it is possible, it is usually not feasible (nor benefi-
cial) to implement the an entire application in the FPGA.
More common is the practice of identifying the compu-
tationally intensive part of the application by analyzing
the code or profiling the application at run-time. Then,
these critical segments are targeted for acceleration with the
FPGA resources. In this section, the run-time behavior of
BLAST is analyzed and based on these results a generic
hardware design is proposed.

3.1. Run-Time Analysis

BLAST comes in various ‘flavors’ that handle different
biological databases (nucleotides, proteins, etc.). These fla-
vors of BLAST are all part of a single software package
available from NCBI[9] and share a common code base.
The NCBI 2.2.6 version of BLAST, which is used here, con-
sists of approximately 1545 C source files in 210 directories
and a complex set of scripts to compile the application on
a variety of platforms. To analyze the run-time of behav-
ior of BLAST, we compiled the source code with gprof, a
sample-based profiler, enabled. (All of the profiling exper-
iments were conducted on the machine eventually used for
the implementation; see the next section for details.)

Along with numerous optional arguments, BLAST re-
quires three command-line arguments including the pro-
gram name, database file and query file. The program name
determines what flavor of BLAST the user wants. For ex-
ampleblastp compares a peptide query sequence against
a database of protein sequences. To expedite our investi-
gation we looked at the simplest one,blastn which com-
pares a nucleotide query sequence against a database of nu-
cleotide sequences. Using a test query sequence that comes
with the BLAST source code and a small (1.3 MB) database
ecoli.nt.2 downloaded from NCBI[9], it was found that
one subroutine (BlastNtWordFinder in the file blast.c)
contributed about 80% of the total execution time. From
this starting point, we considered this subroutine to be
the critical segment. Previously, colleagues in our lab had
looked at ways of increasing this critical segment so that it
would constitute a larger percentage of the execution time.
By incorporating the subroutines that come afterBlastNt-
WordFinder , they were able to increase it to 97.2% of the
execution time (for some sample input) which gives them a
theoretical upper bound of35× performance gain. This was
crucial for their project because they had to justify much
more expensive hardware.

3

Table 1: Size of Sequences

Subject Seq Size

month.nt 284 MB
drosoph.nt 121 MB

ecoli.nt 1.3 MB

Query Seq Size

RNase A (NM002935.2) 716 Letters
Random Query 1300 Letters

FSHR (NM 181446.1) 2196 Letters

Table 2: percent execution time ofcritical code for
nine queries

RNase A

FSHR
Random

drosoph.nt 72.20% 51.62% 75.12%
month.nt 69.15% 46.24% 75.72%

ecoli.nt 73.00%

In contrast, our target is almost two orders of magnitude
less expensive. Hence, we took the opposite course. Instead
of growing the critical segment, we isolated about 120 lines
of BlastNtWordFinder . These 120 lines were subsequently
moved into a separate function namedcritical code. By re-
peating the profiling experiments, we were able to estab-
lish thatcritical codestill effectively accounted for 80% of
the total execution time. Further analysis led us to isolate 26
lines of the originalBlastNtWordFinder function that rep-
resents about 73% of the total execution time for our sample
query and subject database. This gives us a theoretical max-
imum speedup of3.7× which would be sufficient for our
cost-effectiveness argument. Furthermore, the 26-line ver-
sion ofcritical coderesults in a simpler design that signif-
icantly improves the portability.

To verify that the importance ofcritical code was not
simply due to our choice of sample data, we conducted an
array of experiments involving three queries and three sub-
ject databases. The three subject databases and their sizes
are shown inTable 1(all from NCBI). Two of the three
queries also came from NCBI. The Random Query was a
synthetically generated from a random sequence of A, T, G,
and C letters. The query sizes are also listed inTable 1.

We tested every query against every database resulting in
nine profile data points. In every casecritical codewas the
most important subroutine and for a majority of the cases, it
was over 73% of the execution time.Table 2summarizes the
data obtained by profiling the BLAST source code. Com-
plete data is available[8]. It is observed that the total exe-
cution time spent in this function increases with the size of
the subject database. This suggests that larger databases will
benefit more from this approach.

3.2. Generic FPGA Design

Now that we have onecritical code function which
is the computationally intensive segment of the complete
BLAST source code, we need to implement this function as
a circuit for the FPGA. Using VHDL we designed an equiv-
alent digital circuit which is described below.

Each database file or subject sequence is made up of
many subsequence sections. The BLAST heuristic works
by constructing a lookup table from the query. InBlastNt-
WordFinder routine the BLAST algorithm loops over all
the sections in the database file and compares each one of
them with the query sequence.

The lookup table (also called the hit table) is built from
the input query sequence. Each row of the lookup table con-
tains a word, made of eight consecutive characters from the
query sequence. Words of 16 bits (8 letters) are formed from
the subject sequence by traversing it in four letter hops.
Each word is then used as an index into the (64K entry)
lookup table. The table is encoded to indicate every place
where that word appears in the query. If the count of oc-
currences of the word in the query sequence is zero, the
current word does not occur in the query and is discarded.
If the count is non zero then each offset is retrieved from
the table. For each offset in the query sequence the sub-
ject and query words are extended to the left and right. If the
comparison routine generates a high score, then the the sub-
ject and the query words, as well as their offsets, are passed
to another routine called the BlastNtWordExtend. The task
of indexing the newly created words from the subject se-
quence into the lookup table and retrieving the query off-
sets of these words is implemented in the newcritical code
function. The block level view of the implementation in the
FPGA is shown inFigure 4

In the present hardware design implemented the BLAST
application is first started by typing theblastall command
on the host processor. This will build the lookup table us-
ing the query sequence and loads the lookup table onto the
SRAM in the ACEIIcard. Next as the execution reaches
thecritical codefunction one subsection of the subject se-
quence is transferred to the design on the FPGA, where in it
identifies all the basic eight letter hits between this subsec-
tion and the query sequence. After transfer the host proces-
sor just sits idle till these hits information is obtained from
the FPGA. The remaining extension of hits operation is per-
formed on the host processor and the results are written into
the output results file.

Now we explain the hardware design made using the
hardware description language, VHDL. The complete hard-
ware design consists of two state machines one on the in-
put sideaddr smcand otherhitinfo smcon the output side.
The word inputs to the design are stored in the top half of
a 64 bit register namedsubjectbuffer as shown in theFig-

4

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

hi
t t

ab
le

pr
e−

co
m

pu
te

d
de

re
fe

re
nc

e

subject database matches

SRAM

FPGA

seqn seq1 seq0

NtWordFinder

1) catenate several
bases together

3) if match,
return location

2) index data
structure

Figure 4: WordFinder

 HOST INTERFACE

DESIGN INTERFACE

 hit_info_data subject_buffer

addr_smc hitinfo_smc

 State Machine State Machine

 SRAM INTERFACE

Figure 5: Design in Hardware

ure 5and gradually shifted to the right in steps of four char-
acters. Theaddr smcreads four characters at a time from
the lower end of this 64 bit input register and generates ad-
dresses to index into the lookup table in the SRAM. This
state machine also keeps track of the subject offset of these
words by writing them into a FIFO.

Thehitinfo smcstate machine reads the count value and
the query offsets returned from the SRAM and outputs them
to the software routine. This state machine also pops off the
subject offsets of these words from FIFO.

3.3. Interface

The lookup table built from the query sequence is loaded
into one bank of SRAM available on the ACEIIcard. The
bytes of SRAM contain the lookup table as shown in the

64 bits︷ ︸︸ ︷
1 bit 2 bits 13 bits 16 bits 16 bits 16 bits
flag #hits PTR Off1 Off2 Off3

0
1

...

216

Figure 6: Lookup table in Hardware in Left SRAM

Figure 6. Information from each row of the lookup table is
stored in 8 bytes or 64 bits of SRAM. The first three bits
contain a single bit flag and a two bit counter of the num-
ber of occurrences of the 8 character word of this row of the
lookup table in the query sequence. Bits from 16 to 63 con-
tain the three offsets in the query sequence. Thus if the count
is more than 3, the flag bit is set and the next 13 bits con-
tains a pointer to the location where the additional offsets
are stored. As of now the hardware design assumes that no
word in query sequence is repeated more than three times,
and the design stops running with an error message if the
query sequence has a word repeating more than thrice.

After making all this design, the last step is to remove the
critical codefunction from the BLAST source code and re-
place it with a hardware interface stub that (1) copies the
lookup table into the SRAM on the target board (2) streams
in the subject sequence as input to the design in the FPGA
and (3) reads back the hits information from the board.

4. Evaluation

To make an accurate evaluation of the portability and
cost-effectiveness of the proposed design, it is necessary to
realize the design in a real system. Below we describe the
AceIIcard implementation followed by a discussion of its
portability and cost-effectiveness.

4.1. Implementation

The generic design presented in the previous chapter was
implemented. An Intel architecture based, i386 machine is
used for both comparison and as a host for the FPGA-based
solution. The machine runs on Red9.0 Linux operating sys-
tem. The hardware platform used for implementing the de-
sign is called Adaptable Computing Engine or just the AceI-
Icard.

The AceIIcard is a PCI bus-based card with two Xilinx
XC4085XLA FPGAs and two blocks of SRAM each of size
1MB. All the components on the card are connected by a
local I960 bus that is bridged to the host’s PCI bus. This
architecture is illustrated inFigure 7. For our tests, only

5

H
os

t P
C

I
PLX9080

local bus
ACEIIcard

PLX9080

FIFOFIFO

SRAM SRAM

G
ig

ab
it

E
th

er
ne

t P
M

C

µ SPARC 64MB
DRAM

XC4085
XLA

XC4085
XLA

Figure 7: AceIIcard

the left FPGA and SRAM bank are used. On the host ma-
chine, an AceIIcard device driver is loaded. To make sure
that the time measurements are accurate, all the BLAST ex-
periments are run with no other user programs running.

To verify the correct behavior, an unmodified copy of
BLAST, downloaded form the NCBI site, was compiled and
run on the host machine. Designated SW-BLAST in this
section, the output was compared against our RC-BLAST
implementation. Given the same input, the two versions
produced the same output.

4.2. Portability

It is difficult to quantify how portable a design or a piece
of software is without implementing it on many instances.
Without access to many hardware platforms, this has to be a
mainly a theoretical discussion. By portable, we mean that
the non-recurring engineering costs associated with mov-
ing the implementation from one FPGA card to another is
just limited to interfacing issues and do not involve rework-
ing with the design. As mentioned insubsection 3.1, pre-
viously colleagues had worked on larger BLAST designs
the explicitly spanned multiple FPGA chips. The first ver-
sion, designed for an Annapolis Micro Systems Wildforce
card, used three chips. The second version used both chips
in the AceIIcard. In both cases the design necessarily had to
incorporate board-level architectural features, making them
less portable. In contrast, our design — which is signifi-
cantly smaller — entirely fits on a single chip. The design
does not use any special-purpose components, making it rel-
atively easy to port to other device families. The only re-
maining board-level features that it uses is the RAM inter-
face but almost all boards include that as part of the general
host interface. Thus we do not anticipate any special chal-
lenges in porting this design to any number of typical cards
available today.

0.4 sec

1.93 secRC−BLAST

time

SW−BLAST

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

Figure 8: RC-BLAST v. SW-BLAST performance on a
small query

4.3. Cost-Effectiveness

Cost-Effectiveness is a measure of the price of comput-
ing power. It is often used to compare two options where
the question is either (i) Given a fixed budget, which op-
tion provides more computing power? or (ii) What is the
least expensive way of achieving some performance objec-
tive? Both questions can be answered by considering the
cost/performance ratio.

The execution time for one run of BLAST (using the
small query and small database) is shown inFigure 8. The
results show the RC-BLAST system running significantly
slower that the software approach. Since the FPGA board
cost $6,000 (new), clearly it is not possible to argue that the
Ace2card is a cost-effective solution. However, this imple-
mentation still gives us the opportunity to to investigate the
source(s) of the problem. We note several observations.

Memory Speed.We note that since colleagues began work-
ing on the project several years ago, processors have im-
proved dramatically. With the 512KB of L2 cache on the
Pentium III and modern clock speeds, the processor can per-
form a look-up about as fast as our FPGA hardware. The
slowest part of the current design is the external RAM ac-
cess to the lookup table. However, the BLAST hardware
could be designed so that the vast majority of the lookups
do not need to go to external RAM. The results indicate this
additional effort would be useful.

Disk Speed.Upon investigation, we realized the PCI bus
presents a significant bottleneck. When the project began,
the CPU and system memory dictated BLAST performance.
It now appears that storage is the slowest component —
both systems RC-BLAST and SW-BLAST would run faster
if secondary storage was faster. Since realistic databases
cannot be cached in primary storage, this must be included.
(Note that profiling does not account for time when appli-
cation is blocked on I/O.) Our AceIIcard is further disad-
vantaged because the disk and the FPGA are on the same
peripheral bus. This means that the database traverses the
bus multiple times (from disk to primary memory and pro-
cessor and then again on its way to the FPGA). Separate

6

Figure 9: basic gate cost (proportional to 4085 CLB) for
FPGA technology

buses is one solution but even better is to add direct disk ac-
cess to the design. Unfortunately we are unaware of any cur-
rent host interface designs that support this and while some
have suggested it, the resulting design may end up being
vendor-specific.

Resource Utilization.One of the goals of our design was
to make it simple, small, and portable. However, in hind-
sight, our design dramatically under utilizes the CLB re-
sources of the device. Of the 3136 CLBs, the host interfaces
consumes 621 of them while the match unit only uses 83.
This means that over three-quarters of the chip is unused
and newer FPGA devices are considerably larger. Hence,
we suspect there are several ways this design could be mod-
ified to exploit the additional resources.

While the current results are clearly discouraging, it is
important to consider the trend. The first card used in the
lab cost approximately $35,000. The next card, the AceI-
Icard used in these experiments, was purchased in 1999 for
approximate $6,000. Several cards available today are less
than $500. In general the cost per CLB has dropped dramat-
ically — much faster than other computer technology (see
Figure 9).

5. Related Work

A complete description of database search algorithms is
beyond the scope of this report however it is important to
note that other algorithms and projects have similar aims.

The Smith-Waterman (SW) algorithm finds the most
similar subsequences of two sequences (the local align-
ment) by dynamic programming [7]. However these opti-
mal computations requires execution time in the order of
quadratic time [14].The algorithm compares two sequences
by computing a distance that represents the minimal cost of
transforming one segment into another.

The FASTA algorithm is an approximate heuristic al-
gorithm used to compute suboptimal pairwise similarity
comparisons. Dynamic programming is used to compute
a series of subsequence alignments called hotspots which
are combined to approximate a larger sequence alignment
and global similarity score. Although not as optimal as the
Smith-Waterman algorithm, the FASTA algorithm never-
theless executes in more rapid time and thus offers a trade
off between comparison accuracy versus execution time
[5, 6, 6, 12].

Since the introduction of BLAST, it has become very
popular with the exception of FASTA, it is probably uncon-
tested in practice. BLAST is computationally intensive, it
runs slowly. A research publication [7] from Nanyang Tech-
nological university claims that the dynamic programming
used in BLAST can be mapped efficiently to a linear ar-
ray of processing element. TurboBLAST, describes a par-
allel implementation of BLAST suitable for execution on
networked clusters of heterogeneous PCs, workstations or
Macintosh computers [3]. The design of BLAST++ by Na-
tional University of Singapore is based on the observation
that the seed searching step of BLAST is a bottleneck that
consumes more than 80% of the total response time [16].
Previous work on this project helped in identifying the soft-
ware routines in BLAST that take most of the computational
time. These routines if implemented in reconfigurable hard-
ware will speed up the execution of BLAST significantly.

Researchers in reconfigurable computing were attracted
to sequence matching for a number of reasons. Perhaps the
most compelling was that the sequence matching problem
was computationally intensive and had no floating point op-
erations. Earlier some research institutions have explored
ways to implement the sequence matching problem on
FPGA hardware. A computing and modeling unit in Rome
designed a special purpose processor for PROtien SImilar-
ity DIScovery, called PROSIDIS using FPGAs [2]. This
design on FPGAs can be used as HW booster for protein
analysis algorithms as its operations are not efficiently sup-
ported by conventional processors. A research group from a
German University claims that in contrast to pure software
approach, the parallel architecture using a PCI based hard-
ware accelerator gains a speedup of factor of 500 in detect-
ing an optimized set of primers for a given gene sequence
[13]. These primers are used in making DNA Chips.

6. Conclusion

The long-term goal of this work is to determine the fea-
sibility of making an Open Source FPGA-based accelera-
tor for BLAST. Several design options were considered and
the run-time behavior of BLAST was determined by pro-
filing the executable. In this contrast to previous work, this
paper proposed a simple hardware design involving a small

7

but computationally significant portion of the BLAST code.
This design was implemented on a PCI bus based FPGA
card and interfaced the the the BLAST application. The
cost-effectiveness of this implementation and the portability
of the design were evaluated. While the simple design ap-
pears to be very portable, the implementation was not cost-
effective. However the implementation led to several obser-
vations that will help guide the next design. The first is that
the presence of large on-chip caches will give modern pro-
cessors a competitive edge over FPGAs that use external
memory. Current FPGAs also have on-chip RAM but the
proposed design does not take advantage of this resource.
The second observation is that BLAST has become an I/O-
bound problem. Profiling the code did not reveal that the
software-only version of BLAST could be sped up with a
faster disk subsystem. The current system works by read-
ing the subject database from disks attached to the PCI bus
and then sends the data back over the PCI bus to the FPGA
card. This approach is not viable since the bandwidth of PCI
bus significantly limits the performance. The third observa-
tion is is that while the simple design is portable, it sig-
nificantly under utilizes the gates available on the FPGA.
Since the cost per gate is dramatically decreasing, this is
a resource that could significantly impact the FPGA’s cost-
effectiveness measure. From these observations, we draw
several conclusions about how to enhance the current de-
sign. Clearly, the lookup table data structure needs to take
advantage of the on-chip FPGA RAM to remain compet-
itive with on-chip caches. FPGA designs that directly con-
trol (multiple) Serial ATA disks drives are emerging and this
presents an excellent opportunity to improve the FPGA’s
cost-effectiveness. Finally, the BLAST heuristic inherently
has a significant amount of parallelism. Assuming the band-
width into the FPGA can be increased then the large un-
used gate resources of the FPGA could be leveraged to in-
crease performance through parallelism. In summary, the
AceIIcard does not provide a cost-effective solution but the
implementation and current technology trends suggest that
the long-term goals are feasible.

Acknowledgements

Most of the RC-BLAST work was completed when all
of the authors were associated with the PARL lab (http:
//www.parl.clemson.edu/) at Clemson University.
We wish to thank several people that contributed to this
project. Andrew Mehler did the first profiling work and con-
tributed to the Wildforce board design. Katrina Logue trans-
lated that design into the two-chip AceIIcard solution. Brian
Greskamp improved the Linux device driver. Several col-
leagues in the lab helped with specific aspects of the design
and in debugging the hardware. Support for the FPGA hard-
ware in the lab came from an NSF Instrumentation Grant

EIA-9985986 and donations from Xilinx, Inc.

References

[1] S. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. Lipman. A basic local alignment search tool. In
J.Mol.Biol.215,3,403-310., 1990.

[2] P. A.Marongiu and V.Rosato. Prosidis: a special purpose pro-
cessor for protein similarity discovery. InProceedings of the
Third IEEE International Workshop on High Performance
Computational Biology, April 2003.

[3] R. D. Bjornson, A.H.Sherman, S.B.Weston, N. Willard, and
J.Wing. Turboblast : A parallel implementation of blast built
on the turbohub. InProceedings of the Third IEEE Interna-
tional Workshop on High Performance Computational Biol-
ogy, April 2003.

[4] U. Food and D. Administration. Parkinson’s Dis-
ease New Treatments Slow Onslaught of Symptoms.
url:http://www.fda.gov/fdac/features/1998/498pd.html.

[5] D. Gusfield. Algorithms on strings, Trees and Sequences.
1997.

[6] D. J. Lipman and W. R. Pearson. rapid and sensitive protein
similarity searches. InScience 227,4693,1435-1441, 1985.

[7] B. S. Manfred Schimmler and H. Schroder. Massively par-
allel solutions for molecular sequence analysis. InProceed-
ings of the Third IEEE International Workshop on High Per-
formance Computational Biology, April 2003.

[8] K. Muriki. Design and implementation of open source fpga-
based accelerator for blast. Master’s thesis, Clemson Univer-
sity, Dec. 2004.

[9] NCBI. Blast software. Source may be downloaded from
http://www.ncbi.nih.gov/BLAST and databases
from ftp://ftp.ncbi.nih.gov/blast/db/ .

[10] D. of Energy. Medical Sci-
ences Division Research Programs.
url:http://www.sc.doe.gov/production/ober/msdres topic.html.

[11] N. I. of Health. Selected Research awards of NIH.
url:http://www.nih.gov/about/researchadvances.htm.

[12] W. R. Pearson and D. J. Lipman. Improved tools for bi-
ological sequence comparison. InProc.Natl.Acad.Sci.USA
85,8,2444-2448., 1988.

[13] H. Simmler, H. Singpiel, and R. Manner. Real time primer
design for dna chips. InProceedings of the Third IEEE In-
ternational Workshop on High Performance Computational
Biology, April 2003.

[14] T. F. Smith and M. S. Waterman. Identification of com-
mon molecular subsequences. InJ.Mol.Biol. 147,1,195-197,
1981.

[15] D. Time Logic. Recent Product Citations.
url:http://www.timelogic.com/decyphercitations.html.

[16] H. Wang, T. H. Ong, B. C. Ooi, and K. L. Tan. Blast++: A
tool for blasting queries in batches. InProceedings of the
Third IEEE International Workshop on High Performance
Computational Biology, April 2003.

8

http://www.parl.clemson.edu/
http://www.parl.clemson.edu/
http://www.ncbi.nih.gov/BLAST
ftp://ftp.ncbi.nih.gov/blast/db/

	Introduction
	Reconfigurable Computing and FPGAs
	Analysis and Design of RC-BLAST
	Run-Time Analysis
	Generic FPGA Design
	Interface

	Evaluation
	Implementation
	Portability
	Cost-Effectiveness

	Related Work
	Conclusion

